Research Article | Volume: 5, Issue: 3, May-June, 2017

Scanning electron microscopy and antibiotic sensitivity of the actinobacterium, Kocuria sediminis DDK6

Ashraf Y. Z. Khalifa   

Open Access   

Published:  Jun 19, 2017

DOI: 10.7324/JABB.2017.50304

In the present work, the cellular arrangements and shape of Kocuria sediminis DDK6 which was isolated from a diesel-oil contaminated soil, were investigated using scanning electron microscope (SEM). Additionally, the intrinsic antibiotic resistance of theDDK6 to 10 different antibiotics was also assessed using disc diffusion antibiotic sensitivity testing. The results obtained from SEM indicated that cells of the strain DDK6 were arranged in pairs, tetrads, packets and grape-like clusters. Typical spherical-shaped cells with a diameter between 0.7 - 0.9 um, were observed. The cell surface appeared relatively smooth in texture. Additionally, circumferential rings with different spatial planes were observed in cells with various arrangements, indicating different planes of divisions. Results of intrinsic antibiotic resistance revealed that DDK6 strain was sensitive to all antibiotic tested at the applied concentration, except for the nitrofurantoin (F 300 µg). The diameter of the inhibition zone ranged between 0.85-1.3 cm highlighting variations in susceptibility levels to the antibiotic tested. In conclusion, DDK6 could adjust the position of the cell division site to cope with the habitat in which it lives, and resistance to the nitrofurantoin could be used as a rapid identification of Kocuria spp, in addition, to many other phenotypic traits.

Keyword:     Kocuriaantibiotic sensitivitycell arrangements.


Ashraf Y. Z. Khalifa. Scanning electron microscopy and antibiotic sensitivity of the actinobacterium, Kocuria sediminis DDK6. J App Biol Biotech. 2017; 5 (03): 018-022.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov, Nesterenkonia gen. nov, Kytococcus gen. nov, Dermacoccus gen. nov, and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 1995; 45: 682–692.

2. Mori, N., Nishihara, Y., Tayama, H., Higuchi, A., & Aoki, Y. Peripherally inserted central catheter-related bloodstream infection caused by Kocuria marina in an elderly man. Infection.2017;1-4.

3. Bala M, Kaur C, Kaur I, Khan F, and Mayilraj S.. Kocuria sediminis sp. nov, isolated from a marine sediment sample. Antonie Van Leeuwenhoek.2012; 3:469-478.

4. Wang K, Zhang L, Liu Y, Pan Y, Meng L, Xu T, Zhang C, Liu H, Hong S, Huang H, and Jiang J.. Kocuria dechangensis sp. nov, an actinobacterium isolated from saline and alkaline soils. Int. J. Syst. Evol. Microbiol. 2015; 65: 3024-3030.

5. Seo YB, Kim DE, Kim GD, Kim HW, Nam SW, Kim YT, Lee JH. Kocuria gwangalliensis sp. nov, an actinobacterium isolated from seawater. Int. J. Syst. Evol. Microbiol.2009; 59: 2769-2772.

6. Yun JH, Roh SW, Jung MJ, Kim MS, Park EJ, Shin KS, Nam YD and Bae JW . Kocuria salsicia sp. nov, isolated from salt-fermented seafood. Int. J. Syst. Evol. Microbiol. 2011; 61: 286-289.

7. Hamada M, Shibata C, Tamura T, Nurkanto A, Ratnakomala S, Lisdiyanti P, and Suzuki KI. Kocuria pelophila sp. nov, an actinobacterium isolated from the rhizosphere of a mangrove. Int. J. Syst. Evol. Microbiol. 2016; 9: 3276-3280.

8. Esmaeil AS, Drobiova H, and Obuekwe C. Predominant culturable crude oil-degrading bacteria in the coast of Kuwait. Int. Biodeter. Biodegr. 2009; 4: 400-406.‏

9. Khalifa A Degradation of diesel-oil by a newly isolated Kocuria sediminis DDK6. Afr. J. Microbiol. Res. 2017. In press.

10. Sharifuzzaman SM, Al-Harbi, A H, Austin B. Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria SM1 and Rhodococcus SM2. Aquaculture. 2014; 418: 55-61.‏

11. Sharifuzzaman S. M, and Austin, B. Kocuria SM1 controls vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). J. App. microbial. 2010; 6: 2162-2170.

12. Egamberdieva D. Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk. J. Biol. 2008; 1: 9-15.‏

13. Palomo S, González I, de la Cruz M, Martín J, Tormo JR, Anderson M, Hill R, Vicente F, Reyes F, Genilloud O. Sponge-Derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic Kocurin. Mar. Drugs. 2013; 4: 1071–1086.

14. Chen, H. M., Chi, H., Chiu, N. C., & Huang, F.Y. Kocuria kristinae: a true pathogen in pediatric patients. J Microbiol Immunol. 2015; 48(1), 80-84.‏

15. Chander, A. M., Nair, R. G., Kaur, G., Kochhar, R., Mayilraj, S., Dhawan, D. K., & Bhadada, S. K. Genome sequence of Kocuria palustris strain CD07_3 isolated from the duodenal mucosa of a celiac disease patient. GenomeA, 2016; 4(2), e00210-16.‏

16. Loong, S. K., Johari, J., Che Mat Seri, N. A. A., AbdulRazak, O., Douadi, B., Ahmad Nasrah, S. N., ... & AbuBakar, S. Research Note Isolation and Identification of an Emerging Pathogen, Kocuria marina, from Rattus rattus diardii. Trop. Biomed. 2016; 33(3), 589-593.‏

17. AlWakeel, S. S. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia. Saudi J. Biol. Sci .‏ 2015, Dec. 1,

18. Ventola CL. The Antibiotic Resistance Crisis: Part 1: Causes and Threats.Pharm. Ther. 2015; 40(4), 277–283.

19. Gang, Z., & Jie, F.. The intrinsic resistance of bacteria. Yi chuan= Hereditas, 2016; 38(10), 872.‏

20. Perry, C., & Hall, C. Antibiotic resistance: how it arises, the current position and future strategies. Benefits, 2017; 10, 32.‏

21. Tang, S. K., Wang, Y., Lou, K., Mao, P. H., Xu, L. H., Jiang, C. L., & Li, W. J. Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int. J. Syst. Evol. Microbiol. 2009; 59(6), 1316-1320.‏

22. Jiang, Z., Zhang, W. H., Yuan, C. G., Chen, J. Y., Cao, L. X., Park, D. J., & Li, W. J. Kocuria subflava sp. nov., isolated from marine sediment from the Indian Ocean. Antonie van Leeuwenhoek, 2015; 108(6), 1349-1355.‏

23. Román-Ponce, B., Wang, D., Vásquez-Murrieta, M. S., Chen, W. F., Estrada-de los Santos, P., Sui, X. H., & Wang, E. T. Kocuria arsenatis sp. nov., an arsenic-resistant endophytic actinobacterium associated with Prosopis laegivata grown on high-arsenic-polluted mine tailing. Int. J. Syst. Evol. Microbiol.2016; 66(2), 1027-1033.‏

24. Kovács G, Burghardt J, Pradella S, Schumann P, Stackebrandt E. and Màrialigeti K. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov, isolated from rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int. J. Syst. Bacteriol. 1999; 49: 167-173.

25. Kim, S. B., Nedashkovskaya, O. I., Mikhailov, V. V., Han, S. K., Kim, K. O., Rhee, M. S. & Bae, K. S. Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int. J. Syst. Evol. Microbiol.2004;54, 1617–1620.

26. Li, W. J., Zhang, Y. Q., Schumann, P., Chen, H. H., Hozzein, W. N., Tian, X. P., Xu, L. H. & Jiang, C. L. Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int. J. Syst. Evol. Microbiol.2006; 56, 733–737

27. Amako, K., & Umeda, A. Bacterial surfaces as revealed by the high resolution scanning electron microscope. Microbiology, 1977; 98(1), 297-299.‏

28. Umeda, A., Saito, M., & Amako, K.. Surface characteristics of Gram-negative and Gram-positive bacteria in an atomic force microscope image. Microbiol. Immunol. 1998; 42(3), 159-164.‏

29. De Boer, P. A. Advances in understanding E. coli cell fission. Curr. Opin. Microbiol. 2010; 13(6): 730-737.‏

30. Monahan LG, Liew ATF, Bottomley AL, Harry EJ.Division site positioning in bacteria: one size does not fit all. Front. Microbiol.2014; 5:19. doi:10.3389/fmicb.2014.00019.

31. Boyle-Vavra S, Hahm J, Sibener SJ, Daum RS.Structural and Topological Differences between a Glycopeptide-Intermediate Clinical Strain and Glycopeptide-Susceptible Strains of Staphylococcus aureus Revealed by Atomic Force Microscopy. Antimicrob. Agents. Ch.2000; 44(12):3456-3460.

32. Ma ES, Wong CL, Lai KT, Chan EC, Yam W, Chan AC. Kocuria kristinae infection associated with acute cholecystitis. BMC Infectious Diseases.2005,5:60. doi:10.1186/1471-2334-5-60.

33. Szczerba I. Susceptibility to antibiotics of bacteria from genera Micrococcus, Kocuria, Nesternkonia, Kytococcus and Dermacoccus. Med Dosw Mikrobiol. 2003; 55:75–80.

34. Savini, V., Catavitello, C., Masciarelli, G., Astolfi, D., Balbinot, A., Bianco, A., D'antonio, D.Drug sensitivity and clinical impact of members of the genus Kocuria. J. Med. Microbial.2010; 59(12), 1395-1402.‏

35. Purty, Shashikala et al. The Expanding Spectrum of Human Infections Caused by Kocuria Species: A Case Report and Literature Review. Emerging Microbes & Infections . 2013;2(10): e71–. PMC. Web. 24 Feb. 2017.

36. McCalla DR, Kaiser C, Green MH. Genetics of nitrofurazone resistance in Escherichia coli. J. Bacteriol. 1978; 133: 10–16.

Article Metrics

60 Absract views 76 PDF Downloads 136 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Similar Articles