The protective action of a novel Dinb protease against diarrhea infection in Drosophila Melanogaster

Jyoti Guleria Mohammad Rashid Khan Minhaj Ahmad Khan   

Open Access   

Published:  Jan 20, 2025

DOI: 10.7324/JABB.2025.210947
Abstract

The compounds of natural origin prevail to be of great importance in the identification of novel bioactive molecules and are less pernicious towards the ecosystem. Dinb family proteases of Bacillus species possess antimicrobial properties and are reported to inhibit the growth of many pathogenic bacteria, our study also focused on corroborating these effects. Five-day-old Drosophila melanogaster was exposed to Salmonella enterica for up to 96 hours. Once the disease was induced in flies they were shifted to the treatment vials containing 2 mg–10 mg of purified protease. The application of a 23.4 kDa purified protease improved the health of D. melanogaster when compared to the positive control. The protease treatment on the infected flies showed significant stability in cell survival (69%) as well as restoring normal cell functioning. The results indicated that purified protease extended fly life span, restored their locomotive (96.6%), and reproductive ability (38%–67.5%), and reduced oxidative stress in D. melanogaster. The study verified, the protease to be bactericidal against diarrhea pathogens and the significant recovery of the host immune system. Furthermore, the protein can be used to study host-pathogen immune interactions at the cellular level, followed by its testing against a variety of pathogens to explore its broad-spectrum application.


Keyword:     Bacillus clausii diarrhea Drosophila metalloprotease oxidative stress


Citation:

Guleria J, Khan MR, Khan MA. The protective action of a novel Dinb protease against diarrhea infection in Drosophila Melanogaster. J Appl Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.210947

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Stoica RM, Moscov?c? M, Tomulescu C, C???r?c? A, B?beanu N, Popa O, et al. Antimicrobial compounds of the genus Bacillus: a review. Romanian Biotechnol Lett 2019;24(6):1111–9. do?: https://doi.org/10.25083/rbl/24.6/1111.1119

2. Ahire JJ, Kashikar MS, Madempudi RS. Comparative accounts of probiotic properties of spore and vegetative cells of Bacillus clausii UBBC07 and In Silico analysis of probiotic function. 3 Biotech 2021;11:116.

3. Acosta-Rodríguez-Bueno CP, Abreu Y, Abreu AT, Guarner F, Guno MJV, Pehlivano?lu E, et al. Bacillus clausii for gastrointestinal disorders: a narrative literature review. Adv Ther 2022;39:4854–74. doi: https://doi.org/10.1007/s12325-022-02285-0

https://doi.org/10.1007/s12325-022-02285-0

4. Caminero A, Guzman M, Libertucci J, Lomax AE. The emerging roles of bacterial proteases in intestinal diseases. Gut Microbes 2023;15(1):2181922. doi: https://doi.org/10.1080/19490976.2023.2181922

5. Matijaši? M, Meštrovi? T, ?ip?i? Paljetak H, Peri? M, Bareši? A, Verbanac D. Gut microbiota beyond bacteria—mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int J Mol Sci 2020;21(8):2668. doi: https://doi.org/10.3390/ijms21082668

https://doi.org/10.3390/ijms21082668

6. Vemuri R, Shankar EM, Chieppa M, Eri R, Kavanagh K. Beyond just bacteria: functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminths. Microorganisms 2020;8(4):483. doi: https://doi.org/10.3390/microorganisms8040483

7. Ripert G, Racedo SM, Elie A, Jacquot C, Bressollier P, Urdaci MC. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob Agents Chemother 2016;60:3445– 54. doi: https://doi.org/10.1128/aac.02815-15

https://doi.org/10.1128/aac.02815-15

8. Najjar H, Al-Ashmar S, Qush A, Al-Asmar J, Rashwan S, Elgamal A, et al. Enteric pathogens modulate metabolic homeostasis in the Drosophila melanogaster host. Microbes Infect 2022;4:104946. doi: https://doi.org/10.1016/j.micinf.2022.104946

9. Akhondi H, Simonsen KA. Bacterial diarrhea. Treasure Island, FL: StatPearls Publishing; 2024.

10. Hou J, Ding L, Yang T, Yang Y, Jin Y, Zhang X, et al. The proteolytic activity in inflammatory bowel disease: insight from gut microbiota. Microb Pathog 2024;188:106560. doi: https://doi.org/10.1016/j. micpath.2024.106560

11. Ayres JS, Schneider DS. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol 2009;7(7):e1000150. doi: https://doi.org/10.1371/journal.pbio.1000150

https://doi.org/10.1371/journal.pbio.1000150

12. Zhang G, Gu Y, Dai X. Protective effect of bilberry anthocyanin extracts on dextran sulfate sodium-induced intestinal damage in Drosophila melanogaster. Nutrients 2022;14:2875. doi: https://doi.org/10.3390/nu14142875

13. Lathen DR, Merrill CB, Rothenfluh A. Flying together: Drosophila as a tool to understand the genetics of human alcoholism. Int J Mol Sci 2020;18:6649. doi: https://doi.org/10.3390/ijms21186649

14. Medina A, Bellec K, Polcowñuk, Cordero JB. Investigating local and systemic intestinal signaling in health and disease with Drosophila. Dis Models Mech 2022;14:dmm049332. doi: https://doi.org/10.1242/dmm.049332

15. Esther MV. The power of Drosophila in modeling human disease mechanisms. Dis Models Mech 2022;15(3):dmm049549. doi: https://doi.org/10.1242/dmm.049549

16. Liu Z, Guan X, Zhong X, Zhou X, Yang F. Bacillus velezensis DP-2 isolated from Douchi and its application in soybean meal fermentation. J Sci Food Agri 2020;101(5):1861–8. doi: https://doi.org/10.1002/jsfa.10801

17. Sakuma C, Tomioka Y, Li C, Shibata T, Nakagawa M, Kurosawa Y, et al. Analysis of protein denaturation, aggregation, and post-translational modification by agarose native gel electrophoresis. Int J Biol Macromol 2021;172:589–96. doi: https://doi.org/10.1016/j.ijbiomac.2021.01.075

18. Iorjiim WM, Omale S, Bagu GD, Gyang SS, Alemika ET. Moringa oleifera leaf extract extends lifespan and ameliorate HAART drug-induced locomotor, reproductive, and antioxidant deficits in Drosophila melanogaster. J Complement Altern Med Res 2020;11(4):33–46.

19. Harnish JM, Link N, Yamamoto S. Drosophila as a model for infectious diseases. Int J Mol Sci 2020;22(5):2724. doi: https://doi.org/10.3390/ijms22052724

20. Pinheiro FC, Bortolotto VC, Araujo SM, Dahleh MM, Neto JSS, Zeni G, et al. Antimicrobial effect of Diphenyl Ditelluride (PhTe)2 in a model of infection by Escherichia coli in Drosophila melanogaster. Indian J Microbiol 2024. doi: https://doi.org/10.1007/s12088-024- 01196-8

21. Siva-Jothy JA, Prakash A, Vasanthakrishnan RB, Monteith KM, Vale PF. Oral bacterial infection and shedding in Drosophila melanogaster. J Vis Exp 2018;(135):e57676. doi: https://doi.org/10.3791/57676

https://doi.org/10.3791/57676

22. López CC, Villafán CP, Aluja M, Hugo S, Aarón F, Córdova G, et al. Safety assessment of the potential probiotic bacterium Limosilactobacillus fermentum J23 using the mexican fruit fly (Anastrepha ludens Loew, Diptera: Tephritidae) as a Novel In Vivo Model. Probiotics Antimicrob Proteins 2024;16(1):233–48. doi: https://doi.org/10.1007/s12602-022-10034-6

23. Adedara AO, Babalola AD, Stephano F, Awogbindin IO, Olopade JO, Rocha JBT, et al. An assessment of the rescue action of resveratrol in parkin loss of function-induced oxidative stress in Drosophila melanogaster. Sci Rep 2022;12(1):3922. doi: https://doi.org/10.1038/s41598-022-07909-7

24. Saha S, Namai F, Nishiyama K. Role of immunomodulatory probiotics in alleviating bacterial diarrhea in piglets: a systematic review. J Anim Sci Biotechnol 2024;15(1):112. doi: https://doi.org/10.1186/s40104-024-01070-z

25. Kumar SS, Priscilla S, Srivastava P, Cherian T, Movani J, Banerjee U, et al. Influence of probiotics, synbiotics, and heat-killed Lactobacillus fermentum on aging using Drosophila model—a preliminary study. J Appl Pharm Sci 2023;13(04):136–40.

26. Li B, Xiu M, He L, Zhou S, Yi S, Wang X, et al. Protective effect of San Huang Pill and its bioactive compounds against ulcerative colitis in Drosophila via modulation of JAK/STAT, apoptosis, Toll, and Nrf2/ Keap1 pathways. J Ethnopharmacol 2024;322:117578. doi: https://doi.org/10.1016/j.jep.2023.117578

27. Xiu M, Wang Y, Yang D, Zhang X, Dai Y, Liu Y, et al. Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Fronti Pharmacol 2022;13:1072715. doi: https://doi.org/10.3389/fphar.2022.1072715

28. Valanne S, Vesala L, Maasdorp MK, Salminen TS, Rämet M. The Drosophila Toll pathway in innate immunity: from the core pathway toward effector functions. J Immunol 2022;209(10):1817– 25. doi: https://doi.org/10.4049/jimmunol.2200476

https://doi.org/10.4049/jimmunol.2200476

29. Keshav N, Ammankallu R, Shashidhar, Paithankar JG, Baliga MS, Patil RK, et al. Dextran sodium sulfate alters antioxidant status in the gut affecting the survival of Drosophila melanogaster. 3 Biotech 2022;12:280. doi: https://doi.org/10.1007/s13205-022-03349-2

30. Ramond E, Jamet A, Ding X, Euphrasie, D, Bouvier C, Lallemant L, et al. Reactive oxygen species-dependent innate immune mechanisms control methicillin-resistant Staphylococcus aureus virulence in the Drosophila larval model. Mol Biol Microbiol 2021;12:e00276–21. doi: https://doi.org/10.1128/mBio.00276-21

https://doi.org/10.1128/mBio.00276-21

31. Arun P, Monteith KM, Pedro VF. Mechanisms of damage prevention, signaling, and repair impact disease tolerance. Proc Royal Soc B 2022;28920220837. doi: http://doi.org/10.1098/rspb.2022.0837

32. Yang K, Li Q, Zhang G, Ma C, Dai X. The protective effects of Carrageenan Oligosaccharides on intestinal oxidative stress damage of female Drosophila melanogaster. Antioxidants 2021;10(12):1996. doi: https://doi.org/10.3390/antiox10121996

Article Metrics
67 Views 23 Downloads 90 Total

Year

Month

Related Search

By author names