Review Article | Volume 13, Supplement 1, July, 2025

Melatonin: Possible mechanism of commercial production by cyanobacteria for human welfare and sustainable agriculture

Sakshi Pandey Shobhit Raj Vimal Sheo Mohan Prasad   

Open Access   

Published:  May 30, 2025

DOI: 10.7324/JABB.2025.227821
Abstract

Melatonin (MT), a multifunctional signaling molecule is endogenously produced in different microorganisms such as bacteria, cyanobacteria, algae, fungi, and plants, animals including human beings. In addition to controlling the sleep cycle, MT has gained popularity in treating various human diseases, including cancer, COVID-19, and neurological and psychiatric disorders. It plays an important role in abiotic stress tolerance in all living beings including plants and cyanobacteria. In comparison to plants and other eukaryotes, MT is less studied in cyanobacteria. Cyanobacteria are the first photosynthetic oxygen-evolving microorganisms. They play an important role as natural biofertilizers in the agriculture fields, hence widely used for human welfare and environmental sustainability. The current review emphasizes the biosynthetic mechanisms, the function of MT in cyanobacteria under abiotic stress conditions, and the application of MT in human welfare and sustainable agriculture. A possible method for commercial production of MT with the support of a biotechnology approach where cyanobacteria can be used as a natural source has been discussed in brief.


Keyword:     Ancient antioxidant microorganism oxidative stress signaling molecule


Citation:

Pandey S, Vimal SR, Prasad SM. Melatonin: possible mechanism of commercial production by cyanobacteria for human welfare and sustainable agriculture. J Appl Biol Biotech. 2025;13(Suppl 1):34–44. http://doi.org/10.7324/JABB.2025.227821

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Qi F, Gao Y, Liu J, Yao X, Han K, Wu Z, et al. Alleviation of cadmium-induced photoinhibition and oxidative stress by melatonin in Chlamydomonas reinhardtii. Environ Sci Pollut Res 2023;30(32):78423– 37; doi: https://doi.org/10.1007/s11356-023-27561-6

2. Jiang M, Dai S, Wang B, Xie Z, Li J, Wang L, et al. Gold nanoparticles synthesized using melatonin suppress cadmium uptake and alleviate its toxicity in rice. Environ Sci Nano 2021;8(4):1042–56; doi: https://doi.org/10.1039/D0EN01172J

3. Yuan X, An J, Zheng T, Liu W. Exogenous melatonin improves salt tolerance mainly by regulating the antioxidant system in cyanobacterium Nostoc flagelliforme. Peer J 2022;10:14479; doi: https://doi.org/10.7717/peerj.14479

4. Wu H, Yao S, Wang T, Wang J, Ren K, Yang H, et al. Effects of melatonin on dairy herd improvement (DHI) of Holstein cow with high SCS. Molecules 2021;26(4):834; doi: https://doi.org/10.3390/molecules26040834

5. Li D, Zhao Y, Ding W, Zhao P, Xu JW, Li T, et al. A strategy for promoting lipid production in green microalga Monoraphidium sp. QLY-1 by combined melatonin and photoinduction. Bioresour Technol 2017a;235:104–12; doi: https://doi.org/10.1016/j.biortech.2017.03.114

6. Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, et al. Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 2017;244:1216–26; doi: https://doi.org/10.1016/j.biortech.2017.05.058

7. Bonnefont-Rousselot D, Collin F. Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology 2010;278(1):55–67; doi: https://doi.org/10.1016/j.tox.2010.04.008

8. Savage RA, Zafar N, Yohannan S, Miller JMM. Melatonin. Treasure Island, FL, Stat Pearls. 2021.

9. World Health Organization. Food Safety, 2022; who.int.

10. Singh G, Prasad SM. Synergistic regulation of hydrogen sulfide and nitric oxide on biochemical components, exopolysaccharides, and nitrogen metabolism in nickel stressed rice field cyanobacteria. J Plant Res 2024;137(3):521–43; doi: https://doi.org/10.1007/s10265- 024-01530-7

11. Vimal SR, Singh JS, Kumar A, Prasad SM. The plant endomicrobiome: structure and strategies to produce stress resilient future crop. Curr Res Microbial Sci 2024a;6:100236; doi: https://doi.org/10.1016/j.crmicr.2024.100236

12. Chittora D, Meena M, Barupal T, Swapnil P, Sharma K. Cyanobacteria as a source of biofertilizers for sustainable agriculture. BB Rep 2020;22:100737; doi: https://doi.org/10.1016/j.bbrep.2020.100737

13. Singh JS, Kumar A, Rai AN, Singh DP. Cyanobacteria: a precious bioresource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 2016;7:529; doi: https://doi.org/10.3389/fmicb.2016.00529

14. Bibi S, Saadaoui I, Bibi A, Al-Ghouti M, Abu-Dieyeh MH. Applications, advancements, and challenges of cyanobacteria-based biofertilizers for sustainable agro and ecosystems in arid climates. Bioresour Technol Reports 2024;25:101789; doi: https://doi.org/10.1016/j.biteb.2024.101789

15. Vimal SR, Singh JS, Prasad SM. Plant-microbe dynamics: nature-based solutions for sustainable agriculture. Anthropocene Sci 2022;1:428–43; doi: https://doi.org/10.1007/s44177-023-00043-7

16. Dahms HU, Ying X, Pfeiffer C. Antifouling potential of cyanobacteria: a mini review. Biofouling 2006;22:317–27; doi: https://doi.org/10.1080/08927010600967261

17. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, et al. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol 2019;10:249; doi: https://doi.org/10.3389/fendo.2019.00249

18. Hassan MU, Mahmood A, Awan MI, Maqbool R, Aamer M, Alhaithloul HA, et al. Melatonin-induced protection against plant abiotic stress: mechanisms and prospects. Front Plant Sci 2022;13:902694; doi: https://doi.org/10.3389/fpls.2022.902694

19. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J AM Chem Soc 1958;80(10):2587; doi: https://doi.org/10.1021/ja01543a060

20. Majidinia M, Reiter RJ, Shakouri SK, Yousefi B. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 2018;47:198–213; doi: https://doi.org/10.1016/j.arr.2018.07.010

21. Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of melatonin in the regulation of circadian rhythms and disease management. Mol Neurobiol 2024;1–31; doi: https://doi.org/10.1007/s12035-024-03915-0

22. Arnao MB, Cano A, Hernandez-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. J Exp Bot 2022;73 (17):5779–800; doi: https://doi.org/10.1093/jxb/erac009

23. Tilden AR, Becker MA, Amma LL, Arciniega J, McGaw AK. Melatonin production in an aerobic photosynthetic bacterium: an evolutionarily early association with darkness. J Pineal Res 1997;22:102–6; doi: https://doi.org/10.1111/j.1600-079X.1997.tb00310.x

24. Rodriguez-Naranjo MI, Torija MJ, Mas A, Cantos-Villar E, Garcia Parrilla MDC. Production of melatonin by Saccharomyces strains under growth and fermentation conditions. J Pineal Res 2012;53:219– 24; doi: https://doi.org/10.1111/j.1600-079X.2012.00990.x

25. Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, et al. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 2012;63:577–97; doi: https://doi.org/10.1093/jxb/err256

26. Arnao MB, Giraldo-Acosta M, Castejon-Castillejo A, Losada- Loran M, SanchezHerrerias P, El Mihyaoui A, et al. Melatonin from microorganisms, algae, and plants as possible alternatives to synthetic melatonin. Metabolites 2023;13(1):72; doi: https://doi.org/10.3390/metabo13010072

27. Ding W, Zhao P, Peng J, Zhao Y, Xu JW, Li T, et al. Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance. Algal Res 2018a;33:256–65; doi: https://doi.org/10.1016/j.algal.2018.05.021

28. Zhao Y, Song X, Zhao P, Li T, Xu JW, Yu X. Role of melatonin in regulation of lipid accumulation, autophagy and salinity-induced oxidative stress in microalga Monoraphidium sp. QLY-1. Algal Res 2021a;54:102196; doi: https://doi.org/10.1016/j.algal.2021.102196

29. Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, et al. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: applications, mechanisms, and challenges. Bioresour Technol 2024;393:130093; doi: https://doi.org/10.1016/j.biortech.2023.130093

30. Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023;74(2):12850; doi: https://doi.org/10.1111/jpi.12850

31. Liu G, Hu Q, Zhang X, Jiang J, Zhang Y, Zhang Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. J Exp Bot 2022;73(17):5818–27; doi: https://doi.org/10.1093/jxb/erac196

32. Byeon Y, Lee K, Park YI, Park S, Back K. Molecular cloning and functional analysis of serotonin N-acetyltransferase from the cyanobacterium Synechocystis sp. PCC 6803. J Exp Bot 2013;55(4):371–6; doi: https://doi.org/10.1111/jpi.12080

33. Tan DX, Manchester CL, Esteban-Zubero E, Zhou Z, Reiter JR. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 2015;20:18886–906; doi: https://doi.org/10.3390/molecules201018886

34. Back K, Tan DX, Reiter RJ. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 2016;61:426–37; doi: https://doi.org/10.1111/jpi.12364

35. Vimal , SR, Singh JS, Prasad SM. Prospective of indole-3-acteic acid (IAA) and endophyte microbe Bacillus subtilis strain SSA4 in paddy seedlings development and ascorbate-glutathione (AsA-GSH) cycle regulation to mitigate NaCl toxicity. Mol Biotechnol 2023a; doi: https://doi.org/10.1007/s12033-023-00743-w

36. Vimal SR, Singh JS, Prasad, SM. Paddy seeds bacterization with ACC deaminase producing endophyte Alcaligenes faecalis SSP6 regulates growth, chlorophyll contents, PSII photochemistry and antioxidants metabolism in NaCl stressed seedlings. Curr Res Microbial Sci 2024b;7:100299; doi: https://doi.org/10.1016/j.crmicr.2024.100299

37. Vimal SR, Singh JS, Prasad SM. Plant endo-microbiome services in global food security and agriculture sustainability. In: Kumar A (ed.). Advances in plant microbiome research for climate resilient agriculture, Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis), United Kingdom, pp 103–27, 2024c; doi: https://doi.org/10.1201/9781003501893-5

38. Vimal SR, Yadav S, Rai PK, Singh JS. Role of Bacillus humi (SS4) in management of legume Vigna radiata (L.) stresses under saline environments. Climate Change Environ Sustain 2020;8(1):54–66; doi: https://doi.org/10.5958/2320-642X.2020.00006.X

39. Vimal SR, Singh JS, Kumar A, Prasad, SM. Plant genotype-microbiome engineering as nature-based solution (NbS) for regeneration of stressed agriculture: a review. Scientia Horticul 2023b;321:1–11; doi: https://doi.org/10.1016/j.scienta.2023.112258

40. Kumar S, Yu R, Liu Y, Liu Y, Khan MN, Liu Y, et al. Exogenous melatonin enhances heat stress tolerance in sweet potato by modulating antioxidant defense system, osmotic homeostasis and stomatal traits. Hortic Plant J 2025;11:431–45; doi: https://doi.org/10.1016/j.hpj.2023.12.006

41. Li H, Chang J, Zheng J, Dong Y, Liu Q, Yang X, et al. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci Rep 2017b;7(1):40858; doi: https://doi.org/10.1038/srep40858

42. Siddiqui M, Alamri S, Al-Khaishany M, Khan M, Al-Amri A, Ali H, et al. Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int J Mol Sci 2019;20(2):353; doi: https://doi.org/10.3390/ijms20020353

43. Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, et al. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 2020;69(1):12659; doi: https://doi.org/10.1111/jpi.12659

44. Zhao Y, Cui J, Li Q, Qiao T, Zhong DB, Zhao P, et al. A joint strategy comprising melatonin and 3-methyladenine to concurrently stimulate biomass and astaxanthin hyperaccumulation by Haematococcus pluvialis. Bioresour Technol 2021b;341:125784; doi: https://doi.org/10.1016/j.biortech.2021.125784

https://doi.org/10.1016/j.biortech.2021.125784

45. Zhao Y, Li D, Xu JW, Zhao P, Li T, Ma H, et al. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism. Bioresor Technol 2018;259:46–53; doi: https://doi.org/10.1016/j.biortech.2018.03.014

46. Cui J, Yu C, Zhong DB, Zhao Y, Yu X. Melatonin and calcium act synergistically to enhance the coproduction of astaxanthin and lipids in Haematococcus pluvialis under nitrogen deficiency and high light conditions. Bioresour Technol 2020;305:123069; doi: https://doi.org/10.1016/j.biortech.2020.123069

47. Ding W, Zhao Y, Xu JW, Zhao P, Li T, Ma H, et al. Melatonin: a multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis. J Agric Food Chem 2018b;66(29):7701–11; doi: https://doi.org/10.1021/acs.jafc.8b02178

https://doi.org/10.1021/acs.jafc.8b02178

48. Meng Y, Chen HY, Liu J, Zhang CY. Melatonin facilitates the coordination of cell growth and lipid accumulation in nitrogen-stressed Chlamydomonas reinhardtii for biodiesel production. Algal Res 2020;46:101786; doi: https://doi.org/10.1016/j.algal.2019.101786

49. Zhu L, Gao H, Li L, Zhang Y, Zhao Y, Yu X. Promoting lutein production from the novel alga Acutodesmus sp. by melatonin induction. Bioresour Technol 2022;362:127818; doi: https://doi.org/10.1016/j.biortech.2022.127818

50. Xie SR, Li Y, Chen HH, Liang MH, Jiang JG. A strategy to promote carotenoids production in Dunaliella bardawil by melatonin combined with photoinduction. Enzyme Microb Tech 2022;161:110115; doi: https://doi.org/10.1016/j.enzmictec.2022.110115

51. Xing H, Zhao Y, Li T, Han B, Zhao P, Yu X. Enhancing astaxanthin and lipid coproduction in Haematococcus pluvialis by the combined induction of plant growth regulators and multiple stresses. Bioresour Technol 2022;344:126225; doi: https://doi.org/10.1016/j.biortech.2021.126225

52. Zhao Y, Wang HP, Yu C, Ding W, Han B, Geng S, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions. Bioresour Technol 2021c;319:124150; doi: https://doi.org/10.1016/j.biortech.2020.124150

53. Anam GB, Guda DR, Ahn YH. Impact of melatonin on the hydrogen peroxide treatment efficacy in Microcystis aeruginosa: cell growth, oxidative stress response, and gene transcription. Chemosphere 2022;307:136036; doi: https://doi.org/10.1016/j. chemosphere.2022.136036

54. Samani MSM, Mansouri H. The novel strategy for enhancing growth and lipid accumulation in Chlorella vulgaris microalgae cultured in dairy wastewater by monochromatic LEDs and melatonin. J Appl Phycol 2023;35:593–601; doi: https://doi.org/10.1007/s10811-022- 02898-6

55. Imran M, Aaqil Khan M, Shahzad R, Bilal S, Khan M, Yun BW, et al. Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules 2021;26(17):5116; doi: https://doi.org/10.3390/molecules26175116

56. Wang P, Yin L, Liang D, Li C, Ma F, Yue Z. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res 2012;53(1):11–20; doi: https://doi.org/10.1111/j.1600-079X.2011.00966.x

57. Arnao MB, Hernández-Ruiz J. Melatonin: plant growth regulator and/ or biostimulator during stress. Trends Plant Sci 2014;19(12):789–97; doi: https://doi.org/10.1016/j.tplants.2014.07.006

58. Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, et al. Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 2015;66(3):647–56; doi:

https://doi.org/10.1093/jxb/eru336

59. Arnao MB, Hernandez-Ruiz J. Melatonin and its relationship to plant hormones. Ann Bot 2018;121:195–207; doi: https://doi.org/10.1093/aob/mcx114

60. Khan M, Ali S, Manghwar H, Saqib S, Ullah F, Ayaz A, et al. Melatonin function and crosstalk with other phytohormones under normal and stressful conditions. Genes 2022;13:1699; doi: https://doi.org/10.3390/genes13101699

61. Gu X, Xue L, Lu L, Xiao J, Song G, Xie M, et al. Melatonin enhances the waterlogging tolerance of Prunus persica by modulating antioxidant metabolism and anaerobic respiration. J Plant Growth Regul 2021;40:2178–90; doi: https://doi.org/10.1007/s00344-020-10263-5

62. Zhang Y, Fan Y, Rui C, Zhang H, Xu N, Dai M, et al. Melatonin improves cotton salt tolerance by regulating ROS scavenging system and Ca2+ signal transduction. Front Plant Sci 2021;12:693690; doi: https://doi.org/10.3389/fpls.2021.693690

63. Mahawar L, Pandey A, Ramasamy KP, Pandey S, Prasad SM. GABA as a signalling molecule: possible mechanism for its enhanced commercial production by cyanobacteria. J Appl Phycol 2022;34(5):2355–69; doi: https://doi.org/10.1007/s10811-022-02791-2

64. Johansson LC, Stauch B, McCorvy JD, Han GW, Patel N, Huang XP, et al. FEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature 2019;569(7755):289–92; doi: https://doi.org/10.1038/s41586-019-1144-0

65. Stauch B, Johansson LC, McCorvy JD, Patel N, Han GW, Huang XP, et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 2019;569(7755):284–8; doi: https://doi.org/10.1038/s41586-019-1141-3

66. Stein RM, Kang HJ, McCorvy JD, Glatfelter GC, Jones AJ, Che T, et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 2020;579(7800):609–14; doi: https://doi.org/10.1038/s41586-020-2027-0

67. Anisimov VN, Popovich IG, Zabezhinski MA, Anisimov SV, Vesnushkin GM, Vinogradova IA. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 2006;757:573–89; doi: https://doi.org/10.1016/j.bbabio.2006.03.012

68. Palmer ACS, Zortea M, Souza A, Santos V, Biazús JV, Torres IL, et al. Clinical impact of melatonin on breast cancer patients undergoing chemotherapy; effects on cognition, sleep and depressive symptoms: a randomized, double-blind, placebo-controlled trial. PLoS One 2020;15(4):0231379; doi: https://doi.org/10.1371/journal.pone.0231379

69. Daryani A, Montazeri M, Pagheh AS, Sharif M, Sarvi S, Hosseinzadeh A, et al. The potential use of melatonin to treat protozoan parasitic infections: a review. Biomed Pharmacother 2018;97:948–57; doi: https://doi.org/10.1016/j.biopha.2017.11.007

70. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2020-nCoV/SARS-CoV-2. Cell Discov 2020;6:14; doi: https://doi.org/10.1038/s41421-020-0153-3

71. Koken ÖY, Gültutan P, Güngören MS, Bayhan GI, Yilmaz D, Gürka? E, et al. Impact of COVID-19 on serum melatonin levels and sleep parameters in children. Turk J Med Sci 2021;51(4):1640–6; doi: https://doi.org/10.3906/sag-2012-361

72. Fulia F, Gitto E, Cuzzocrea S, Reiter RJ, Dugo L, Gitto P, et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res 2001;31:343–9; doi: https://doi.org/10.1034/j.1600-079X.2001.310409.x

73. Brusco LI, Marquez M, Cardinali DP. Monozygotic twins with Alzheimer’s disease treated with melatonin: case report. J Pineal Res 1998;25:260–3; doi: https://doi.org/10.1111/j.1600-079X.1998. tb00396.x

74. Forrest CM, Mackay GM, Stoy N, Stone TW, Darlington LG. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br J Clin Pharmacol 2007;64:517– 26; doi: https://doi.org/10.1111/j.1365-2125.2007.02911.x

75. Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 2009;15:345–57; doi: https://doi.org/10.1111/j.1755-5949.2009.00105.x

76. Karasek M. Melatonin, human aging, and age-related diseases. Exp Gerontol 2004;89:1723–9; doi: https://doi.org/10.1016/j.exger.2004.04.012

77. Kedziora-Kornatowska K, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Czuczejko J, Kornatowski T, et al. Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. J Pineal Res 2009;46:333–7; doi: https://doi.org/10.1111/j.1600-079X.2009.00666.x

78. Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008;44:280–7; doi: https://doi.org/10.1111/j.1600-079X.2007.00524.x

79. Dominguez-Rodriguez A, Abreu-Gonzalez P, Reiter RJ. Clinical aspects of melatonin in the acute coronary syndrome. Curr Vasc Pharmacol 2009;7:367–73.

80. Abomohra AEF, Jin W, Tu R, Han SF, Eid M, Eladel H. Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives. Renew Sust Energy Rev 2016;64:596–606; doi: https://doi.org/10.2174/157016109788340749

81. Vimal SR, Singh JS, Prasad SM. Crop microbiome dynamics in stress management and green agriculture. In: Parry J, Shameem, N, Egamberdieva D (eds.). Microbiome drivers of ecosystem functions, Netherlands, Elsevier, pp. 341–66, 2024; doi: https://doi.org/10.1016/B978-0-443-19121-3.00002-8

82. Haltia L, Honkanen-Buzalski T, Spiridonova I, Olkonen A, Myllys VA. Study of bovine mastitis, milking procedures and management practices on 25 Estonian dairy herds. Acta Vet Scand 2006;48:22; doi: https://doi.org/10.1186/1751-0147-48-22

83. Khan D, Cai N, Zhu W, Li L, Guan M, Pu X, et al. The role of phytomelatonin receptor 1-mediated signaling in plant growth and stress response. Front Plant Sci 2023;14; doi: https://doi.org/10.3389/fpls.2023.1142753

84. Wang M, Zhang T, Ding F. Exogenous melatonin delays methyl jasmonate triggered senescence in tomato leaves. Agronomy 2019;9(12):795; doi: https://doi.org/10.3390/agronomy9120795

85. Qiao Y, Yin L, Wang B, Ke Q, Deng X, Wang S. Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat. Plant Physiol Biochem 2019;139:342–9; doi: https://doi.org/10.1016/j.plaphy.2019.03.037

86. Xiao S, Liu L, Wang H, Li D, Bai Z, Zhang Y, et al. Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS One 2019;14(6):0216575; doi: https://doi.org/10.1371/journal.pone.0216575

87. Sharma P, Thakur N, Mann NA, Umar A. Melatonin as plant growth regulator in sustainable agriculture. Sci Hortic 2024;323:112421; doi: https://doi.org/10.1016/j.scienta.2023.112421

88. Shock DA, LeBlanc SJ, Leslie KE, Hand K, Godkin MA, Coe JB, et al. Exploring the characteristics and dynamics of Ontario dairy herds experiencing increases in bulk milk somatic cell count during the summer. J Dairy Sci 2015;98:3741–53; doi: https://doi.org/10.3168/jds.2014-8675

89. Tse C, Barkema HW, DeVries TJ, Rushen J, Pajor EA. Impact of automatic milking systems on dairy cattle producers’ reports of milking labour management, milk production and milk quality. Animal 2018;12:2649–56; doi: https://doi.org/10.1017/S1751731118000654

90. Li N, Richoux R, Boutinaud M, Martin P, Gagnaire V. Role of somatic cells on dairy processes and products: a review. Dairy Sci Technol 2014;94:517–38; doi: https://doi.org/10.1007/s13594-014- 0176-3

91. Rhoda DA, Pantoja JC. Using mastitis records and somatic cell count data. Vet Clin N Am Food Anim Pract 2012;28:347–61; doi: https://doi.org/10.1016/j.cvfa.2012.03.012

92. Schukken YH, Wilson DJ, Welcome F, Garrison-Tikofsky L, Gonzalez RN. Monitoring udder health and milk quality using somatic cell counts. Vet Res 2003;34:579–96; doi: https://doi.org/10.1051/vetres:2003028

93. Diego H, Pedro FM, Joana R. Nutritional regulation of gene expression: carbohydrate-fat- and amino acid-dependent modulation of transcriptional activity. Int J Mol Sci 2019;20:1386; doi: https://doi.org/10.3390/ijms20061386

https://doi.org/10.3390/ijms20061386

94. Leon J, Acuña-Castroviejo D, Escames G, Tan DX, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res 2005;38:1–9; doi: https://doi.org/10.1111/j.1600-079X.2004.00181.x

95. López A, García JA, Escames G, Venegas C, Ortiz F, López LC, et al. Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 2009;46:188–98; doi: https://doi.org/10.1111/j.1600-079X.2008.00647.x

96. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483–95; doi: https://doi.org/10.1016/j.cell.2005.02.001

97. Karasek M, Reiter RJ. Melatonin and aging. Neuro Endocrinol Lett 2002;23:14–16.

98. Bangha E, Elsner P, Kistler GS. Suppression of UV-induced erythema by topical treatment with melatonin (N-acetyl-5-methoxytryptamine). A dose response study. Arch Dermatol Res 1996;288:522–6; doi: https://doi.org/10.1007/BF02505248

99. Milani M, Puviani M. Anti-aging efficacy of melatonin-based cream: clinical and instrumental skin evaluation. Cosmetics 2018;5(4):60; doi: https://doi.org/10.3390/cosmetics5040060

100. Marto J, Ascenso A, Gonçalves LM, Gouveia LF, Manteigas P, Pinto P, Ribeiro HM. Melatonin-based pickering emulsion for skin’s photoprotection. Drug Deliv 2016;23:1594–607; doi: https://doi.org/10.3109/10717544.2015.1128496

Article Metrics
10 Views 0 Downloads 10 Total

Year

Month

Related Search

By author names

Similar Articles

Dagaa (Rastrinoebola argentea) protein hydrolysate as a nitrogen source in microbial culture media

Katherine Pere, Betty Mbatia, Edward Muge, Vitalis W. Wekesa

Isolation and screening of dye decolorizing bacteria from industrial effluent

Mayur Gahlout, Poonam Chauhan, Hiren Prajapati, Suman Saroj, Poonam Narale

Antibacterial and antifungal activities of leaf and stem of Marsilea minuta L. against selected microbial pathogens

Govindaraj Sabithira, Rajangam Udayakumar

Role of effective microorganisms on hematological and biochemical indices of cultured Oreochromis niloticus exposed to lead, copper, and cadmium under temperature variations

Ragab G. Abdel Salam,, Samah M. Bassem, Eman Salah Abdel-Reheim, Mahmoud Abdel-Latif, Giulia Guerriero, Fagr Kh Abdel-Gawad,

Biofertilizer science and practice for agriculture and forestry: A review

Sudipta Saha, Debasish Paul, Tika Ram Poudel, Nafis Mahadi Basunia, Tasnimul Hasan, Mahadi Hasan, Bei Li, Rubel Reza, Ahmed Redwan Haque, Md. Abu Hanif, Manobendro Sarker, Nathan James Roberts, Muneer Ahmad Khoso, Haibo Wu, Hai-long Shen

Bacillus paralicheniformis (OQ202112) - Mediated biodiesel production using groundnut husk: A sustainable approach for bioenergy generation

Roshani Kantibhai Chaudhary, Priti Hemant Patel, Nikita Rajendrasinh Chavda, Vaidehi Kamlesh Patel, Kaushal Kantilal Chaudhary

Isolation and screening of potential lignocellulolytic microbes from Phra Nakhon Si Ayutthaya Province

Sunisa Suwannaphan, Paweena Suksaard, Piyangkun Lueangjaroenkit, Suvichark Aroonluk, Phakhwan Thongrak

Decolorization of selected industrial synthetic dyes using laccase from an indigenous isolate strain SK1

Maegala Nallapan Maniyam,, Primeela Gunalan,, Hazeeq Hazman Azman, Hasdianty Abdullah,, Nor Suhaila Yaacob,

Asparagus racemosus extract increases the life span in Drosophila melanogaster

K. V. Kiran Kumar, K. S. Prasanna, J. S. Ashadevi

Impact of Phyllanthus amarus extract on antioxidant enzymes in Drosophila melanogaster

N. Manasa, J. S. Ashadevi

Alterations in antioxidant defense system in hepatic and renal tissues of rats following aspartame intake

Saeed A. Alwaleedi

Dietary Supplementation of Citric acid (monohydrate) Improves Health Span in Drosophila melanogaster

Komal Panchala, Kesha Patelb , Anand K. Tiwaria

Biochemical Modulations in Duttaphrynus melanostictus Tadpoles, Following Exposure to Commercial Formulations of Cypermethrin: An Overlooked Impact of Extensive Cypermethrin use

David Muniswamy, Shrinivas S Jadhav, Kartheek R Malowade

DNP induced oxidative stress on blood components ameliorated by Pyrrole derivative of Tinospora cordifolia

K. C. Rashmi, H. S. Aparna

Management of heat stress in Drosophila melanogaster with Abhrak bhasma and ascorbic acid as antioxidant supplements

Rambhadur P. Subedi, Rekha R. Vartak, Purushottam G. Kale

Antioxidant and antihyperlipidemic effects of aqueous seed extract of Daucus carota L. in triton ×100-induced hyperlipidemic mice

Habibu Tijjani, Abubakar Mohammed, Sani Muktar, Saminu Musa, Yusuf Abubakar, Adegbenro Peter Adegunloye, Ahmed Adebayo Ishola, Enoch Banbilbwa Joel, Carrol Domkat Luka, Adamu Jibril Alhassan

Biochemical and liver histological changes in rats exposed to sub-lethal dose of Uproot-pesticide and the protective potentials of nutritional supplements

Cosmas Onyekachi Ujowundu, Kingsley Isaac Ogamanya, Favour Ntite Ujowundu, Victoria Ojone Adejoh, Calistus I. Iheme, Kalu Okereke Igwe

Biochemical and ultrastructural alterations in the brain of mice induced by aqueous leaf extract of a medicinal plant, Lantana camara L. and its amelioration by nimodipine and flunarizine

H. Ashalata Singha, Mahuya Sengupta, Meenakshi Bawari

Chronic cold exposure aggravates oxidative stress in reproductive organs of STZ-induced diabetic rats: Protective role of Moringa oleifera

Hanumanthappa Rakesh, Saumya S. Mani, Piler Mahaboob Basha

Correlates of sperm quality parameters and oxidative stress indices in diabetic rats exposed to cold stress: Role of Moringa oleifera leaf extract

Piler Mahaboob Basha, Hanumanthappa Rakesh, Saumya S. Mani

Leaf senescence and its regulation with phytohormones and essential elements: An overview

Shatrupa Singh, Madhulika Singh,, Sanskriti Bisht, Jai Gopal Sharma

Assessment of oxidative stress, genotoxicity, and histopathological alterations in freshwater food fish Channa punctatus exposed to fungicide, Mancozeb

Manoj Kumar, Anjali Mishra, Akash Verma, Anamika Jain, Adeel Ahmad Khan, Shikha Dwivedi, Sunil P. Trivedi

The protective action of a novel Dinb protease against diarrhea infection in Drosophila Melanogaster

Jyoti Guleria, Mohammad Rashid Khan, Minhaj Ahmad Khan

Consumption of corn and soybean sprouts enriched with egg shell in improving oxidative stress and estrogen depletion in ovariectomized rats

Siti Aminah, Wulandari Meikawati, Sri Hartati, Diode Yonata