Essential oils as green controllers of the cotton pest Dysdercus

Ricardo Diego Duarte Galhardo De Albuquerque Edmundo Arturo Venegas-Casanova Felipe Rúben Rubio-López Miriam E. Gutiérrez-Ramos Iris Melina Alfaro-Beltrán Rafael Jara-Aguilar Francisco Tito Cerna-Reyes   

Open Access   

Published:  May 02, 2024

DOI: 10.7324/JABB.2024.168696
Abstract

The Dysdercus genus is identified as a major pest group affecting cotton crops due to feeding damage and staining of fibers. The reliance on synthetic pesticides has led to environmental issues, driving the search for sustainable alternatives like essential oils (EOs), which in turn offer a promising solution by effectively targeting pests while minimizing ecological harm and aligning with modern agricultural sustainability goals. This review examined 19 documents exploring the insecticidal potential of EOs against Dysdercus insects. EOs derived from Brazilian coast plants showed significant activity against Dysdercus peruvianus, particulary Pilocarpus spicatus’s EO, presenting marked efficacy against nymphs. In addition, the work highlights the promising insecticidal activities of Artemisia annua, Boswellia serrata, and Ocimum sanctum EOs against different Dysdercus species. Furthermore, the studies on field efficacy, non-target organism toxicity, and innovative nanoemulsions were considered. Overall, the review underscores the EOs potential as sustainable biocontrollers for Dysdercus pests in global cotton production.


Keyword:     Insecticidal activity Essential oils Biodiversity Biological control Sustainability


Citation:

De Albuquerque RDDG, Venegas-Casanova EA, Rubio-López FR, Gutiérrez-Ramos ME, Alfaro-Beltrán IM, Jara-Aguilar R, Cerna-Reyes FT. Essential oils as green controllers of the cotton pest Dysdercus. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.168696

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Razaq M, Mensah R, Athar HU. Insect pest management in cotton. In: Cotton Production. Hoboken: John Wiley and Sons Ltd.; 2019. p. 85-107. https://doi.org/10.1002/9781119385523.ch5

2. Chi BJ, Zhang DM, Dong HZ. Control of cotton pests and diseases by intercropping: A review. J Integr Agric 2021;20:3089-100. https://doi.org/10.1016/S2095-3119(20)63318-4

3. MSU (Mississippi Agricultural and Forestry Experiment Station). Cotton Insect Losses; 2022. Available from: https://www. biochemistry.msstate.edu/resources/pdf/2022/table31.pdf. [Last accessed on 2023 Dec 10].

4. Jabran K, Ul?Allah S, Chauhan BS, Bakhsh A. An introduction to global production trends and uses, history and evolution, and genetic and biotechnological improvements in cotton. In: Cotton Production. Hoboken: John Wiley and Sons Ltd.; 2019. p. 1-22. https://doi.org/10.1002/9781119385523.ch1

5. Wardhan H. Agricultural Value Chains in India: Ensuring Competitiveness, Inclusiveness, Sustainability, Scalability, and Improved Finance. Germany: Springer; 2022. p. 4-281.

6. Khan MA, Wahid A, Ahmad M, Tahir MT, Ahmed M, Ahmad S, et al. World cotton production and consumption: An overview. In: Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies. Singapore: Springer; 2020a. p. 1-7. https://doi.org/10.1007/978-981-15-1472-2_1

7. Karar H, Bashir MA, Haider M, Haider N, Hassan M, HashemM, et al. Ecological impact on development of hemipterous bug (Dysdercus koenigii) (Hemiptera: Pyrrhocoridae) and boll rot disease of cotton (Gossypium hirsutum) grown in the diversified field. Saudi J Biol Sci 2021;28:3957-64. https://doi.org/10.1016/j.sjbs.2021.03.066

8. Khan WA, Qamar SU, Ahmad JN, Calma ML, Ullah A. Phylogenetic analysis of red cotton bug species (Hemiptera: Pyrrhocoridae) in Punjab, Pakistan. Acta Entomol Serbica 2020b;25:1-11.

9. Costa MG. Estudo da Atividade dos Óleos Essenciais de Ocotea elegans (Lauraceae) e de uma Myrtaceae nos Hemiptera Oncopeltus fasciats (Lygaeidae) e Dysdercus peruvianus (Pyrrhocoridae). Master Thesis. Universidade Federal Fluminense; 2023.

10. Hussain M, Kacho NF, Mohan S, Mir AH. Potential control agents against red cotton bug Dysdercus koenigii-a review. Indian J Entomol 2021;83:1-8. https://doi.org/10.5958/0974-8172.2020.00220.5

11. Montero-Peña JM. Aplicación del Espectro Visible Para el Control de la Plaga del Arrebiatado (Dysdercus peruvianus Guerin) en el Cultivo de Algodón-Piura. PhD Thesis. Universidad Nacional de Piura; 2021.

12. Saeed R, Abbas N, Hafez AM. Biological fitness costs in emamectin benzoate-resistant strains of Dysdercus koenigii. Entomol Gen 2021;41:267-78. https://doi.org/10.1127/entomologia/2021/1184

13. Singh-Gupta S, Magdum S, Jawale CS. Acute toxicity of menadione on DNA content in the gonads of Dysdercus cingulatus. Trends Life Sci 2020;9:1-4.

14. Shahzad A, Khan MA, Ashfaq M, Ahmed JN, Zahid M, Mustafa FU, et al. Comparative effect of botanical extracts and synthetic pesticides against Dysdercus cingulatus F. and Amrasca biguttula I. in Okra. J Entomol Zool Stud 2019;7:1291-5.

15. Chaudhari AK, Singh VK, Kedia A, Das S, Dubey NK. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ Sci Pollut Res Int 2021;28:18918-40. https://doi.org/10.1007/s11356-021-12841-w

16. Wang J, Zhao F, Huang J, Li Q, Yang Q, Ju J. Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Crit Rev Food Sci Nutr 2023; 18:1-26. https://doi.org/10.1080/10408398.2023.2167066

17. Wu H, Zhao F, Li Q, Huang J, Ju J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr 2022;120:1-13.

18. Ju J, Guo Y, Cheng Y, Yaoc W. Analysis of the synergistic antifungal mechanism of small molecular combinations of essential oils at the molecular level. Ind Crops Prod 2022;188:115612. https://doi.org/10.1016/j.indcrop.2022.115612

19. Isman MB. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem Rev 2020;19:235-41. https://doi.org/10.1007/s11101-019-09653-9

20. Shaltiel-Harpaz L, Kreimer T, Dudai N, Kaspi R, Ben-Yakir D, Rytwo G. Sepiolite-rosemary oil combination as an environmentally oriented insecticide. Appl Clay Sci 2023;234:106838. https://doi.org/10.1016/j.clay.2023.106838

21. Singh IR, Pulikkal AK. Preparation, stability and biological activity of essential oil-based nano emulsions: A comprehensive review. OpenNano 2022;8:100066. https://doi.org/10.1016/j.onano.2022.100066

22. Khoobdel M, Ahsaei SM, Farzaneh M. Insecticidal activity of polycaprolactone nanocapsules loaded with Rosmarinus officinalis essential oil in Tribolium castaneum (Herbst). Entomol Res 2017;47:175-84. https://doi.org/10.1111/1748-5967.12212

23. Arshad Z, Hanif MA, Qadri RW, Khan MM, Babarinde A, Omisore GO, et al. Role of essential oils in plant diseases protection: A review. Int J Chem Biochem Sci 2014;6:11-7.

24. Gupta I, Singh R, Muthusamy S, Sharma M, Grewal K, Singh HP, et al. Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints. Plants (Basel) 2023;12:2916. https://doi.org/10.3390/plants12162916

25. Esteves RS, Apolinário R, Machado FP, Folly D, Viana VC, Soares AP, et al. Insecticidal activity evaluation of Persea venosa Nees & Mart. essential oil and its nanoemulsion against the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) and pollinator bees. Ind Crops Prod 2023;194:116348. https://doi.org/10.1016/j.indcrop.2023.116348

26. Apolinário R, Nogueira J, da Silveira Costa MG, Santos-Mallet J, Santos MG, Azambuja P, et al. Insecticidal activity of Pilocarpus spicatus Saint-Hilaire (Rutaceae) essential oil against the crop pest Dysdercus peruvianus (Guérin-Méneville, 1831) and Oncopeltus fasciatus (Dallas, 1852). Res Soc Dev 2020;9:e90091110489. https://doi.org/10.33448/rsd-v9i11.10489

27. Nascimento LM, Apolinario R, Machado FP, Correa AL, Caldas GR, Ruppelt BM, et al. Effects of nanoemulsion and essential oil from the leaves of Ocotea elegans against Dysdercus peruvianus. Res Soc Dev 2020;9:e909108424. https://doi.org/10.33448/rsd-v9i10.8424

28. Pacheco JP, Nogueira J, de Miranda RP, Duprat RC, Machado FP, Tietbohl LA, et al. Effects of Zanthoxylum caribaeum essential oil against cotton bug Dysdercus peruvianus. Res Soc Dev 2020;9:e197997152. https://doi.org/10.33448/rsd-v9i9.7152

29. Tietbohl LA, Barbosa T, Fernandes CP, Santos MG, Machado FP, Santos KT, et al. Laboratory evaluation of the effects of essential oil of Myrciaria floribunda leaves on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Rev Bras Farmacogn 2014;24:316-21. https://doi.org/10.1016/j.bjp.2014.07.009

30. Gonzalez MS, Lima BG, Oliveira AF, Nunes DD, Fernandes CP, Santos MG, et al. Effects of essential oil from leaves of Eugenia sulcata on the development of agricultural pest insects. Rev Bras Farmacogn 2014;24:413-8. https://doi.org/10.1016/j.bjp.2014.05.003

31. Nunes DD. Potencial do Óleo Essencial de Xylopia ochrantha Mart. E Cymbopogon winterianus Jowitt. Ex Bor Como Inseticidas Botânicos no Controle de Dysdercus peruvianus (Guérin-Méneville, 1831) e Oncopeltus fasciatus (Dallas, 1852). PhD Thesis. Universidade Federal Fluminense; 2023.

32. Rao PJ, Kumar KM, Singh S, Subrahmanyam B. Effect of Artemisia annua oil on development and reproduction of Dysdercus koenigii F.(Hem., Pyrrhocoridae). J Appl Entomol 1999;123:315-8. https://doi.org/10.1046/j.1439-0418.1999.00341.x

33. Katiyar RL, Srivastava KP. An essential oil from Australian bottlebrush, Callistemon lanceolatus (Myrtaceae) with juvenoid properties against the red cotton bug, Dysdercus koenigii Fabr. (Heteroptera, Pyrrhocoridae). Entomon 1982;7:463-8.

34. Srivastava RK, Krishna SS. Effect of exposure of eggs or first instar nymphs of Dysdercus koenigii (F.) (Heteroptera: Pyrrhocoridae) to eucalyptus oil odour on the insect's postembryonic development and/ or reproductive potential. Phytophaga 1995;4:47-52.

35. Saxena BP, Tikku K, Koul K. Spermatogenesis in Dysdercus koenigii and induced sterility by Acorus calamus oil vapours. Acta Entomol Bohemoslov 1977;74:381-7.

36. Saxena BP, Mathur AC. Loss of fecundity in Dysdercus koenigii F. due to vapours of Acorus calamus L. oil. Experientia 1976;32:313-6. https://doi.org/10.1007/BF01940811

37. Saxena BP, Srivastava JB. Effect of Acorus calamus L. oil vapours on Dysdercus koenigii F. Indian J Exp Biol 1971;10:391-3.

38. Rao DR, Kaur A. Effect of the essential oil from the gum oleoresin of Boswellia serrata Roxb. On the gonads of male Dysdercus similis F. Curr Sci 1989;58:822-4.

39. Dennis TJ, Kumar KA, Srimannarayana G, Raghunathrao D. Juvenomimetic activity of the gumoleoresin of Boswellia serrata. Fitoterapia 1999;70:308-10. https://doi.org/10.1016/S0367-326X(99)00040-4

40. Nadio NA, Poutouli WP, Laba B, Tozoou P, Bokobana ME, Koba K, et al. Propriétés insecticides et répulsives de l'huile essentielle d'Ocimum sanctum L. envers Dysdercus voelkeri schmidt (Heteroptera; Pyrrhocoridae). Rev CAMES 2016;3:65-72.

41. Nadio NA, Bokobana EM, Akantetou KP, Tozoou P, Poutouli W, Koba K, et al. Efficacy of bioinsecticides based on the essential oil of Cymbopogon schoenanthus (L.) Spreng against red bugs (Dysdercus voelkeri Schmidt) in cotton cultivation in Togo Afr J Food Agric Nutr Dev 2021;21:17727-40. https://doi.org/10.18697/ajfand.98.20095

42. Baloch AA. Effect of Acorus calamus L. oil vapours on egg development, fecundity and fertility of Dysdercus cingulatus Fabr. Ziraat Fak Derg 1990;6:213-24.

43. De Albuquerque RD, Rocha L. Essential oils from Carapebus sandbank plants as natural controllers against insect pests of importance in Brazilian public health and agriculture. Nat Resour Human Health 2023;3:315-22. https://doi.org/10.53365/nrfhh/161456

44. Liu TT, Chao LK, Hong KS, Huang YJ, Yang TS. Composition and insecticidal activity of essential oil of Bacopa caroliniana and interactive effects of individual compounds on the activity. Insects 2019;11:23. https://doi.org/10.3390/insects11010023

45. Yap PS, Yusoff K, Lim SH, Chong CM, Lai KS. Membrane disruption properties of essential oils-a double-edged sword? Processes 2021;9:595. https://doi.org/10.3390/pr9040595

46. Echeverría J, de Albuquerque RD. Nanoemulsions of essential oils: New tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicines (Basel) 2019;6:42. https://doi.org/10.3390/medicines6020042

47. Cárdenas-Ortega NC, González-Chávez MM, Figueroa-Brito R, Flores-Macías A, Romo-Asunción D, Martínez-González DE, et al. Composition of the essential oil of Salvia ballotiflora (Lamiaceae) and its insecticidal activity. Molecules 2015;20:8048-59. https://doi.org/10.3390/molecules20058048

48. Chohan TA, Chohan TA, Mumtaz MZ, Alam MW, Naseer I, Riaz A, et al. Insecticidal potential of α-pinene and β-caryophyllene against Myzus persicae and their impacts on gene expression. Phyton 2023;92:1943-54. https://doi.org/10.32604/phyton.2023.026945

49. Liu YQ, Xue M, Zhang QC, Zhou FY, Wei JQ. Toxicity of β-caryophyllene from Vitex negundo (Lamiales: Verbenaceae) to Aphis gossypii glover (Homoptera: Aphididae) and its action mechanism. Acta Entomol Sin 2010;53:396-404.

50. Ulanowska M, Olas B. Biological properties and prospects for the application of eugenol-a review. Int J Mol Sci 2021;22:3671. https://doi.org/10.3390/ijms22073671

51. Xu HX, Zheng XS, Yang YJ, Tian JC, Lu YH, Tan KH, et al. Methyl eugenol bioactivities as a new potential botanical insecticide against major insect pests and their natural enemies on rice (Oriza sativa). Crop Prot 2015;72:144-9. https://doi.org/10.1016/j.cropro.2015.03.017

52. Tabari MA, Rostami A, Khodashenas A, Maggi F, Petrelli R, Giordani C, et al. Acaricidal activity, mode of action, and persistent efficacy of selected essential oils on the poultry red mite (Dermanyssus gallinae). Food Chem Toxicol 2020;138:111207. https://doi.org/10.1016/j.fct.2020.111207

53. Moghaddam M, Mehdizadeh L. Chemistry of essential oils and factors influencing their constituents. In: Soft Chemistry and Food Fermentation. Cambridge: Academic Press; 2017. p. 379-419. https://doi.org/10.1016/B978-0-12-811412-4.00013-8

54. Passos LC, Ricupero M, Gugliuzzo A, Soares MA, Desneux N, Campolo O, et al. Sublethal effects of plant essential oils toward the zoophytophagous mirid Nesidiocoris tenuis. J Pest Sci 2022;95:1609-19. https://doi.org/10.1007/s10340-022-01548-7

55. Shilpa C, Remia KM. Bio-efficacy of microbial, chemical and conventional treatments against Spodoptera litura infesting gerbera plants. Memes Interdiscip Sci J 2017;1:56-67.

Article Metrics
18 Views 2 Downloads 20 Total

Year

Month

Related Search

By author names

Similar Articles

Insecticidal effect of four plant essential oils against two aphid species under laboratory conditions

Akram Saleh Alghamdi

Efficacy of commercial botanical pure essential oils of garlic (Allium sativum) and anise (Pimpinella anisum) against larvae of the mosquito Aedes aegypti

Sedthapong Laojun, Pongmada Damapong, Peerada Damapong, Wallapa Wassanasompong, Nantana Suwandittakul, Thavatchai Kamoltham, Tanawat Chaiphongpachara

Enhancing antibacterial properties of bacteriocins using combination therapy

Poonam Sharma, Meena Yadav

Biodiversity of arbuscular mycorrhizal fungi of pumpkins (Cucurbita spp.) under the influence of fertilizers in ferralitic soils of Cameroon and Benin

Judith Taboula Mbogne , Carine Nono Temegne , Pascal Hougnandan, Emmanuel Youmbi , Libert Brice Tonfack , Godswill Ntsomboh-Ntsefong

Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health

Ajar Nath Yadav, Rajesh Kumar, Sunil Kumar, Vinod Kumar, TCK Sugitha, Bhanumati Singh, Vinay Singh Chauahan, Harcharan Singh Dhaliwal, Anil Kumar Saxena

Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture

Ajar Nath Yadav, Anil Kumar Saxena

Biodiversity of psychrotrophic microbes and their biotechnological applications

Ajar Nath Yadav, Neelam Yadav, Shashwati Ghosh Sachan, Anil Kumar Saxena

Biodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability

Ajar Nath Yadav

Biodiversity of cyanobacteria in fresh water ponds of Pudukkottai district, Tamil Nadu, India

Dhanalakshmi Jayakumar, Jeevan Pandiyan

Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability

Kumar Anand, Gaurav Kumar Pandey, Tanvir Kaur, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Kriti Akansha, Ashok Yadav, Rubee Devi, Divjot Kour, Ashutosh Kumar Rai, Manish Kumar, Ajar Nath Yadav

Microbes for Agricultural and Environmental Sustainability

Ajar Nath Yadav, Divjot Kour, Ahmed M. Abdel-Azeem, Murat Dikilitas, Abd El-Latif Hesham, Amrik Singh Ahluwalia

Structural and functional diversity of plant growth promoting microbiomes for agricultural sustainability

Tanvir Kaur, Divjot Kour, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Ashok Yadav, Shashank Mishra, Manish Kumar, Ashutosh Kumar Rai, Ajar Nath Yadav

Review on selected essential oils from America as applied resources to control Bemisia tabaci, an important agronomical pest

Ricardo Diego Duarte Galhardo De Albuquerque, Edmundo Arturo Venegas-Casanova, José Gilberto Gavídia-Valencia, Felipe Rúben Rubio-López, Roger A. Rengifo-Penadillos, Judith Enit Roldán-Rodriguez, Aníbal Quintana-Díaz

Rhizospheric microbiomes for agricultural sustainability

Ajar Nath Yadav,, Divjot Kour, Neelam Yadav

Environment and climate change: Influence on biodiversity, present scenario, and future prospect

Divjot Kour, Kanwaljit Kaur Ahluwalia, Seema Ramniwas, Sanjeev Kumar, Sarvesh Rustagi, Sangram Singh, Ashutosh Kumar Rai, Ajar Nath Yadav,, Amrik Singh Ahluwalia

Biodiversity, mechanisms, and potential biotechnological applications of minerals solubilizing extremophilic microbes: A review

Rubee Devi, Tanvir Kaur, Rajeshwari Negi, Babita Sharma, Sohini Chowdhury, Monit Kapoor, Sangram Singh, Sarvesh Rustagi, Sheikh Shreaz, Pankaj Kumar Rai, Ashutosh Kumar Rai, Ashok Yadav, Divjot Kour, Ajar Nath Yadav

Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici

S. Sundaramoorthy and P. Balabaskar

Evaluation of Beauveria sp strains, conidial concentration and immersion times on mortality rate of bovine tick (Boophilus sp).

Oscar Miguel Domínguez-Galdámez,María Ángela Oliva-Llaven, Gabriela Aguilar-Tipacamú, Paula MendozaNazar, Benigno Ruiz-Sesma, Gerardo Uriel Bautista-Trujillo, José Miguel Culebro-Ricaldi, Federico Antonio Gutiérrez-Miceli

Selection of some fungal pathogens for biological control of Trianthema portulacastrum L., a common weed of vegetable crops

Gaddeyya Gandi Pilli, P. K. Ratna Kumar, Bharathi Pilaka