1. World Health Organization. The Top 10 Causes of Death; 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/ the-top-10-causes-of-death [Last accessed on 2022 Jul 05]. |
|
2. Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. P T 2015;40:277-83. | |
|
3. Das B, Chaudhuri S, Srivastava R, Nair GB, Ramamurthy T. Fostering research into antimicrobial resistance in India. BMJ 2017;358:j3535. https://doi.org/10.1136/bmj.j3535 | |
|
4. Kakkar M, Walia K, Vong S, Chatterjee P, Sharma A. Antibiotic resistance and its containment in India. BMJ 2017;358:j2687. https://doi.org/10.1136/bmj.j2687 | |
|
5. World Health Organization. Essential Medicines List Antibiotic Book. 2021;Version 1.1. Available from: https://www.who.int/ publications/m/item/the-who-essential-medicines-list-antibiotic-book-improving-antibiotic-awareness [Last accessed on 2022 Jun 01]. | |
|
6. World Health Organization. WHO Publishes List of Bacteria for which New Antibiotics are Urgently Needed; 2017. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed [Last accessed on 2022 Jul 05]. | |
|
7. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022;399:629-55. https://doi.org/10.1016/S0140-6736(21)02724-0 | |
|
8. Butler MS, Gigante V, Sati H, Paulin S, Al-Sulaiman L, Rex JH, et al. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: Despite progress, more action is needed. Antimicrob Agents Chemother 2022;66:e0199121. https://doi.org/10.1128/aac.01991-21 | |
|
9. Tse BN, Adalja AA, Houchens C, Larsen J, Inglesby TV, Hatchett R. Challenges and opportunities of nontraditional approaches to treating bacterial infections. Clin Infect Dis 2017;65:495-500. https://doi.org/10.1093/cid/cix320 | |
|
10. Thomas D, Wessel C. The State of Innovation in Antibacterial Therapeutics. Bio Industry Analysis; 2022. Available from: https:// www.bio.org/sites/default/files/2022-02/The-State-of-Innovation-in- Antibacterial-Therapeutics.pdf [Last accessed on 2022 Jun 01]. | |
|
11. Tizard IR. Passive immunization. Vaccines for Veterinarians. Amsterdam, Netherlands: Elsevier; 2021. p. 141-52.e1. https://doi.org/10.1016/B978-0-323-68299-2.00021-6 | |
|
12. Klassen SA, Senefeld JW, Senese KA, Johnson PW, Wiggins CC, Baker SE, et al. Convalescent plasma therapy for COVID-19: A graphical mosaic of the worldwide evidence. Front Med (Lausanne) 2021;8:684151. https://doi.org/10.3389/fmed.2021.684151 | |
|
13. Gray A, Bradbury AR, Knappik A, Plückthun A, Borrebaeck CA, Dübel S. Animal-free alternatives and the antibody iceberg. Nat Biotechnol 2020;38:1234-9. https://doi.org/10.1038/s41587-020-0687-9 | |
|
14. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495-7. https://doi.org/10.1038/256495a0 | |
|
15. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs 2015;7:9-14. https://doi.org/10.4161/19420862.2015.989042 | |
|
16. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 2010;9:325-38. https://doi.org/10.1038/nrd3003 | |
|
17. Reichert JM. Marketed therapeutic antibodies compendium. MAbs 2012;4:413-5. https://doi.org/10.4161/mabs.19931 | |
|
18. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020;27:1. https://doi.org/10.1186/s12929-019-0592-z | |
|
19. Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. Lancet Infect Dis 2022;22:e311-26. https://doi.org/10.1016/S1473-3099(22)00311-5 | |
|
20. Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov 2021;20:491-5. https://doi.org/10.1038/d41573-021-00079-7 | |
|
21. Suzuki M, Kato C, Kato A. Therapeutic antibodies: Their mechanisms of action and the pathological findings they induce in toxicity studies. J Toxicol Pathol 2015;28:133-9. https://doi.org/10.1293/tox.2015-0031 | |
|
22. Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci 2018;11:540-52. https://doi.org/10.1111/cts.12567 | |
|
23. Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol 2021;42:1143-58. https://doi.org/10.1016/j.it.2021.10.008 | |
|
24. Zambrano N, Froechlich G, Lazarevic D, Passariello M, Nicosia A, De Lorenzo C, et al. High-throughput monoclonal antibody discovery from phage libraries: challenging the current preclinical pipeline to keep the pace with the increasing mAb demand. Cancers (Basel) 2022;14:1325. https://doi.org/10.3390/cancers14051325 | |
|
25. Chen WC, Murawsky CM. Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Front Immunol 2018;9:460. https://doi.org/10.3389/fimmu.2018.00460 | |
|
26. Norman RA, Ambrosetti F, Bonvin AM, Colwell LJ, Kelm S, Kumar S, et al. Computational approaches to therapeutic antibody design: Established methods and emerging trends. Brief Bioinform 2020;21:1549-67. https://doi.org/10.1093/bib/bbz095 | |
|
27. Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, et al. Phage display derived monoclonal antibodies: From bench to bedside. Front Immunol 2020;11:1986. https://doi.org/10.3389/fimmu.2020.01986 | |
|
28. Pan Y, Du J, Liu J, Wu H, Gui F, Zhang N, et al. Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries. Cell Discov 2021;7:57. https://doi.org/10.1038/s41421-021-00295-w | |
|
29. Ferrara F, Erasmus MF, D'Angelo S, Leal-Lopes C, Teixeira AA, Choudhary A, et al. A pandemic-enabled comparison of discovery platforms demonstrates a naïve antibody library can match the best immune-sourced antibodies. Nat Commun 2022;13:462. https://doi.org/10.1038/s41467-021-27799-z | |
|
30. Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve human antibody libraries for infectious diseases. In: Lim TS, editor. Recombinant Antibodies for Infectious Diseases. Cham: Springer International Publishing; 2017. p. 35-59. https://doi.org/10.1007/978-3-319-72077-7_3 | |
|
31. Burkovitz A, Ofran Y. Understanding differences between synthetic and natural antibodies can help improve antibody engineering. MAbs 2016;8:278-87. https://doi.org/10.1080/19420862.2015.1123365 | |
|
32. Cobaugh CW, Almagro JC, Pogson M, Iverson B, Georgiou G. Synthetic antibody libraries focused towards peptide ligands. J Mol | |
|
Biol 2008;378:622-33. https://doi.org/10.1016/j.jmb.2008.02.037 | |
|
33. Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, et al. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 2011;413:261-78. https://doi.org/10.1016/j.jmb.2011.08.012 | |
|
34. Jian JW, Chen HS, Chiu YK, Peng HP, Tung CP, Chen IC, et al. Effective binding to protein antigens by antibodies from antibody libraries designed with enhanced protein recognition propensities. MAbs 2019;11:373-87. https://doi.org/10.1080/19420862.2018.1550320 | |
|
35. Yuan TZ, Garg P, Wang L, Willis JR, Kwan E, Hernandez AG, et al. Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs 2022;14:2002236. https://doi.org/10.1080/19420862.2021.2002236 | |
|
36. Tung CP, Chen IC, Yu CM, Peng HP, Jian JW, Ma SH, et al. Discovering neutralizing antibodies targeting the stem epitope of H1N1 influenza hemagglutinin with synthetic phage-displayed antibody libraries. Sci Rep 2015;5:15053. https://doi.org/10.1038/srep15053 | |
|
37. Chen G, Sidhu SS, Nilvebrant J. Synthetic antibodies in infectious disease. In: Lim TS, editor. Recombinant Antibodies for Infectious Diseases. Cham: Springer International Publishing; 2017. p. 79-98. https://doi.org/10.1007/978-3-319-72077-7_5 | |
|
38. Jakobovits A, Amado RG, Yang X, Roskos L, Schwab G. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 2007;25:1134-43. https://doi.org/10.1038/nbt1337 | |
|
39. Wang C, Li W, Drabek D, Okba NM, van Haperen R, Osterhaus AD, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020;11:2251. https://doi.org/10.1038/s41467-020-16256-y | |
|
40. Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 2020;369:1010-4. https://doi.org/10.1126/science.abd0827 | |
|
41. Ouisse LH, Gautreau-Rolland L, Devilder MC, Osborn M, Moyon M, Visentin J, et al. Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: A rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies. BMC Biotechnol 2017;17:3. https://doi.org/10.1186/s12896-016-0322-5 | |
|
42. Prashar P, Swain S, Adhikari N, Aryan P, Singh A, Kwatra M, et al. A novel high-throughput single B-cell cloning platform for isolation and characterization of high-affinity and potent SARS-CoV-2 neutralizing antibodies. Antiviral Res 2022;203:105349. https://doi.org/10.1016/j.antiviral.2022.105349 | |
|
43. Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals after mRNA vaccination. Sci Immunol 2021;6:Eabi6950. https://doi.org/10.1126/sciimmunol.abi6950 | |
|
44. Cavaco M, Castanho MA, Neves V. The use of antibody-antibiotic conjugates to fight bacterial infections. Front Microbiol 2022;13:835677. https://doi.org/10.3389/fmicb.2022.835677 | |
|
45. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathog Basel Switz 2021;10:1310. https://doi.org/10.3390/pathogens10101310 | |
|
46. Wenzel EV, Bosnak M, Tierney R, Schubert M, Brown J, Dübel S, et al. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep 2020;10:571. https://doi.org/10.1038/s41598-019-57103-5 | |
|
47. Zurawski DV, McLendon MK. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics (Basel) 2020;9:E155. https://doi.org/10.3390/antibiotics9040155 | |
|
48. Riddle DJ, Dubberke ER. Trends in Clostridium difficile Disease: Epidemiology and Intervention. Infect Med 2009;26:211-20. | |
|
49. Lee Y, Lim WI, Bloom CI, Moore S, Chung E, Marzella N. Bezlotoxumab (Zinplava) for Clostridium difficile Infection: The first monoclonal antibody approved to prevent the recurrence of a bacterial infection. P T 2017;42:735-8. | |
|
50. Tsai CW, Morris S. Approval of raxibacumab for the treatment of inhalation anthrax under the US food and drug administration "Animal Rule." Front Microbiol 2015;6:01320. https://doi.org/10.3389/fmicb.2015.01320 | |
|
51. Mazumdar S. Raxibacumab. MAbs 2009;1:531-8. https://doi.org/10.4161/mabs.1.6.10195 | |
|
52. Yamamoto BJ, Shadiack AM, Carpenter S, Sanford D, Henning LN, Gonzales N, et al. Obiltoxaximab prevents disseminated bacillus anthracis infection and improves survival during pre-and postexposure prophylaxis in animal models of Inhalational anthrax. Antimicrob Agents Chemother 2016;60:5796-805. https://doi.org/10.1128/AAC.01102-16 | |
|
53. World Health Organization. Antibacterial Products in Clinical Development for Priority Pathogens; 2022. Available from: https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/antibacterial-products-in-clinical-development-for-priority-pathogens [Last accessed on 2022 Jul 01]. | |
|
54. François B, Mercier E, Gonzalez C, Asehnoune K, Nseir S, Fiancette M, et al. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: First-in-human trial. Intensive Care Med 2018;44:1787-96. https://doi.org/10.1007/s00134-018-5229-2 | |
|
55. Aridis Pharmaceuticals, Inc. Randomized Double-blind Placebo-controlled Multicenter Phase 3 Study of Efficacy and Safety of AR-301 as Adjunct Therapy to Antibiotics in the Treatment of Ventilator-Associated Pneumonia (VAP) Caused by S. aureus. clinicaltrials.gov; 2022 Feb. Report No.: NCT03816956. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03816956 [Last accessed on 2022 Jul 01]. | |
|
56. François B, Jafri HS, Chastre J, Sánchez-García M, Eggimann P, Dequin PF, et al. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): A multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect Dis 2021;21:1313-23. https://doi.org/10.1016/S1473-3099(20)30995-6 | |
|
57. Aridis Pharmaceuticals, Inc. Phase 3, Randomized, Double-blind, Placebo-controlled, Single-dose Study to Evaluate the Efficacy and Safety of Suvratoxumab in Mechanically Ventilated Adults and Adolescents for the Prevention of Nosocomial Pneumonia; 2022. Report No.: NCT05331885. Available from: https://www.clinicaltrials.gov/ct2/show/NCT05331885 | |
|
58. Lumen Bioscience, Inc. Phase 2 Randomized, Double-Blind, Placebo-Controlled, Single Dose Regimen Study of LMN-101 in Healthy Volunteers Challenged With Campylobacter Jejuni; 2022. Report No.: NCT04182490. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04182490 | |
|
59. Estellés A, Woischnig AK, Liu K, Stephenson R, Lomongsod E, Nguyen D, et al. A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrob Agents Chemother 2016;60:2292-301. https://doi.org/10.1128/AAC.02588-15 | |
|
60. Xiong YQ, Estellés A, Li L, Abdelhady W, Gonzales R, Bayer AS, et al. A human biofilm-disrupting monoclonal antibody potentiates antibiotic efficacy in rodent models of both Staphylococcus aureus and Acinetobacter baumannii infections. Antimicrob Agents Chemother 2017;61:E00904-17. https://doi.org/10.1128/AAC.00904-17 | |
|
61. Trellis Bioscience LLC. Phase 1, Blinded, Single Ascending Dose Study to Evaluate Safety, Pharmacokinetics, and Activity of TRL1068 in Subjects With Prosthetic Joint Infection of the Knee or Hip, Undergoing Primary Two Stage Exchange Arthroplasty; 2022. Report No.: NCT04763759. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04763759 [Last accessed on 2022 Jul 01]. | |
|
62. Mabwell (Shanghai) Bioscience Co., Ltd. Multicenter, Randomized, Double-blind, Placebo-controlled Phase II Clinical Study of the Efficacy and Safety of 9MW1411 Injection Combined With Antibiotics in Patients With Acute Staphylococcus aureus Skin and Skin Structure Infection; 2022. Report No.: NCT05339802. Available from: https://clinicaltrials.gov/ct2/show/NCT05339802 [Last accessed on 2022 Jul 01]. | |
|
63. Isler B, Doi Y, Bonomo RA, Paterson DL. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother 2019;63:e01110-18. https://doi.org/10.1128/AAC.01110-18 | |
|
64. Shiferaw H. Our Science. In: Integrated Biotherapeutics. Available from: https://www.integratedbiotherapeutics.com/our-science/[Last accessed on 2020 Jul 31]. | |
|
65. Aguilar JL, Varshney AK, Pechuan X, Dutta K, Nosanchuk JD, Fries BC. Monoclonal antibodies protect from Staphylococcal Enterotoxin K (SEK) induced toxic shock and sepsis by USA300 Staphylococcus aureus. Virulence 2017;8:741-50. https://doi.org/10.1080/21505594.2016.1231295 | |
|
66. Henry R, Vithanage N, Harrison P, Seemann T, Coutts S, Moffatt JH, et al. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of Lipoproteins, Phospholipids, and Poly-β-1,6- N -Acetylglucosamine. Antimicrob Agents Chemother 2012;56:59-69. https://doi.org/10.1128/AAC.05191-11 | |
|
67. Skurnik D, Davis MR Jr., Benedetti D, Moravec KL, Cywes-Bentley C, Roux D, et al. Targeting pan-resistant bacteria with antibodies to a broadly conserved surface polysaccharide expressed during infection. J Infect Dis 2012;205:1709-18. https://doi.org/10.1093/infdis/jis254 | |
|
68. Soliman C, Walduck AK, Yuriev E, Richards JS, Cywes-Bentley C, Pier GB, et al. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine. J Biol Chem 2018;293:5079-89. https://doi.org/10.1074/jbc.RA117.001170 | |
|
69. Szijártó V, Guachalla LM, Hartl K, Varga C, Badarau A, Mirkina I, et al. Endotoxin neutralization by an O-antigen specific monoclonal antibody: A potential novel therapeutic approach against Klebsiella pneumoniae ST258. Virulence 2017;8:1203-15. https://doi.org/10.1080/21505594.2017.1279778 | |
|
70. Guachalla LM, Hartl K, Varga C, Stulik L, Mirkina I, Malafa S, et al. Multiple modes of action of a monoclonal antibody against multidrug-resistant Escherichia coli sequence Type 131-H30. Antimicrob Agents Chemother 2017;61:e01428-17. https://doi.org/10.1128/AAC.01428-17 | |
|
71. Diago-Navarro E, Motley MP, Ruiz-Peréz G, Yu W, Austin J, Seco BM, et al. Novel, broadly reactive anticapsular antibodies against carbapenem-resistant Klebsiella pneumoniae protect from infection. mBio 2018;9:E00091-18. https://doi.org/10.1128/mBio.01005-18 | |
|
72. Rouha H, Weber S, Janesch P, Maierhofer B, Gross K, Dolezilkova I, et al. Disarming Staphylococcus aureus from destroying human cells by simultaneously neutralizing six cytotoxins with two human monoclonal antibodies. Virulence 2018;9:231-47. https://doi.org/10.1080/21505594.2017.1391447 | |
|
73. Koulenti D, Xu E, Song A, Sum Mok IY, Karageorgopoulos DE, Armaganidis A, et al. Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorganisms 2020;8:E191. https://doi.org/10.3390/microorganisms8020191 | |
|
74. Planchais C, Fernández I, Bruel T, de Melo GD, Prot M, Beretta M, et al. Potent human broadly SARS-CoV-2-neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. J Exp Med 2022;219:E20220638. https://doi.org/10.1101/2022.04.01.486719 | |
|
75. Motley MP, Fries BC. A new take on an old remedy: Generating antibodies against multidrug-resistant gram-negative bacteria in a postantibiotic world. mSphere 2017;2:e00397-17. https://doi.org/10.1128/mSphere.00397-17 | |
|
76. Markham A. Bezlotoxumab: First global approval. Drugs 2016;76:1793-8. https://doi.org/10.1007/s40265-016-0673-1 | |
|
77. Greig SL. Obiltoxaximab: First global approval. Drugs 2016;76:823-30. https://doi.org/10.1007/s40265-016-0577-0 | |