Enhancing antibacterial properties of bacteriocins using combination therapy

Poonam Sharma Meena Yadav   

Open Access   

Published:  Mar 26, 2022

DOI: 10.7324/JABB.2023.110206

Antibiotic abuse in hospitals, animal feed, and the food industry for decades has resulted in an alarming increase in antibiotic-resistant microbes. Antibiotic-resistant infections kill 700,000 people every year, and if the current trend continues, 10 million deaths are anticipated by 2050. To combat these life-threatening diseases, new antimicrobials must be discovered and developed quickly. Bacteriocins, a viable alternative to antibiotics, are ribosomally synthesized, bactericidal active proteins produced by certain bacteria and have the potential to substitute antibiotics to combat multidrug-resistant pathogens. To harness the full potential of these natural antimicrobials, their limitations such as sensitivity to proteolytic enzymes, a restricted antibacterial spectrum, a high dosage requirement, and low yield must be overcome first. This review discusses the use of combinatorial therapy to improve and broaden the antibacterial activity of bacteriocins while reducing the risk of resistance development, which is critical for their use as therapeutics and food preservatives.

Keyword:     Bacteriocins Antibiotic Resistance Nanoparticles Essential oils Bacteriophage


Sharma P, Yadav M. Enhancing antibacterial properties of bacteriocins using combination therapy. J App Biol Biotech. 2022. https://doi.org/10.7324/JABB.2023.110206

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, et al. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiol Rev 2021;45:fuaa039. https://doi.org/10.1093/femsre/fuaa039

2. Dadgostar P. Antimicrobial resistance: Implications and costs. Infect Drug Resist 2019;12:3903-10. https://doi.org/10.2147/IDR.S234610

3. WHO; 2017. Available from: https://www.who.int/news/item/27-02- 2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-areurgently-needed

4. CDC; 2019. Available from: https://www.cdc.gov/drugresistance/ pdf/threats-report/2019-ar-threats-report-508.pdf

5. Pircalabioru GG, Popa LI, Marutescu L, Gheorghe I, Popa M, Czobor Barbu I, et al. Bacteriocins in the era of antibiotic resistance: Rising to the challenge. Pharmaceutics 2021;13:196. https://doi.org/10.3390/pharmaceutics13020196

6. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from Enterobacteria. Nat Prod Rep 2007;24:708-34. https://doi.org/10.1039/b516237h

7. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: Extending the family. Appl Microbiol Biotechnol 2016;100:2939-51. https://doi.org/10.1007/s00253-016-7343-9

8. Sidhu PK, Nehra K. Bacteriocin-capped silver nanoparticles for enhanced antimicrobial efficacy against food pathogens. IET Nanobiotechnol 2020;14:245-52. https://doi.org/10.1049/iet-nbt.2019.0323

9. Cui HY, Wu J, Li CZ, Lin L. Anti-listeria effects of chitosancoated nisin-silica liposome on Cheddar cheese. J Dairy Sci 2016;99:8598-606. https://doi.org/10.3168/jds.2016-11658

10. Singh AK, Bai X, Amalaradjou MA, Bhunia AK. Antilisterial and antibiofilm activities of Pediocinand LAP functionalized gold nanoparticles. Front Sustain Food Syst 2018;2:74. https://doi.org/10.3389/fsufs.2018.00074

11. Sulthana R, Archer AC. Bacteriocin nanoconjugates: Boon to medical and food industry. J Appl Microbiol 2021;131:1056-71. https://doi.org/10.1111/jam.14982

12. Negash AW, Tsehai BA. Current applications of bacteriocin. Int J Microbiol 2020;2020:4374891. https://doi.org/10.1155/2020/4374891

13. Mokoena MP. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules 2017;22:1255. https://doi.org/10.3390/molecules22081255

14. Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020;8:639. https://doi.org/10.3390/microorganisms8050639

15. Bédard F, Hammami R., Zirah S, Rebuffat S, Fliss I, Biron E. Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof. Sci Rep 2018;8:9029. https://doi.org/10.1038/s41598-018-27225-3

16. Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. JAppl Microbiol 2016;120:1449-65. https://doi.org/10.1111/jam.13033

17. O'Connor PM, O'Shea EF, Cotter PD, Hill C, Ross RP. The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Sci Rep 2018;8:11833. https://doi.org/10.1038/s41598-018-30271-6

18. O'Shea EF, O'Connor PM, O'Sullivan O, Cotter PD, Ross RP, Hill C. Bactofencin A, a new type of cationic bacteriocin with unusual immunity. mBio 2013;4:e00498-13. https://doi.org/10.1128/mBio.00498-13

19. Sun Z, Wang X, Zhang X, Wu H, Zou Y, Li P, et al. Class III bacteriocin Helveticin-M causes sublethal damage on target cells AQ2 AQ3 AQ3 through impairment of cell wall and membrane. J India Microbiol Biotechnol 2018;45:213-27. https://doi.org/10.1007/s10295-018-2008-6

20. Ng ZJ, Zarin MA, Lee CK, Tan JS. Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: A review. RSC Adv 2020;10:38937-64. https://doi.org/10.1039/D0RA06161A

21. Mounier J, Coton M, Irlinger F, Landaud S, Bonnarme P. Smearripened cheeses. In: Cheese, Chemistry, Physics and Microbiology. 4th ed. United States: Academic Press; 2017. https://doi.org/10.1016/B978-0-12-417012-4.00038-7

22. Rahman IR, Sanchez A, Tang W, van der Donk WA. Structureactivity relationships of the enterococcal cytolysin. ACS Infect Dis 2021;7:2445-54. https://doi.org/10.1021/acsinfecdis.1c00197

23. Gabrielsen C, Brede DA, Nes IF, Diep DB. Circular bacteriocins: Biosynthesis and mode of action. Appl Environ Microbiol 2014;80:6854-62. https://doi.org/10.1128/AEM.02284-14

24. Vermeulen RR, Van Staden AD, Dicks L. Heterologous expression of the class iia bacteriocins, plantaricin 423 and mundticin ST4SA, in Escherichia coli using green fluorescent protein as a fusion partner. Front Microbiol 2020;11:1634. https://doi.org/10.3389/fmicb.2020.01634

25. Zendo T. Screening and characterization of novel bacteriocins from lactic acid bacteria. Biosci Biotechnol Biochem 2013;77:893-9. https://doi.org/10.1271/bbb.130014

26. ?ahingil D, ??lero?lu H, Y?ld?r?m Z, Akçelik M, Y?ld?r?m M. Characterization of lactococcin BZ produced by Lactococcus lactis Subsp. lactis BZ isolated from Boza. Turk J Biol 2011;35:21-33.

27. Acedo JZ, Towle KM, Lohans CT, Miskolzie M, McKay RT, Doerksen TA, et al. Identification and three-dimensional structure of carnobacteriocin XY, a class IIb bacteriocin produced by Carnobacteria. FEBS Lett 2017;591:1349-50. https://doi.org/10.1002/1873-3468.12648

28. Holo H, Nilssen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene. J Bacteriol 1991;173:3879-87. https://doi.org/10.1128/jb.173.12.3879-3887.1991

29. Valdés-Stauber N, Scherer S. Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 1994;60:3809-14. https://doi.org/10.1128/aem.60.10.3809-3814.1994

30. An J, Zhu W, Liu Y, Zhang X, Sun L, Hong P, et al. Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Control 2015;51:278-82. https://doi.org/10.1016/j.foodcont.2014.11.038

31. Collin F, Maxwell A. The microbial toxin microcin B17: Prospects for the development of new antibacterial agents. J Mol Biol 2019;431:3400-26. https://doi.org/10.1016/j.jmb.2019.05.050

32. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, et al. Colicin biology. Microbiol Mol Biol Rev 2007;71:158-229. https://doi.org/10.1128/MMBR.00036-06

33. Brown CL, Smith K, McCaughey L, Walker D. Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochem Soc Trans 2012;40:1549-52. https://doi.org/10.1042/BST20120241

34. Maldonado-Barragán A, Caballero-Guerrero B, Lucena-Padrós H, Ruiz-Barba JL. Induction of bacteriocin production by coculture is widespread among plantaricin-producing Lactobacillus plantarum strains with different regulatory operons. Food Microbiol 2013;33:40-7. https://doi.org/10.1016/j.fm.2012.08.009

35. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 2018;49:23-8. https://doi.org/10.1016/j.copbio.2017.07.011

36. Preciado GM, Michel MM, Villarreal-Morales SL, FloresGallegos AC, Aguirre-Joya J, Morlett-Chávez J, et al. Bacteriocins and its use for multidrug-resistant bacteria control. In: Kon K, Rai M, editors. Antibiotic Resistance. Ch. 16. Cambridge, MA, USA: Academic Press; 2016. https://doi.org/10.1016/B978-0-12-803642-6.00016-2

37. Sahoo TK, Jena PK, Prajapati B, Gehlot L, Patel AK, Seshadri S. In vivo assessment of immunogenicity and toxicity of the bacteriocin TSU4 in BALB/c Mice. Probiotics Antimicrob Proteins 2017;9:345-54. https://doi.org/10.1007/s12602-016-9249-3

38. do Carmo de Freire Bastos M, Coelho ML, da Silva Santos OC. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology (Reading, England) 2015;161:683-700. https://doi.org/10.1099/mic.0.082289-0

39. Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 2019;128:171-7. https://doi.org/10.1016/j.micpath.2019.01.002

40. Zgheib H, Drider D, Belguesmia Y. Broadening and enhancing bacteriocins activities by association with bioactive substances. Int J Environ Res Public Health 2020;17:7835. https://doi.org/10.3390/ijerph17217835

41. Tong Z, Zhang Y, Ling J, Ma J, Huang L, Zhang L. An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS One 2014;9:e89209. https://doi.org/10.1371/journal.pone.0089209

42. Ellis JC, Ross RP, Hill C. Nisin Z and lacticin 3147 improve efficacy of antibiotics against clinically significant bacteria. Fut Microbiol 2020;14:18. https://doi.org/10.2217/fmb-2019-0153

43. Mathur H, O'Connor PM, Hill C, Cotter PD, Ross RP. Analysis of anti-Clostridium difficile activity of thuricin CD, vancomycin, metronidazole, ramoplanin, and actagardine, both singly and in paired combinations. Antimicrob Agents Chemother 2013;57:2882-6. https://doi.org/10.1128/AAC.00261-13

44. Cavera VL, Volski A, Chikindas ML. The natural antimicrobial subtilosin a synergizes with lauramide arginine ethyl ester (LAE), ε-Poly-L-lysine (polylysine), clindamycin phosphate and metronidazole, against the vaginal pathogen Gardnerella vaginalis. Probiot Antimicrob Proteins 2015;7:164-71. https://doi.org/10.1007/s12602-014-9183-1

45. Lobos O, Padilla A, Padilla C. In vitro antimicrobial effect of bacteriocin PsVP-10 in combination with chlorhexidine and triclosan against Streptococcus mutans and Streptococcus sobrinus strains. Arch Oral Biol 2009;54:230-4. https://doi.org/10.1016/j.archoralbio.2008.11.007

46. Todorov SD, de Paula OA, Camargo AC, Lopes DA, Nero LA. Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Rev Argent Microbiol 2018;50:48-55. https://doi.org/10.1016/j.ram.2017.04.011

47. Ndoti-Nembe A, Vu KD, Doucet N, Lacroix M. Effect of combination of essential oils and bacteriocins on the efficacy of gamma radiation against Salmonella Typhimurium and Listeria monocytogenes. Int J Radiat Biol 2013;89:794-800. https://doi.org/10.3109/09553002.2013.797621

48. Turgis M, Vu KD, Dupont C, Lacroix M. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Res Int 2012;48:696-702. https://doi.org/10.1016/j.foodres.2012.06.016

49. Mehdizadeh T, Hashemzadeh MS, Nazarizadeh A, NeyrizNaghadehi M, Tat M, Ghalavand M, et al. Chemical composition and antibacterial properties of Ocimum basilicum, Salvia officinalis and Trachyspermum ammi essential oils alone and in combination with nisin. Res J Pharmacogn 2016;3:51-8.

50. Field D, Daly K, O'Connor PM, Cotter PD, Hill C, Ross RP. Efficacies of nisin A and nisin V semipurified preparations alone and in combination with plant essential oils for controlling Listeria monocytogenes. Appl Environ Microbiol 2015;81:2762-9. https://doi.org/10.1128/AEM.00070-15

51. Ay Z, Tuncer Y. Combined antimicrobial effect of Nisin, Carvacrol and EDTA against Salmonella Typhimurium in TSBYE at 4°C and 37°C. Rom Biotechnol Lett 2016;21:11666-74.

52. Pinilla CM, Brandelli A. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Grampositive and Gram-negative bacteria in milk. Innov Food Sci Emerg Technol 2016;36:287-93. https://doi.org/10.1016/j.ifset.2016.07.017

53. Zou Y, Lee HY, Seo YC, Ahn J. Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against foodborne pathogens. J Food Sci 2012;77:M165-70. https://doi.org/10.1111/j.1750-3841.2011.02580.x

54. Alishahi A. Antibacterial effect of chitosan nanoparticle loaded with nisin for the prolonged effect. J Food Saf 2014;34:111-8. https://doi.org/10.1111/jfs.12103

55. Naskar A, Kim KS. Potential novel food-related and biomedical applications of nanomaterials combined with bacteriocins. Pharmaceutics 2021;13:86. https://doi.org/10.3390/pharmaceutics13010086

56. Zohri M, Alavidjeh MS, Haririan I, Ardestani MS, Ebrahimi SE, Sani HT, et al. A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiot Antimicrob Proteins 2010;2:258-66. https://doi.org/10.1007/s12602-010-9047-2

57. Pandit R, Rai M, Santos CA. Enhanced antimicrobial activity of the food-protecting nisin peptide by bioconjugation with silver nanoparticles. Environ Chem Lett 2017;15:443-52. https://doi.org/10.1007/s10311-017-0626-2

58. Thirumurugan A, Ramachandran S, ShiamalaGowri A. Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria-an approach for food packaging material preparation. Int Food Res J 2013;20:1909-12.

59. Zimet P, Mombrú ÁW, Faccio R, Brugnini G, Miraballes I, Rufo C, et al. Optimization and characterization of nisin-loaded alginatechitosan nanoparticles with antimicrobial activity in lean beef. LWT 2018;91:107-16. https://doi.org/10.1016/j.lwt.2018.01.015

60. da Silva IM, Boelter JF, da Silveira NP, Brandelli A. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery. J Nanoparticle Res 2014;16:2479. https://doi.org/10.1007/s11051-014-2479-y

61. Luo L, Wu Y, Liu C, Huang L, Zou Y, Shen Y, et al. Designing soluble soybean polysaccharides-based nanoparticles to improve sustained antimicrobial activity of nisin. Carbohydr Polym 2019;225:115251. https://doi.org/10.1016/j.carbpol.2019.115251

62. Torres NI, Noll KS, Xu S, Li J, Huang Q, Sinko PJ, et al. Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiot Antimicrob Proteins 2013;5:26-35. https://doi.org/10.1007/s12602-012-9123-x

63. Song Z, Yuan Y, Niu C, Dai L, Wei J, Yue T. Iron oxide nanoparticles functionalized with nisin for rapid inhibition and separation of Alicyclobacillus spp. RSC Adv 2017;7:6712-9. https://doi.org/10.1039/C6RA25860C

64. Cui H, Wu J, Li C, Lin L. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT Food Sci Technol 2017;81:233-42. https://doi.org/10.1016/j.lwt.2017.04.003

65. Sharma TK, Sapra M, Chopra A, Sharma R, Patil SD, Malik RK, et al. Interaction of bacteriocin-capped silver nanoparticles with food pathogens and their antibacterial effect. Int J Green Nanotechnol 2012;4:93-110. https://doi.org/10.1080/19430892.2012.678757

66. Jiao D, Liu Y, Liu Y, Zeng R, Hou X, Nie G, et al. Preparation of phosphatidylcholine nanovesicles containing bacteriocin CAMT2 and their anti-listerial activity. Food Chem 2020;314:126244. https://doi.org/10.1016/j.foodchem.2020.126244

67. Amer SA, Abushady HM, Refay RM, Mailam MA. Enhancement of the antibacterial potential of plantaricin by incorporation into silver nanoparticles. J Genet Eng Biotechnol 2021;19:13. https://doi.org/10.1186/s43141-020-00093-z

68. Rodríguez-Rubio L, García P, Rodríguez A, Billington C, Hudson JA, Martínez B. Listeriaphages and coagulin C23 act synergistically to kill Listeria monocytogenes in milk under refrigeration conditions. Int J Food Microbiol 2015;205:68-72. https://doi.org/10.1016/j.ijfoodmicro.2015.04.007

69. Baños A, García-López JD, Núñez C, Martínez-Bueno M, Maqueda M, Valdivia E. Biocontrol of Listeria monocytogenes in fish by Enterocin AS-48 and Listeria lytic bacteriophage P100. LWT Food Sci Technol 2016;66:672-7. https://doi.org/10.1016/j.lwt.2015.11.025

70. Heo S, Kim MG, Kwon M, Lee HS, Kim GB. Inhibition of Clostridium perfringens using bacteriophages and bacteriocin producing strains. Korean J Food Sci Anim Resour 2018;38:88-98.

71. Kim SG, Lee YD, Park JH, Moon GS. Synergistic inhibition by bacteriocin and bacteriophage against Staphylococcus aureus. Food Sci Anim Resour 2019;39:1015-20. https://doi.org/10.5851/kosfa.2019.e95

72. Montalbán-López M, Cebrián R, Galera R, Mingorance L, MartínPlatero AM, Valdivia E, et al. Synergy of the bacteriocin AS-48 and antibiotics against uropathogenic enterococci. Antibiotics (Basel) 2020;9:567. https://doi.org/10.3390/antibiotics9090567

73. Kranjec C, Kristensen SS, Bartkiewicz KT, Brønner M, Cavanagh JP, Srikantam A, et al. A bacteriocin-based treatment option for Staphylococcus haemolyticus biofilms. Sci Rep 2021;11:13909. https://doi.org/10.1038/s41598-021-93158-z

74. Danesh A, Ljungh Å, Mattiasson B, Mamo G. Synergistic effect of haloduracin and chloramphenicol against clinically important Grampositive bacteria. Biotechnol Rep (Amst) 2016;13:37-41. https://doi.org/10.1016/j.btre.2016.12.008

75. Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP. Bacteriocinantimicrobial synergy: A medical and food perspective. Front Microbiol 2017;8:1205. https://doi.org/10.3389/fmicb.2017.01205

76. Hanchi H, Hammami R, Gingras H, Kourda R, Bergeron MG, Ben Hamida J, et al. Inhibition of MRSA and of Clostridium difficile by durancin 61A: Synergy with bacteriocins and antibiotics. Fut Microbiol 2017;12:205-12. https://doi.org/10.2217/fmb-2016-0113

77. Sharma A, Srivastava S. Anti-candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol 2014;118:264-75. https://doi.org/10.1016/j.funbio.2013.12.006

78. Field D, Seisling N, Cotter PD, Ross RP, Hill C. Synergistic nisinpolymyxin combinations for the control of Pseudomonas biofilm formation. Front Microbiol 2016;7:1713. https://doi.org/10.3389/fmicb.2016.01713

79. Angelopoulou A, Field D, Pérez-Ibarreche M, Warda AK, Hill C, Ross RP. Vancomycin and nisin A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk. PLoS One 2020;15:e0233284. https://doi.org/10.1371/journal.pone.0233284

80. Abers M, Schroeder S, Goelz L, Sulser A, St Rose T, Puchalski K, et al. Antimicrobial activity of the volatile substances from essential oils. BMC Complement Med Ther 2021;21:124. https://doi.org/10.1186/s12906-021-03285-3

81. Man A, Santacroce L, Jacob R, Mare A, Man L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 2019;8:15. https://doi.org/10.3390/pathogens8010015

82. Tanhaeian A, Sekhavati MH, Moghaddam M. Antimicrobial activity of some plant essential oils and an antimicrobial-peptide against some clinically isolated pathogens. Chem Biol Technol Agric 2020;7:9. https://doi.org/10.1186/s40538-020-00181-9

83. Ni ZJ, Wang X, Shen Y, Thakur K, Han J, Zhang JG, et al. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci Technol 2021;110:78-89. https://doi.org/10.1016/j.tifs.2021.01.070

84. Wi?ska K, M?czka W, ?yczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential oils as antimicrobial agents-myth or real alternative? Molecules 2019;24:2130. https://doi.org/10.3390/molecules24112130

85. Pietrysiak E, Smith S, Ganjyal GM. Food safety interventions to control Listeria monocytogenes in the fresh apple packing industry: A review. Comprehen Rev Food Sci Food Saf 2019;18:1705-26. https://doi.org/10.1111/1541-4337.12496

86. Bag A, Chattopadhyay RR. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p-coumaric acid against foodborne bacteria Bacillus cereus and Salmonella typhimurium. Lett Appl Microbiol 2017;65:366-72. https://doi.org/10.1111/lam.12793

87. Iseppi R, Camellini S, Sabia C, Messi P. Combined antimicrobial use of essential oils and bacteriocin bacLP17 as seafood biopreservative to control Listeria monocytogenes both in planktonic and in sessile forms. Res Microbiol 2020;171:351-6. https://doi.org/10.1016/j.resmic.2020.07.002

88. Shi C, Zhang X, Zhao X, Meng R, Liu Z, Chen X, et al. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control 2017;71:10-6. https://doi.org/10.1016/j.foodcont.2016.06.020

89. Hao K, Xu B, Zhang G, Lv F, Wang Y, Ma M, et al. Antibacterial activity and mechanism of Litsea cubeba L. essential oil against Acinetobacter baumannii. Nat Prod Commun 2021;16:146. https://doi.org/10.1177/1934578X21999146

90. Yap PS, Yusoff K, Lim SE, Chong C, Lai K. Membrane disruption properties of essential oils-a double-edged sword? Processes 2021;9:595. https://doi.org/10.3390/pr9040595

91. Lugani Y, Sooch BS, Singh P, Kumar S. Nanobiotechnology applications in food sector and future innovations. Microbial Biotechnol Food Health 2021:197-225. https://doi.org/10.1016/B978-0-12-819813-1.00008-6

92. Sharma P. Characterization and bacterial toxicity of titanium dioxide NPs. Int J Sci Res 2021;10:9-11. https://doi.org/10.36106/ijsr/0132760

93. Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep 2021;14:42. https://doi.org/10.3892/br.2021.1418

94. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol 2021;14:85. https://doi.org/10.1186/s13045-021-01096-0

95. Gavas S, Quazi S, Karpi?ski TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021;16:173. https://doi.org/10.1186/s11671-021-03628-6

96. Gomaa EZ. Synergistic antibacterial efficiency of bacteriocin and silver nanoparticles produced by probiotic Lactobacillus paracasei against multidrug resistant bacteria. Int J Pept Res Ther 2019;25:1113-25. https://doi.org/10.1007/s10989-018-9759-9

97. Mirhosseini M, Marvasti SH. Antibacterial activities of copper oxide (CuO) nanoparticles in combination with nisin and ultrasound against foodborne pathogens. Iran J Med Microbiol 2017;11:125-35.

98. Lee EH, Khan I, Oh DH. Evaluation of the efficacy of nisin-loaded chitosan nanoparticles against foodborne pathogens in orange juice. J Food Sci Technol 2018;55:1127-33. https://doi.org/10.1007/s13197-017-3028-3

99. Fahim HA, Khairalla AS, El-Gendy AO. Nanotechnology: Avaluable strategy to improve bacteriocin formulations. Front Microbiol 2016;7:1385. https://doi.org/10.3389/fmicb.2016.01385

100. Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of phage-and bacteriocin-based therapies in combatting nosocomial MRSA infections. Front Mol Biosci 2021;8:654038. https://doi.org/10.3389/fmolb.2021.654038

101. Gutiérrez D, Fernández L, Rodríguez A, García P. Role of bacteriophages in the implementation of a sustainable dairy chain. Front Microbiol 2019;10:12. https://doi.org/10.3389/fmicb.2019.00012

102. Komora N, Maciel C, Pinto CA, Ferreira V, Brandão T, Saraiva J, et al. Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiol 2020;86:103315. https://doi.org/10.1016/j.fm.2019.103315

103. Mills S, Ross RP, Hill C. Bacteriocins and bacteriophage; a narrowminded approach to food and gut microbiology. FEMS Microbiol Rev 2017;41:S129-53. https://doi.org/10.1093/femsre/fux022

104. Melander RJ, Zurawski DV, Melander C. Narrow-spectrum antibacterial agents. Medchemcomm 2018;9:12-21. https://doi.org/10.1039/C7MD00528H

105. Cotter PD, Ross RP, Hill C. Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol 2013;11:95-105. https://doi.org/10.1038/nrmicro2937

Article Metrics

87 Absract views 37 PDF Downloads 124 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Similar Articles

Gastroenteritis with Eschericha coli in pediatric hospital in N'Djamena-Chad

Bessimbaye N, Tidjani A, Moussa AM,Brahim BO, Mbanga D, Ndoutamia G, Sangare L, Barro N, Traore AS

Assessment of chlorine resistant bacteria and their susceptibility to antibiotic from water distribution system in Duhok province

Mohammad I. Al-Berfkani¹, Anies I. Zubair¹, Husham Bayazed²

Antimicrobial Activities of Microorganisms Obtained from the gut of Macrotermes michaelseni in Maseno, Kenya

Aswani Susan Ayitso, David Miruka Onyango, Samuel Otieno Wagai

Isolation and Identification by Morphological and Biochemical Methods of Antibiotic Producing Microorganisms from the gut of Macrotermes michaelseni in Maseno, Kenya

Aswani Susan Ayitso, David Miruka Onyango

Antibiotics susceptibility profile of Staphylococcus aureus isolated from selected hospital and non-hospital fomites

Oluwatayo Ayotunde Makinde, Ayorinde Bunmi Akinbobola, Olubunmi Olowokanga

Scanning electron microscopy and antibiotic sensitivity of the actinobacterium, Kocuria sediminis DDK6

Ashraf Y. Z. Khalifa

Molecular detection and antimicrobial resistance of Clostridium perfringens isolated from diabetic patients and bullet wounds

Aliaa Mohamed Hmood, Maysa S M Al-Shukri, Alaa H Al-Charrakh

Time-kill assay and post-antibiotic effect of acetone extract from the stem bark of Canarium odontophyllum against Methicillin-resistant Staphylococcus aureus Mu50 strain

Dayang Fredalina Basri, Nur Azmina Yahya, Nur Amira Mohd Shamsuddin

Antibacterial activity of leaf extract of Chromolaena odorata and the effect of its combination with some conventional antibiotics on Pseudomonas aeruginosa isolated from wounds

P. Odinakachukwu Omeke, J. Okechukwu Obi, N. A. Ibuchukwu Orabueze , Anthony Chibuogwu Ike

Enhanced ethanol tolerance in Lysinibacillus sp.

Shubhashree Mahalik, Ashamani Mohanty , Dhanesh Kumar

Cymbopogon giganteus Chiov. essential oil: Direct effects or activity in combination with antibiotics against multi-drug resistant bacteria

Habib Toukourou , Hope Sounouvou, Lucy Catteau, Fatiou Toukourou, Françoise Van Bambeke, Fernand Gbaguidi, Joëlle Quetin-Leclercq

Comparative investigation on antimicrobial and phytochemical profiling of Cyclea peltata and Tiliocora acuminate

Maniarasan Uthirapathi, Keerthiga Manohar, Nagarajan Nalliah

Efficacy of antibiotic sensitivity and antimicrobial activity of Streptomyces cinereoruber RSA-14 isolated from rhizosphere soil of Alternanthera sessilis (L.) R. Br. ex DC

Sreenivasa Nayaka, Halaswamy Hiremath, Bidhayak Chakraborty, Pallavi Sathyanarayan Swamy, Dhanyakumara Shivapoojar Basavarajappa, Shashiraj Kareyallappa Nagaraja, Muthuraj Rudrappa, Meghashyama Prabhakara Bhat, Dattatraya Airodagi, Meenakshi Shivanandagouda Murigennavar

Diversity and susceptibility pattern of medically important bacteria isolated from intestinal tract of Hemidactylus frenatus in Ilishan-Remo, Ogun State

Ogheneochuko Favour Ogbodogbo, Cajethan Onyebuchi Ezeamagu, Joy Ndidiamaka Barns

Arsenic-induced antibiotic response in bacteria isolated from an arsenic resistance estuary

Dhanasekaran Padmanabhan, Zerubabel Stephen, Somanathan Karthiga Reshmi, Subbiah Kavitha

Detection of multiple antibiotic-resistant bacteria from the hospital and non-hospital wastewater sources of a small town in Noakhali, Bangladesh

Md. Mijanur Rahman, Popy Devnath, Rafshan Jahan, Asma Talukder

Differences in antibiotic resistance profiles of methicillin-susceptible and –resistant Staphylococcus aureus isolated from the teaching hospital in Kuala Lumpur, Malaysia

Asif Sukri, Muhammad Nur Farhan Saat, Nor Afnizan Mohd Yusof, Noraziah Mohamad Zin, Abdul Rahim Abdul Rachman

Production of bioactive compounds by Streptomyces sp. and their antimicrobial potential against selected MDR uropathogens

Archana Singh, Padma Singh

A comprehensive study of microbiological profile, risk factors and antibiotic sensitivity pattern of catheter associated urinary tract infection in a teaching hospital of Gujarat

Dipak Motilal Panjwani,, Sucheta Jitendra Lakhani, Sanjay Jayantilal Mehta, Kunjan Madhukar Kikani, Khushi Shyam Shah

Pseudomonas gessardii—A novel pathogenic bacterium associated with the cases of corneal ulcers and producing virulent pyoverdine pigment

Deepika Jain

Industrial biotechnology: An Indian perspective

Kumud Tiwari, Garima Singh, Gajender Singh, Sonika Kumari Sharma, Samarendra Kumar Singh

Evaluation of the antibacterial activity of Coccinia grandis, against bacteria isolated from chronic suppurative otitis media infection

Debasmita Dubey, Santosh Kumar Swain, Smarita Lenka, Rajesh Kumar Meher, Biswakanth Kar, Shakti Rath

The occurrence of antibiotic resistance Vibrio isolates from brackish water shrimp ponds in the coastal area in Thua Thien Hue, Vietnam

Le Cong Tuan, Nguyen Van Khanh, Huyen Ton Nu Bao Tien, Phung Thao Phuong, Duong Van Hieu, Le Thi Ha Thanh, Nguyen Hoang Loc

Chitosan and β-amino butyric acid up-regulates transcripts of resistance gene analog RGPM213 in pearl millet to infection by downy mildew pathogen

P. Ranjini, Melvin Prasad, J. Samanth Kumar, Shailasree Sekhar, Devaraju Kesagodu, H. Shekar Shetty, K. Ramachandra Kini

Enterobacteria responsible for urinary infections: a review about pathogenicity, virulence factors and epidemiology

Victorien Dougnon, Phénix Assogba, Eugénie Anago, Esther Déguénon, Christina Dapuliga, Jerrold Agbankpè, Septuce Zin, Remi Akotègnon, Lamine Baba Moussa, Honoré Bankolé

Development and validation of multiplex polymerase chain reaction assay for concomitant detection of genus Staphylococcus and clinically relevant methicillin resistance determinants

Nimita Venugopal, Feroze Ganaie, Susweta Mitra, Rituparna Tewari, Tushar K. Dey, Rakshith Ojha, Rajeswari Shome, Bibek R. Shome

Interactive potential of Pseudomonas species with plants

Suhana Shaikh,, Nutan Yadav, Anoop R. Markande,

Plant induced resistance in Solanacearum lycopersicum species against root knot nematodes

B. Navyashree, Chandan Dharmashekar, Chandan Shivamallu, S. Balasubramanian, Shashanka K. Prasad, Shiva Prasad K, K. C. Latha

Multidrug-resistant Candida auris: A global challenge

Hardeep Kaur, Khushbu Wadhwa, Kusum Jain, Anamika Yadav

Molecular detection and characterization of disease resistance genes for bacterial blight in selected Indian soybean varieties

Gaurav Singh

Molecular characterization of markers linked to Tomato spotted wilt virus and Tomato mosaic virus resistance loci in tomato

Heba Amin Mahfouze, Sherin Amin Mahfouze, Mahmoud El-Sayed Ottai

Bromelain improves the growth, biochemical, and hematological profiles of the fingerlings of Nile Tilapia, Oreochromis niloticus

Jhanani Gopalraaj, John Britto Sagaya Raj, Krishnakumar Velayudhannair, Latha Chandrakas

Efflux pump and its inhibitors: Cause and cure for multidrug resistance

Fatema Saabir, Ayesha Hussain, Mansura Mulani, Snehal Kulkarni, Shilpa Tambe

Use of the amphotericin B, miconazole, and sodium hypochlorite to control the growth of the robust Aspergillus flavus and Aspergillus fumigatus biofilms on polyethylene support

Camila Guedes Francisco, Gilberto Bida Leite Braga, Luis Henrique Souza Guimarães

Meta-analysis of Type 2 diabetes and insulin resistance gene expression datasets to decipher their associated pathways

Aditya Saxena, Nitish Mathur, Uma Chaudhary, Utkarsh Raj, Sneha Rai, Sandeep Kumar Mathur

Characterization of resistance genes to late blight (Phytophthora infestants) in potato by marker-assisted selection

Heba Amin Mahfouze, Osama Ezzat El-Sayed, Sherin Amin Mahfouze

Antimicrobial effect of nanofluid including Zinc oxide (ZnO) nanoparticles and Mentha pulegium essential oil

Mona Jahanpanahi, Ali Mohamadi Sani

ZnS nanoparticles persuade alterations in metabolic and hematological aspects in the cyprinid Labeo bata (Hamilton, 1822)

Nilanjana Chatterjee, Baibaswata Bhattacharjee

Biosynthesis, characterization and antibacterial activity of silver nanoparticles from Aspergillus awamori

Vishwanatha T, Keshavamurthy M, Mallappa M, Murugendrappa MV , Nadaf YF, Siddalingeshwara KG, Dhulappa A

Ellagic acid—Fe@BSA nanoparticles for preferential payload delivery and chemodynamic therapy in A549 cells

Sandeep Suresh Menon, Sivaramakrishnan Venkatabalasubramanian

Utilization of biosurfactant produced by Pseudomonas aeruginosa strain LTR1 for the synthesis of the silver nanoparticles and their application as antimicrobial agents

Nitin Deshmukh, Dilip Kadam, Pravin Deshmukh, Gunderao Kathwate

Insecticidal effect of four plant essential oils against two aphid species under laboratory conditions

Akram Saleh Alghamdi

Efficacy of commercial botanical pure essential oils of garlic (Allium sativum) and anise (Pimpinella anisum) against larvae of the mosquito Aedes aegypti

Sedthapong Laojun, Pongmada Damapong, Peerada Damapong, Wallapa Wassanasompong, Nantana Suwandittakul, Thavatchai Kamoltham, Tanawat Chaiphongpachara