Antimicrobial peptides as new antibiotics: A comprehensive review
Antibiotics have long been the foundation stone of combating infectious diseases, but the widespread and often indiscriminate use of these drugs has given rise to drug-resistant pathogens, presenting a global health crisis. There is an urgent need to explore alternative therapeutic strategies that are less susceptible to resistance mechanisms as traditional antibiotics are losing their efficiency. Antimicrobial peptides (AMPs), small bioactive proteins naturally produced by a wide range of organisms, have emerged as promising candidates in the search for new antibiotics. AMPs serve as the first line of defense against a broad spectrum of pathogens, including bacteria, viruses, and fungi. This review article looks into the wide potential of AMPs, not only as antibacterial agents but also in their roles as antifungal, antiviral, and anticancer therapies. The present review article provides an in-depth exploration of the structural diversity of AMPs, examining how their unique properties contribute to their broad-spectrum activity. It further discusses the mechanisms and modes of action that differentiate AMPs from conventional antibiotics. Despite their immense potential, several challenges such as toxicity, stability, and high production costs hinder the clinical application of AMPs. This article not only outlines these challenges but also discusses emerging strategies aimed at overcoming these barriers. Overall the review presents AMPs as a critical focus in the development of future antimicrobial therapies.
Thakur A, Gupta P. Antimicrobial peptides as new antibiotics: A comprehensive review. J Appl Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2025.210174
1. Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L, et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med Res Rev [Internet] 2019 May 24;39(3):831–59. Available via: https://onlinelibrary.wiley.com/doi/10.1002/med.21542
2. Lei J, Sun LC, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res 2019;11:1–25.
3. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov [Internet] 2020 May 27;19(5):311–32. Available via: https://www.nature.com/articles/s41573-019-0058-8
4. Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol [Internet] 2024 Jan 17;14:1321386. Available via: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1321386/full
5. Dubos RJ. Studies on a bactericidal agent extracted from a soil Bacillus. J Exp Med [Internet] 1939;70(1):1–10. Available via: https://rupress.org/jem/article/70/1/1/4283/STUDIES-ON-A-BACTERICIDAL-AGENT-EXTRACTED-FROM-A
6. Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol [Internet] 2012 Mar;132(3):887–95. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0022202X15356463
7. Boparai JK, Sharma PK. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett [Internet] 2019 Dec 10;27(1):4–16. Available via: http://www.eurekaselect.com/174414/article
8. Hirsch JG. Phagocytin: a Bactericidal substance from polymorphonuclear leucocytes. J Exp Med [Internet] 1956 May 1;103(5):589–611. Available via: https://rupress.org/jem/article/103/5/589/2225/PHAGOCYTIN-A-BACTERICIDAL-SUBSTANCE-FROM
9. Bagnicka E, Jó?wik A, Strza?kowska N, Krzyzewski J, Zwierzchowski L. Antimicrobial peptides—outline of the history of studies and mode of action. Med Weter. 2011;67(7):67.
10. Zeya HI, Spitznagel JK. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science (80- ) [Internet] 1963 Nov 22;142(3595):1085–7. Available via: https://www.science.org/doi/10.1126/science.142.3595.1085
11. Sharma M, Sharma S, Prasad R, Rajwanshi A, Sethi S, Samanta P, et al. Characterization of low molecular weight antimicrobial peptide from human female reproductive tract. Indian J Med Res [Internet] 2011;134(5):679. Available via: http://www.ijmr.org.in/text.asp?2011/134/5/679/90996
12. Datta S, Roy A. Antimicrobial peptides as potential therapeutic agents: a review. Int J Pept Res Ther [Internet] 2021 Mar 27;27(1):555–77. Available via: https://link.springer.com/10.1007/s10989-020-10110-x
13. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev [Internet] 2006 Jul;19(3):491–511. Available via: https://journals.asm.org/doi/10.1128/CMR.00056-05
14. He Y, Niu X, Wang B, Na R, Xiao B, Yang H. Evaluation of the inhibitory effects of Lactobacillus gasseri and Lactobacillus crispatus on the Adhesion of seven common lower genital tract infection-causing pathogens to vaginal epithelial cells. Front Med [Internet] 2020 Jun 19;7:284. Available via: https://www.frontiersin.org/article/10.3389/fmed.2020.00284/full
15. Hegedüs N, Marx F. Antifungal proteins: more than antimicrobials? Fungal Biol Rev [Internet] 2013 Jan;26(4):132–45. Available via: https://linkinghub.elsevier.com/retrieve/pii/S1749461312000188
16. Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem [Internet] 2016 Dec;24(24):6253–68. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0968089616303856
17. López-Meza. Antimicrobial peptides: diversity and perspectives for their biomedical application. In: (eds.). Komorowska MA, Olsztynska-Janus S. Biomedical engineering, trends, research and technologies [Internet]. InTech, London, UK, pp 275–304, 2011. Available via: http://www.intechopen.com/books/biomedical-engineering-trends-research-and-technologies/antimicrobial-peptides-diversity-and-perspectives-for-their-biomedical-application
18. Salas CE, Badillo-Corona JA, Ramírez-Sotelo G, Oliver-Salvador C. Biologically active and antimicrobial peptides from plants. Biomed Res Int. 2015;1:102129.
19. Meneguetti BT, Machado L dos S, Oshiro KGN, Nogueira ML, Carvalho CME, Franco OL. Antimicrobial peptides from fruits and their potential use as biotechnological tools—a review and outlook. Front Microbiol [Internet] 2017 Jan 10;7(JAN):2136. Available via: http://journal.frontiersin.org/article/10.3389/fmicb.2016.02136/full
20. De Caleya RF, Gonzalez-Pascual B, García-Olmedo F, Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 1972;23(5):998–1000.
21. Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, et al. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity1. J Biochem [Internet] 1989 Oct;106(4):663–8. Available via: https://academic.oup.com/jb/article-lookup/doi/10.1093/oxfordjournals.jbchem.a122913
22. Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Biosci Rep [Internet] 2007 Aug 6;27(4–5):189–223. Available via: https://portlandpress.com/bioscirep/article/27/4-5/189/55691/Melittin-a-Membrane-active-Peptide-with-Diverse
23. Qi J, Gao R, Liu C, Shan B, Gao F, He J, et al. Potential role of the antimicrobial peptide Tachyplesin III against multidrug-resistant P. aeruginosa and A. baumannii coinfection in an animal model. Infect Drug Resist [Internet] 2019 Sep;Volume 12:2865–74. Available via: https://www.dovepress.com/potential-role-of-the-antimicrobial-peptide-tachyplesin-iii-against-mu-peer-reviewed-article-IDR
24. De Mandal S, Panda AK, Murugan C, Xu X, Senthil Kumar N, Jin F. Antimicrobial peptides: novel source and biological function with a special focus on entomopathogenic nematode/bacterium symbiotic complex. Front Microbiol [Internet] 2021 Jul 14;12:555022. Available via: https://www.frontiersin.org/articles/10.3389/fmicb.2021.555022/full
25. Pasupuleti M, Walse B, Nordahl EA, Mörgelin M, Malmsten M, Schmidtchen A. Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem [Internet] 2007 Jan;282(4):2520–8. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0021925820721228
26. Wu Q, Pato?ka J, Ku?a K. Insect antimicrobial peptides, a mini review. Toxins (Basel) [Internet] 2018 Nov 8;10(11):461. Available via: https://www.mdpi.com/2072-6651/10/11/461
27. Kara ?, Kürekci C, Akcan M. Design and modification of frog skin peptide brevinin-1GHa with enhanced antimicrobial activity on Gram-positive bacterial strains. Amino Acids [Internet] 2022 Sep 19;54(9):1327–36. Available via: https://link.springer.com/10.1007/s00726-022-03189-7
28. Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, et al. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev [Internet] 2022 Jul 4;42(4):1377–422. Available via: https://onlinelibrary.wiley.com/doi/10.1002/med.21879
29. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol [Internet] 2020 Oct 16;11:582779. Available via: https://www.frontiersin.org/article/10.3389/fmicb.2020.582779/full
30. Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in searching antimicrobial peptides (AMPs) produced by the microbiota. Microb Ecol 2024;87(1):8.
31. Hancock REW, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol [Internet] 2016 May 18;16(5):321–34. Available via: https://www.nature.com/articles/nri.2016.29
32. Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, et al. Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol [Internet] 2021 Jun 14;11:668632. Available via: https://www.frontiersin.org/articles/10.3389/fcimb.2021.668632/full
33. Tossi A, Skerlavaj B, D’Este F, Gennaro R. Structural and functional diversity of cathelicidins. In: Wang G (ed.). Antimicrobial peptides: discovery, design and novel therapeutic strategies [Internet]. Wallingford, UK: CABI, pp 20–48, 2017. Available via: http://www.cabidigitallibrary.org/doi/10.1079/9781786390394.0020
34. Patil N, Sivaram A. Antimicrobial peptides and their potent mechanism of action. In: Joshi S, Kar RK, Lahiri D, Nag M (eds.). Lantibiotics as alternative therapeutics [Internet]. Elsevier, Amsterdam, The Netherlands, pp 25–42, 2023. Available via: https://linkinghub.elsevier.com/retrieve/pii/B9780323991414000199
35. Freitas CG, Franco OL. Antifungal peptides with potential against pathogenic fungi. In: Basak A, Chakraborty R, Mandal SM (eds.). Recent trends in antifungal agents and antifungal therapy [Internet]. Springer, New Delhi, India, pp 75–95, 2016. Available via: http://link.springer.com/10.1007/978-81-322-2782-3_3
36. Dorin JR, McHugh BJ, Cox SL, Davidson DJ. Mammalian antimicrobial peptides; defensins and cathelicidins. In: Sussman M (ed.). Molecular medical microbiology [Internet]. Elsevier, Amsterdam, The Netherlands, pp 539–65, 2015. Available via: https://linkinghub.elsevier.com/retrieve/pii/B9780123971692000305
37. Maiti S, Patro S, Purohit S, Jain S, Senapati S, Dey N. Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human β-defensins hBD-1 and hBD-2. Antimicrob Agents Chemother [Internet] 2014 Nov;58(11):6896–903. Available via: https://journals.asm.org/doi/10.1128/AAC.03628-14
38. Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human antimicrobial peptides in bodily fluids: current knowledge and therapeutic perspectives in the postantibiotic era. Med Res Rev [Internet] 2018 Jan 17;38(1):101–46. Available via: https://onlinelibrary.wiley.com/doi/10.1002/med.21435
39. Brouwer CPJM, Rahman M, Welling MM. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides [Internet] 2011 Sep;32(9):1953–63. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0196978111003056
40. Svendsen JSM, Grant TM, Rennison D, Brimble MA, Svenson J. Very short and stable lactoferricin-derived antimicrobial peptides: design principles and potential uses. Acc Chem Res 2019;52(3):749–59.
41. Bochenska O, Rapala-Kozik M, Wolak N, Aoki W, Ueda M, Kozik A. The action of ten secreted aspartic proteases of pathogenic yeast Candida albicans on major human salivary antimicrobial peptide, histatin 5. Acta Biochim Pol [Internet] 2016 Jul 8;63(3):403–10. Available via: https://www.frontierspartnerships.org/articles/10.18388/abp.2016_1318/pdf
42. Cheng KT, Wu CL, Yip BS, Yu HY, Cheng HT, Chih YH, et al. High level expression and purification of the clinically active antimicrobial peptide P-113 in Escherichia coli. Molecules [Internet] 2018 Mar 30;23(4):800. Available via: https://www.mdpi.com/1420-3049/23/4/800
43. Lima PG, Oliveira JTA, Amaral JL, Freitas CDT, Souza PFN. Synthetic antimicrobial peptides: characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci [Internet] 2021 Aug;278:119647. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0024320521006330
44. Drayton M, Kizhakkedathu JN, Straus SK. Towards robust delivery of antimicrobial peptides to combat bacterial resistance. Molecules [Internet] 2020 Jul 3;25(13):3048. Available via: https://www.mdpi.com/1420-3049/25/13/3048
45. Porto WF, Pires AS, Franco OL. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol Adv [Internet] 2017 May;35(3):337–49. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0734975017300083
46. Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv [Internet] 2022 Oct;59:107962. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0734975022000581
47. Yang CH, Chen YC, Peng SY, Tsai APY, Lee TJF, Yen JH, et al. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci Rep [Internet] 2018 Oct 2;8(1):14602. Available via: https://www.nature.com/articles/s41598-018-32981-3
48. Alkatheri AH, Yap PSX, Abushelaibi A, Lai KS, Cheng WH, Lim SHE. Host–bacterial interactions: outcomes of antimicrobial peptide applications. Membranes (Basel) [Internet] 2022 Jul 19;12(7):715. Available via: https://www.mdpi.com/2077-0375/12/7/715
49. Deng T, Ge H, He H, Liu Y, Zhai C, Feng L, et al. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif [Internet] 2017 Dec;140:52–9. Available via: https://linkinghub.elsevier.com/retrieve/pii/S1046592817304199
50. Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, et al. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol [Internet] 2020 Apr 2;13(4):367–90. Available via: https://www.tandfonline.com/doi/full/10.1080/17512433.2020.1764347
51. Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv [Internet] 2022 Oct;59:107968. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0734975022000647
52. Holaskova E, Galuszka P, Frebort I, Oz MT. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv [Internet] 2015 Nov;33(6):1005–23. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0734975015000579
53. Mahmood MA, Naqvi RZ, Rahman SU, Amin I, Mansoor S. Plant virus-derived vectors for plant genome engineering. Viruses [Internet] 2023 Feb 14;15(2):531. Available via: https://www.mdpi.com/1999-4915/15/2/531
54. Subramanian D, Chakkyarath V, Kumaravel SM, Venkatesan BP, Natarajan J. Design, synthesis and evaluation of antimicrobial database-derived peptides against drug-resistant gram-positive and gram-negative pathogens. Int J Pept Res Ther [Internet] 2021 Jun 5;27(2):1459–68. Available via: https://link.springer.com/10.1007/s10989-021-10183-2
55. Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data [Internet] 2019 Aug 13;6(1):148. Available via: https://www.nature.com/articles/s41597-019-0154-y
56. Preußke N, Sönnichsen FD, Leippe M. A guided tour through α-helical peptide antibiotics and their targets. Biosci Rep [Internet] 2023 May 31;43(5):BSR20230474. Available via: https://portlandpress.com/bioscirep/article/43/5/BSR20230474/233036/A-guided-tour-through-helical-peptide-antibiotics
57. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol [Internet] 2011 Sep;29(9):464–72. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0167779911000886
58. Torres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide design principles for antimicrobial applications. J Mol Biol [Internet] 2019 Aug;431(18):3547–67. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0022283618312890
59. Anderson RC, Wilkinson B, Yu PL. Ovine antimicrobial peptides: new products from an age-old industry. Aust J Agric Res [Internet] 2004;55(1):69. Available via: http://www.publish.csiro.au/?paper=AR03064
60. Barale SS, Ghane SG, Sonawane KD. Purification and characterization of antibacterial surfactin isoforms produced by Bacillus velezensis SK. AMB Express [Internet] 2022 Dec 27;12(1):7. Available via: https://amb-express.springeropen.com/articles/10.1186/s13568-022-01348-3
61. Li S, Hao L, Bao W, Zhang P, Su D, Cheng Y, et al. A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell. Arch Microbiol [Internet] 2016 Jul 7;198(5):473–82. Available via: http://link.springer.com/10.1007/s00203-016-1206-8
62. Sowa-Jasi?ek A, Zdybicka-Barabas A, St?czek S, Pawlikowska-Pawl?ga B, Grygorczuk-P?aneta K, Skrzypiec K, et al. Antifungal activity of anionic defense peptides: insight into the action of Galleria mellonella anionic peptide 2. Int J Mol Sci [Internet] 2020 Mar 11;21(6):1912. Available via: https://www.mdpi.com/1422-0067/21/6/1912
63. Browne K, Chakraborty S, Chen R, Willcox MDP, Black DS, Walsh WR, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci [Internet] 2020 Sep 24;21(19):7047. Available via: https://www.mdpi.com/1422-0067/21/19/7047
64. Lyu Z, Yang P, Lei J, Zhao J. Biological function of antimicrobial peptides on suppressing pathogens and improving host immunity. Antibiotics 2023;12:1037.
65. Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res [Internet] 2012 Apr;51(2):149–77. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0163782711000518
66. Brady D, Grapputo A, Romoli O, Sandrelli F. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int J Mol Sci [Internet] 2019 Nov 22;20(23):5862. Available via: https://www.mdpi.com/1422-0067/20/23/5862
67. Bulaj G. Formation of disulfide bonds in proteins and peptides. Biotechnol Adv [Internet] 2005 Jan;23(1):87–92. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0734975004000886
68. Koehbach J, Craik DJ. The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci [Internet] 2019 Jul;40(7):517–28. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0165614719300896
69. Talapko J, Meštrovi? T, Juzbaši? M, Tomas M, Eri? S, Horvat Aleksijevi? L, et al. Antimicrobial peptides—mechanisms of action, antimicrobial effects and clinical applications. Antibiotics [Internet] 2022 Oct 16;11(10):1417. Available via: https://www.mdpi.com/2079-6382/11/10/1417
70. Toda H, Williams JA, Gulledge M, Sehgal A. A sleep-inducing gene, nemuri , links sleep and immune function in Drosophila. Science (80- ) [Internet] 2019 Feb;363(6426):509–15. Available via: https://www.science.org/doi/10.1126/science.aat1650
71. Wang G. The antimicrobial peptide database is 20 years old: recent developments and future directions. Protein Sci [Internet] 2023 Oct 28;32(10):e4778. Available via: https://onlinelibrary.wiley.com/doi/10.1002/pro.4778
72. Lipkin RB, Lazaridis T. Implicit membrane investigation of the stability of antimicrobial peptide β-barrels and arcs. J Membr Biol [Internet] 2015 Jun 28;248(3):469–86. Available via: http://link.springer.com/10.1007/s00232-014-9759-4
73. Hyldgaard M. Mechanisms of action, resistance, and Ssress adaptation. In: antimicrobials in food. CRC Press, Boca Raton, FL, 2020.
74. Marie E, Sagan S, Cribier S, Tribet C. Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization. J Membr Biol [Internet] 2014 Oct 1;247(9–10):861–81. Available via: http://link.springer.com/10.1007/s00232-014-9679-3
75. Marín-Medina N, Mescola A, Alessandrini A. Effects of the peptide Magainin H2 on supported lipid bilayers studied by different biophysical techniques. Biochim Biophys Acta—Biomembr [Internet] 2018 Dec;1860(12):2635–43. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0005273618302967
76. Kabelka I, Vácha R. Advances in molecular understanding of α-helical membrane-active peptides. Acc Chem Res [Internet] 2021 May 4;54(9):2196–204. Available via: https://pubs.acs.org/doi/10.1021/acs.accounts.1c00047
77. Sara P, Adam M. Latest developments on the mechanism of action of membrane disrupting peptides [Internet]. Biophys Rep 2021;7:173–84. Available via: http://www.biophysics-reports.org/en/article/doi/10.52601/bpr.2021.200037
78. Omardien S, Drijfhout JW, Vaz FM, Wenzel M, Hamoen LW, Zaat SAJ, et al. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochim Biophys Acta - Biomembr [Internet] 2018 Nov;1860(11):2404–15. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0005273618301767
79. Gazit E, Miller IR, Biggin PC, Sansom MSP, Shai Y. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 1996;258(5):860–70.
80. Raheem N, Straus SK. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front Microbiol [Internet] 2019 Dec 12;10:2866. Available via: https://www.frontiersin.org/article/10.3389/fmicb.2019.02866/full
81. Febriza A, Hatta M, Natzir R, Kasim VNA, Idrus HH. Activity of antimicrobial peptide; cathelicidin, on bacterial infection. Open Biochem J [Internet] 2019 Jun 30;13(1):45–53. Available via: https://openbiochemistryjournal.com/VOLUME/13/PAGE/45/
82. Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol [Internet] 2013 Jan 1;94(1):40–9. Available via: https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.045013-0
83. Yu J, Dai Y, Fu Y, Wang K, Yang Y, Li M, et al. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antiviral Res [Internet] 2021 Mar;187:105021. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0166354221000115
84. LeMessurier KS, Lin Y, McCullers JA, Samarasinghe AE. Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice. Antiviral Res. 2016;133:208–217; doi: https://doi.org/10.1016/j.antiviral.2016.08.013
85. Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human antimicrobial peptides as therapeutics for viral infections. Viruses [Internet] 2019 Aug 1;11(8):704. Available via: https://www.mdpi.com/1999-4915/11/8/704
86. Vilas Boas LCP, de Lima LMP, Migliolo L, Mendes G dos S, de Jesus MG, Franco OL, et al. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Pept Sci [Internet] 2017 Mar 25;108(2):e22871. Available via: https://onlinelibrary.wiley.com/doi/10.1002/bip.22871
87. Böffert R, Businger R, Preiß H, Ehmann D, Truffault V, Simon C, et al. The human α-defensin-derived peptide HD5(1–9) inhibits cellular attachment and entry of human cytomegalovirus. Antiviral Res [Internet] 2020 May;177:104779. Available via: https://linkinghub.elsevier.com/retrieve/pii/S0166354219307272
88. Mba IE, Nweze EI. Antimicrobial peptides therapy: an emerging alternative for treating drug-resistant bacteria. Yale J Biol Med 2022;95(4):445–63.
89. Zhao J, Hao X, Liu D, Huang Y, Chen Y. In vitro characterization of the rapid cytotoxicity of anticancer peptide HPRP-A2 through membrane destruction and intracellular mechanism against gastric cancer cell lines. PLoS One [Internet]. 2015 Sep 30;10(9):e0139578. Available via: https://dx.plos.org/10.1371/journal.pone.0139578
90. Pinto MEF, Najas JZG, Magalhães LG, Bobey AF, Mendonça JN, Lopes NP, et al. Inhibition of breast cancer cell migration by cyclotides isolated from Pombalia calceolaria. J Nat Prod [Internet] 2018 May 25;81(5):1203–8. Available via: https://pubs.acs.org/doi/10.1021/acs.jnatprod.7b00969
91. Hilchie AL, Wuerth K, Hancock REW. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol [Internet] 2013 Dec 14;9(12):761–8. Available via: https://www.nature.com/articles/nchembio.1393
92. Hancock REW, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol [Internet] 2012 Apr 16;10(4):243–54. Available via: https://www.nature.com/articles/nrmicro2745
93. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock REW. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol [Internet] 2013 Oct;16(5):580–9. Available via: https://linkinghub.elsevier.com/retrieve/pii/S1369527413000891
94. Wang G, Hanke ML, Mishra B, Lushnikova T, Heim CE, Chittezham Thomas V, et al. Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chem Biol [Internet] 2014 Sep 19;9(9):1997–2002. Available via: https://pubs.acs.org/doi/10.1021/cb500475y
95. Bakare OO, Gokul A, Niekerk LA, Aina O, Abiona A, Barker AM, et al. Recent progress in the characterization, synthesis, delivery procedures, treatment strategies, and precision of antimicrobial peptides. Int J Mol Sci [Internet] 2023 Jul 24;24(14):11864. Available via: https://www.mdpi.com/1422-0067/24/14/11864
96. Luo X, Chen H, Song Y, Qin Z, Xu L, He N, et al. Advancements, challenges and future perspectives on peptide-based drugs: focus on antimicrobial peptides. Eur J Pharm Sci 2023;181:106363.
Year
Month