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ABSTRACT

Melatonin (MT), a multifunctional signaling molecule is endogenously produced in different microorganisms such as 
bacteria, cyanobacteria, algae, fungi, and plants, animals including human beings. In addition to controlling the sleep 
cycle, MT has gained popularity in treating various human diseases, including cancer, COVID-19, and neurological 
and psychiatric disorders. It plays an important role in abiotic stress tolerance in all living beings including plants 
and cyanobacteria. In comparison to plants and other eukaryotes, MT is less studied in cyanobacteria. Cyanobacteria 
are the first photosynthetic oxygen-evolving microorganisms. They play an important role as natural biofertilizers 
in the agriculture fields, hence widely used for human welfare and environmental sustainability. The current review 
emphasizes the biosynthetic mechanisms, the function of MT in cyanobacteria under abiotic stress conditions, and 
the application of MT in human welfare and sustainable agriculture. A possible method for commercial production 
of MT with the support of a biotechnology approach where cyanobacteria can be used as a natural source has been 
discussed in brief.

1. INTRODUCTION
Melatonin (MT) (N-acetyl-5-methoxytryptamine) is a signaling 
molecule present in almost all living organisms in nature. As an 
indoleamine, it has a diffusive amphiphilic character [1] and plays an 
essential role in several biological processes of animals, plants, and 
cyanobacteria [2,3]. In recent years, MT has been used in different 
industries such as dairy [4], biofuel [5,6], pharmaceuticals [7,8], and 
so on. According to the World Health Organisation, as the population 
continues to grow, food production will need to expand by 50% by 
2029 to feed the population [9]. To achieve this goal the application of 
conventional chemical fertilizers will be necessary, which negatively 
affects soil nutrients and makes agricultural land infertile. Because 
chemical fertilizers have detrimental effects on the environment and 
human health, it is advised to use bio-fertilizers to prevent any health 
and environmental risks. 

Cyanobacteria are emerging microorganisms used as bio-
fertilizers that improve the quality and production of crops [10]. 
Currently, cyanobacteria have offered hope for more economic and 
environmentally friendly MT production. The detrimental effects 
of industrial pollution on agriculture have drawn more interest in 
MT. Cyanobacteria are prokaryotic photosynthetic microorganisms 

present in various habitats such as soil, freshwater, bare rock, and 
the ocean [11]. They are the first oxygenic photosynthetic organisms 
on the Earth that originated approximately ~3,500 million years 
ago during the Precambrian period and play a significant role in 
CO2 and N2 fixation. The most effective cyanobacteria for nitrogen 
fixation include Anabaena variabilis, Tolypothrix sp., Aulosira 
fertilisima, Nostoc linkia, Scytonema sp., Calothrix sp., and so on. 
About 20–30 kg of N ha−1 and organic matter are added to soil by 
cyanobacteria and they are typically found in the areas where rice 
is cultivated [12].

Numerous other researches have demonstrated how cyanobacteria 
can be used in agriculture to boost yield, dry weight, and root 
and stem growth in rice and wheat [13]. The second most crucial 
nutrient for plants and soil microbes is phosphorus, after nitrogen. 
Cyanobacteria can increase the bioavailability of phosphorus 
to plants by solubilizing and mobilizing the insoluble organic 
phosphates present in the soil with the help of phosphatase enzymes 
[14]. Cyanobacteria such as Anabaena sp., Anabaenopsis sp., 
Calothrix sp., and so on, produce plant hormones such as auxins, 
cytokinin, and gibberellin. Hence, cyanobacteria increase the 
amount of nutrients that plants require and promote germination, 
growth, and development [13,14]. Exopolysaccharides are released 
by cyanobacteria in the upper crust of the soil, keeping soil particles 
together and hence enhancing the water-holding capacity and organic 
matter of the soil. This improved soil moisture and organic matter 
favours the growth and development of cyanobacteria that support 
plant growth. Consequently, cyanobacterial growth improves the 
chemical and physical properties of soils [15].
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Cyanobacteria have a higher growth rate than plants and eukaryotic 
algae. They produce several essential bioactive compounds widely used 
for industrial and therapeutic applications [13,16]. One such bioactive 
compound produced by cyanobacteria is MT [17]. It is an emerging 
signaling molecule that regulates stress tolerance and several metabolic 
processes in cyanobacteria and plants [3]. By scavenging reactive 
oxygen species (ROS), neutralizing free radical species, and activating 
the antioxidant defense system, it plays a very important role in abiotic 
stress alleviation [18]. Although in previous studies, MT application 
in abiotic stress alleviation in plants and algae has been significantly 
discussed; however, it is not adequate in the case of cyanobacteria. 
Hence, a review that highlights current research on MT-mediated abiotic 
stress tolerance in cyanobacteria is of great importance. To the best of 
our knowledge, this review is the first to discuss the alleviatory role of 
MT in cyanobacteria exposed to abiotic stress, the biosynthetic pathway 
of MT in cyanobacteria, and the commercial production of MT from 
cyanobacteria (Figs. 1 and 2). In addition to this, the protective functions 
of MT against a range of abiotic stressors, and its applications in human 
welfare have been outlined in this comprehensive review to improve 
knowledge of sustainable agriculture practices and the application of 
MT in human welfare.

2. MT AN ANCIENT SIGNALLING ANTIOXIDANT 
MOLECULE
MT is a pleiotropic molecule that has a wide range of physiological and 
cellular effects in all living creatures. It functions as a neurohormone 

in animals and humans and was first discovered in the bovine pineal 
gland in 1958 [19]. It has a molecular mass of 232.28 and a density of 
1.269 g cm−3, and the chemical formula is C13H16N2O2. The majority 
of notifications received by the European Chemicals Agency about the 
classification, labeling, and packaging of chemicals and mixtures led 
it to conclude that there were no classified hazards associated with 
MT. In animals, this indoleamine level regulates a wide range of 
physiological events that impact various biological processes, such as 
circadian rhythms such as sleep-wake cycles, mood, motor activity, 
body temperature fluctuations, retinal physiology, reproductive 
physiology, and so on, discussed in Figure 1 [20,21]. Like in mammals, 
MT controls various functions in plants, and cyanobacteria [3,18,22] 
(Fig. 3). It is a versatile signaling biomolecule widely present in 
animals, plants, humans, bacteria (aerobic photosynthetic bacteria), 
cyanobacteria, macroalgae, and fungi [17,22–26]. 

With the significant capacity to enhance stress tolerance by scavenging 
ROS, MT acts as an antioxidant molecule, hence its exogenous 
application recovers several physiological and biochemical functions 
of cyanobacteria under different abiotic stress situations [2,3] (Fig. 4). 
Certain studies have demonstrated that exogenous MT can mitigate 
abiotic stresses such as high light [27] and salt [28] in microalgae 
and Nostoc flagelliforme under salt stress [3]. It also enhances protein 
accumulations, chlorophyll contents, photosynthetic efficiency, and 
up-regulates the antioxidant defense system hence promoting stress 
tolerance and activating many signaling pathways in microalgae [28] 
(Fig. 4). As a result, there is growing research interest in the exogenous 

Figure 1. Melatonin application in human welfare.
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application of MT as a growth-promoting and stress-protecting 
molecule [22,29]. Therefore, compared to other synthetic compounds 
MT application to plants, algae, cyanobacteria, and humans could 
have various benefits [9,25–27].

3. BIOSYNTHESIS OF MT IN CYANOBACTERIA
It is considered that chloroplasts originated from photosynthetic 
cyanobacteria, whereas mitochondria evolved from ingested 
α-proteobacteria. Both organelles have probably continued 

Figure 2. Proposed model for melatonin production by cyanobacteria.

Figure 3. Impact of melatonin on cyanobacteria and human.
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synthesizing MT throughout their evolutionary history [17]. MT is 
synthesized by enzymatic processes that are facilitated by enzymes 
in several cellular compartments, such as the cytoplasm, endoplasmic 
reticulum, chloroplasts, and occasionally in the mitochondria [22]. 
According to Gao et al. [30] MT biosynthesis is catalyzed by a 
minimum of six enzymes, which are tryptophan decarboxylase 
(TDC), tryptophan hydroxylase (TPH), tryptamine 5-hydroxylase 
(T5H), serotonin N-acetyltransferase (SNAT), N-acetyl serotonin 
methyltransferase (ASMT), and caffeic acid O-methyltransferase. 
These various synthetic pathways and enzymatic activities are essential 
for maintaining MT levels, which regulate plant development and 
environmental adaption [31]. Zhao et al. [29] has suggested that the 
MT biosynthesis mechanism in microalgae is similar to that of higher 
plants. Previous research shows a considerable amino acid sequence 
homology between the main enzyme, SNAT, and its analogous enzyme 
in cyanobacteria. SNAT catalyzes N-hydroxytryptamine to N-acetyl-
5-hydroxytryptamine in higher plants [32].

However, cyanobacteria and bacteria may use a similar pathway 
to synthesize MT. In the cyanobacteria, the TPH enzyme converts 
tryptophan into 5-hydroxytryptophan. Then TDC converts 
5-hydroxytryptophan into 5-hydroxytryptamine (serotonin). 
Furthermore, SNAT changes into N-acetylates serotonin. ASMT, 
a hydroxy indole-O-methyltransferase, subsequently methylates 
N-acetyl serotonin to produce MT [26] (Fig. 5). Acetylated serotonin 
is the source of MT. Tryptophan amino acid synthesizes both Indolic 
amines, this biosynthetic pathway has been investigated considerably 

in plants and animals [33,34] but it is less explored in cyanobacteria. 
Previous research has indicated that MT regulates the production and 
accumulation of secondary metabolites in cyanobacteria similar to 
plants and microalgae and improves their resistance to stress [29].

4. MT-MEDIATED ENVIRONMENTAL STRESS 
TOLERANCE IN CYANOBACTERIA 
Environmental stresses are currently one of the biggest issues 
imposing challenges for crop plants [29]. According to dos Reis et 
al. [35], one or more abiotic stressors can affect 90% of arable land 
and result in yield losses of up to 70% for major food crops. The 
productivity of important crops, such as rice, wheat, and maize, is 
expected to continue declining, according to estimates based on the 
integration of crop yield models and climate change [36,37,38]. The 
various abiotic stresses primarily affect cyanobacteria's physiology 
and metabolic behaviors [3,10,39]. Heat [40], chilling [41], salt [42], 
and heavy metal stress [43], can be better tolerated by plants after 
exogenous application of MT. 

Though the possible impact of MT on plants and microalgae is 
significantly reported but less explored in cyanobacteria. For instance, 
it reduced oxidative damage caused due to salt stress by increasing 
the activity of antioxidant enzymes with enhanced expression of 
antioxidant genes (NfCAT, NfSOD, and NfGR) and scavenging 
hydrogen peroxide (H2O2) in the Nostoc flagelliforme [3] (Table 1). 
Exogenous MT can stimulate the endogenous biosynthesis of MT in 
response to various abiotic stressors, thereby scavenging H2O2 and 

Figure 4. Melatonin mediated abiotic stress alleviation.
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O2
•−. In this way, it efficiently controls damage to cell membranes. MT 

application enhances photosynthesis, the main mechanism by which 
MT improves tolerance to various abiotic stresses [3,29,55] (Fig. 4).

The initial step in detoxification of oxidative stress is to scavenge 
free radicals using the antioxidant enzyme superoxide dismutase 
(SOD), which converts O2

•−to O2 and H2O2. Furthermore, catalase 
(CAT) removes H2O2 by breaking down H2O2 to H2O. The enzymatic 
action of ascorbate peroxidase can decrease the build-up of H2O2 
in the ascorbate-glutathione cycle. According to Wang et al. [56], 
glutathione reductase (GR) catalyzes the reduction of oxidized 
glutathione (GSSG) to reduced glutathione (GSH) by nicotinamide 
adenine dinucleotide phosphate hydrogen (NADPH), thus maintaining 
the GSH/GSSG ratio in the organism. As a result, algal cells are 
protected from free radical damage by the actions of antioxidant 
enzymes and the redox state of primary antioxidants [27]. MT acts 
as the first line of defense against abiotic stress because it is a strong 
antioxidant [57]. The findings demonstrated a strong correlation 
between enhanced ROS detoxification and decreased cellular damage 
caused by exogenous MT. This was directly associated with the CAT, 
SOD, and GR pathway, which are important for the up-regulation of 
antioxidant enzymes [58].

Interaction between MT and other plant hormones focused on auxin 
because of their similarity in molecular structure [59,60]. Nevertheless, 
several studies have demonstrated intriguing connections between 
MT and almost every known plant hormone, including jasmonic acid, 
salicylic acid (SA), polyamines, strigolactones, brassinosteroids, 
auxin, abscisic acid (ABA), cytokinins, and gibberellin [59] and 
also with various signaling molecules such as gamma-aminobutyric 
acid (GABA), Ca2+ and so on (Table 1). Additionally, through the 
Ca2+regulatory signal genes such as CIPK3 and CIPK9, the Ca2+ signal 
pathway contributes to MT-mediated abiotic stress tolerance [61]. 
When MT and Ca2+ were applied together ROS-generating enzymes 
(NADPH oxidase and glucose oxidase) were decreased [62].

5. CYANOBACTERIA IN MT PRODUCTION
MT is a hot commodity in today's anxious world. However, as yearly 
demand rises, a sustainable and effective synthesis technique is 
required to meet market demand. Currently, it is predicted that 50–70 
million US citizens are thought to suffer from a sleep or circadian 
disorder. The MT market was valued at USD 1 billion in 2020 and 
is estimated to grow to 3.4 billion USD by 2026. It was recently 
reported that over 300 million Chinese citizens experience sleeping 
disorders [45]. The previous study by Arnao et al. [26] discussed 
synthetic MT production from different microorganisms. Bacteria and 
fungi are heterotrophic and hence need an external supply of energy 
sources, i.e., carbohydrates, and other supplements. Further to prevent 
contamination aseptic conditions are required which increases the 
production costs. Considering this, MT production from cyanobacteria 
appears to be the most promising sustainable approach (Fig. 2) due to 
the photoautotrophic nature of cyanobacteria.

In addition to this, it might be a safe and cost-effective method 
compared to bacteria and fungi and a similar approach has been 
suggested in the earlier study of Mahawar et al. [63] for commercial 
production of GABA by cyanobacteria. Cyanobacteria are sustainable 
systems and MT accumulation can be enhanced under mild abiotic 
stress conditions such as UV-B, temperature, salinity, heavy metals, 
and so on. The proposed schematic model for commercial production 
of natural MT includes the mass scale production of cyanobacteria 
in a self-sustaining bioreactor under mild stress conditions, thereafter 
harvesting of cyanobacteria cells which are followed by cell lysis, 
separation, and purification of MT (Fig. 2). 

5. MT IN HUMAN WELFARE AND SUSTAINABLE 
AGRICULTURE

5.1. MT as medicine
MT has multiple healthcare benefits. It is commonly used to treat 
immunity, circadian rhythms, and sleep-related disorders [64–66]. Its 
beneficial effects have also been demonstrated recently in the treatment 
of many cancers, especially when combined with chemical and 
radiation therapy [17], and also used for carcinogenesis suppression 
[67]. MT consumption reduces the toxicity of chemotherapy drugs 
in cancer patients [68]. According to Daryani et al. [69], it has a 
therapeutic effect in treating parasitic infections, primarily caused 
by parasitic protozoa. MT is thought to improve the host's immune 
response to infections including giardiasis, amoebiasis, malaria, 
Chagas disease, and so on. Due to the multifunctional properties of 
MT as an anti-inflammatory, antioxidant, and antiviral against certain 
viruses, it may be prescribed to patients with severe acute respiratory 
syndrome coronavirus-2 either alone or as the complement of other 
medications [70–72]. MT is also used in the treatment of asphyxia [72], 
Alzheimer's disease [73], rheumatoid arthritis [74], neurodegenerative 
diseases [75], temporal organization improvement during aging [76], 
type-2 diabetes [77], female infertility [78] protection against vascular 
disease and atherosclerosis development [79].

5.2. MT Up Regulates Lipid Production
The limited supply of non-renewable fossil fuels will run out in a 
few decades. Numerous researchers are inspired to investigate novel 
renewable energy sources. One of the greatest options for this is 
thought to be biodiesel [80]. Microalgae can synthesize significant 
amounts of lipids under unfavorable conditions, such as nutritional 
stress, high light intensity, salinity, and heavy metal stress. Hence, 
they are potential raw materials for biofuel generation [6]. The use 
of microalgae as a sustainable feedstock for biodiesel production has 
expanded due to the enhanced lipid content of microalgae. MT can be 
applied to increase microalgal biomass and metabolite accumulation 
[5]. In Monoraphidium sp. QLY-1, the lipid content has been increased 
1.22 times when exogenous MT is added under stress conditions [81]. 
Cyanobacteria also serve as model organisms for biofuel production 
by genetic manipulation [81,82].

Figure 5. Biosynthetic pathway of melatonin in cyanobacteria.
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5.3. MT Downregulates Oxidative Stress

MT has a beneficial effect on plants' fresh and dry biomass and 
helps them to cope up with abiotic stress conditions [40] such as 
salinity, cold, heat, drought, heavy metals, and UV stress. MT-
mediated stress tolerance mechanism controls antioxidant enzyme 
activities and exhibits ROS-scavenging properties [40,83]. MT 
acts as a fruit ripening and flowering regulator, and plant growth 
promoter by regulating the redox network or by interacting with 
other phytohormones [22]. In abiotic stress conditions, the up-
regulation of multiple anti-stress genes against abiotic stress in MT-
treated plants thereby downregulates oxidative stress. Under stress, 
the stimulation of endogenous MT has established its crucial role as 
a signaling molecule [22]. 

Hence, MT application efficiently regulates plant development 
and improves plant tolerance against abiotic stress [81] by 
promoting anti-oxidant activities, photosynthetic performance, and 
the accumulation of different osmolytes. It is important in crop 
improvement as a potential bio-stimulator for enhancing agricultural 
yields [84]. According to Wang et al. [85], it is biodegradable and 

safer for use in organic farming. It also makes certain fruits and 
vegetables easier to store after harvest. The quantity of H2O2 in 
roots can be considerably reduced by exogenous MT, delaying the 
development of symptoms associated with post-harvest physiological 
deterioration, which is caused by damage incurred during harvest 
and treatment. It allows for the long-term preservation of fruits and 
vegetables such as peppers, onions, cabbage, cucumbers, beans, and 
carrots [86,87]. Therefore, MT can be utilized in agricultural crop 
plants for sustainable agriculture [88].

5.4 MT in Dairy Industry
Dairy cows’ milk productivity is measured using the dairy herd 
improvement (DHI) standard [89]. The characteristics of DHI 
measures, which indicate the quality of milk [90], include the milk 
somatic cell number (SCC), milk yield, protein, fat, lactose, and dry 
matter [83]. The SCC is one of the most significant indicators of the 
DHI's measured parameters, reflecting the cows’ breast health and 
the quality of their milk [91]. According to Rohda et al.[92], milk 
quality decreases with increasing SCC. The cow is diagnosed with 

Table 1. Regulatory role of melatonin in abiotic stress mitigation in microalgae and cyanobacteria.

S.No. Organism Abiotic stress Melatonin role in stress alleviation MT interaction with 
signalling molecules/
phytohormones

References

1. Monoraphidium sp. 
QLY-1

Salinity Lipid accumulation is regulated by upregulating the 
transcription levels of lipogenesis-related genes hence 
alleviating salt-induced oxidative stress 

- Zhao et al. [28]

2 Haematococcus 
pluvialis

High light Upregulates carotenogenesis, lipogenesis and antioxidant 
enzymes, and modulates autophagy and ROS signaling 

- Zhao et al. [44]

3. Haematococcus 
pluvialis LUGU

Nitrogen limitation 
and high light 
condition

Stimulation of NO and SA production hence astaxanthin 
accumulation enhanced

Nitric oxide , SA Ding et al. [27]

4. Monoraphidium sp. 
QLY-1

Nitrogen 
deficiency

Alleviated oxidative damage and enhanced lipid 
accumulation by positively upregulating GA biosynthesis 
and ABA catabolism

GA, ABA Zhao et al. [45]

5. Nostoc flagelliforme Salinity Salt tolerance was enhanced by activating the antioxidant 
system

- Yuan et al [3]

6. Haematococcus 
pluvialis

Nitrogen 
deficiency and high 
light conditions

MT and Ca2+ synergistically enhanced the coproduction of 
astaxanthin and lipids by regulating carotenogenic gene 
levels and GABA and ROS signaling. 

Ca2+

GABA

Cui et al. [46]

7. Haematococus pluvialis Nitrogen starvation 
and highlight

Prevented the ROS burst and limited cell damage induced 
by abiotic stress through activation of antioxidant enzymes

- Ding et al. [47]

8. Chlamydomonas 
reinhardtii

Nitrogen 
deficiency

Reduced chlorophyll loss, enhanced antioxidants, reduced 
lipid peroxidation

- Meng et al. [48]

9. Monoraphidium sp. 
QLY-1

High light ROS reduced, lipid biosynthetic enzyme regulation - Li et al. [5]

10. Acutodesmus sp. Hight light Antioxidant enzyme-related genes enhanced, reduced 
oxidative stress, Ethylene and GABA synthesis regulation

Ethylene and GABA Zhu et al. [49]

11 Dunaliella bardawil High light Pigment content regulation - Xie et al. [50]

12. Haematococcus 
pluvialis

High light and 
salinity, nitrogen 
deficiency

Carotenogenesis and lipogenesis promoted, GABA 
synthesis regulation 

GABA Xing et al. [51]

13 Haematococcus 
pluvialis

High light Regulated carotenogenic, lipogenic, antioxidant systems, 
glycolysis, TCA cycle, and GABA shunt pathways

GABA Zhao et al. [52]

14 Microcystis aeruginosa H2O2 Photosynthetic and antioxidant enzymes activities 
enhanced; oxidative stress reduced

- Anam et al. 
[53]

15 Chlorella vulgaris Dairy wastewater Photosynthetic pigments, MUFAs and PUFAs synthesis 
promoted

- Samani and 
Mansouri [54]
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mastitis when the milk SCC is greater than 200,000/ml. A significant 
breast infection in cows is always indicated by an abnormally high 
SCC [93]. MT can drastically lower the SCC and improve the DHI 
in the milk of Holstein cows that have high SCC [4]. By lowering fat 
content with enhanced lactose and protein levels, the MT treatment 
increased the nutritious value of milk [4,93] (Fig. 1). It may be a good 
alternative to antibiotics for mastitis treatment in dairy cows. More 
research is necessary for this purpose. Since MT is safe and has no 
negative impact on the health of humans or animals the development 
of MT products and their application in dairy farming can enhance the 
industrial benefits [4].

5.5. MT as Anti-Aging Compound
Endogenous MT may have regenerative and anti-aging effects [20]. 
MT is a powerful signaling molecule that protects mitochondria 
[95,96]. Age-related degradation in mitochondrial functional activity 
is mostly caused by chronic and cumulative oxidative damage[97]. 
Consequently, MT's protective effect on mitochondria may be able 
to delay the aging process [98]. MT inhibits UV-induced damage 
to human skin and-derived cell lines (fibroblasts and keratinocytes) 
[99,100]. Recently, an MT-based emulsion with effective benefits for 
skin photoprotection has been developed [37].

6. FUTURE PERSPECTIVES
In 2019, approximately 4,000 tonnes of synthetic MT were produced 
worldwide worth about 1.3 billion USD. It was estimated in the next 
five years, the MT market was anticipated to expand at a compound 
annual growth rate of more than 10%. The insomnia issues brought on 
by the COVID-19 epidemic have become extremely relevant in light 
of this significant increase in demand. North America consumes the 
most of MT produced, followed by Europe. A few large corporations, 
including Baden Aniline and Soda Factory, Aspen Pharmacare, 
Nature's Bounty, Pfizer, Natrol LLC, Aurobindo Pharma, and Biotics 
Research, dominate the global MT market. About half of the synthetic 
MT produced is used for medical purposes; the remaining portion is 
used in chemical and industrial processes. This enormous business 
is entirely supported by the chemical MT, whose manufacturing is 
extremely profitable, efficient, and inexpensive. However, many toxic 
byproducts are produced during the chemical synthesis of MT, which 
has occasionally resulted in serious diseases in humans. Furthermore, 
prior research suggests that in the future genetically modified 
organism (GMO) E. coli strains could serve as the foundation for 
the use of microbial cell factories in the manufacturing of biological 
MT. However, when the objective is to introduce a natural product to 
consumer who is sensitive or anti-GMO, the utilization of transgenic 
organisms to manufacture compounds for human consumption can 
provide challenges. MT produced by cyanobacteria will be more 
widely accepted than MT produced by chemical synthesis techniques, 
and GMOs. Thus, cyanobacteria offer possible a bio-agent for 
sustainable MT commercial production.

7. CONCLUSIONS
Currently, MT is a very important and interesting biological tool in 
every field especially in sustainable agriculture and human welfare. 
It enhances abiotic stress tolerance in plants and microbes, thus this 
characteristic makes it an important molecule. This review discusses 
the biosynthetic mechanisms of MT in cyanobacteria. Furthermore, 
cyanobacteria are ubiquitous in nature and have the ability to promote 
commercial production of MT with biotechnological advances to meet 
future demand in a sustainable manner.

8. ABBREVIATIONS
ASMT	 N-acetylserotonin methyltransferase 
CAT	 catalase
GABA	 gamma-aminobutyric acid
GR	 glutathione reductase
GSH	 reduced glutathione 
GSSG	 oxidized glutathione
H2O2	 hydrogen peroxide
MT	 melatonin
ROS	 reactive oxygen species
SA	 salicylic acid
SNAT	 serotonin N-acetyltransferase 
SOD	 superoxide dismutase
T5H	 tryptamine 5-hydroxylase 
TDC	 tryptophan decarboxylase 
TPH	 tryptophan hydroxylase 
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