1. Singh S, Tiwari G. Application of bioremediation on solid waste management: A review. J Bioremed Biodegr 2014;5:19424. https://doi.org/10.4172/2155-6199.1000248 |
|
2. Hossain K, Ismail N. Bioremediation and detoxification of pulp and paper mill effluent: A review. Res J Environ Toxicol 2015;9:113. https://doi.org/10.3923/rjet.2015.113.134 | |
|
3. Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, et al. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 2010;101:8599-605. https://doi.org/10.1016/j.biortech.2010.06.085 | |
|
4. Balaji V, Arulazhagan P, Ebenezer P. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol 2014;35:521-9. | |
|
5. Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, et al. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. Environ Sci Poll Res 2021;28:24917-39. https://doi.org/10.1007/s11356-021-13252-7 | |
|
6. Singh C, Tiwari S, Singh JS, Yadav AN. Microbes in Agriculture and Environmental Development. Boca Raton: CRC Press; 2020. https://doi.org/10.1201/9781003057819 | |
|
7. Boopathy R. Factors limiting bioremediation technologies. Bioresour Technol 2000;74:63-7. https://doi.org/10.1016/S0960-8524(99)00144-3 | |
|
8. Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M, et al. Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia 2021;76:2687-709. https://doi.org/10.1007/s11756-021-00806-w | |
|
9. Bharagava RN, Saxena G, Mulla SI. Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. In: Saxena G, Bharagava RN, editors. Bioremediation of Industrial Waste for Environmental Safety. Berlin: Springer; 2020. p. 1-18. https://doi.org/10.1007/978-981-13-1891-7_1 | |
|
10. Verma S, Kuila A. Bioremediation of heavy metals by microbial process. Environ Technol Innov 2019;14:100369. https://doi.org/10.1016/j.eti.2019.100369 | |
|
11. Yadav AN, Rastegari AA, Yadav N, Kour D. Advances in Plant Microbiome and Sustainable Agriculture: Diversity and Biotechnological Applications. Singapore: Springer; 2020. https://doi.org/10.1007/978-981-15-3208-5 | |
|
12. Kumar A, Yadav AN, Mondal R, Kour D, Subrahmanyam G, Shabnam AA, et al. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 2021;284:131325. https://doi.org/10.1016/j.chemosphere.2021.131325 | |
|
13. Nduka J, Umeh L, Okerulu I, Umedum L, Okoye H. Utilization of different microbes in bioremediation of hydrocarbon contaminated soils stimulated with inorganic and organic fertilizers. J Pet Environ Biotechnol 2012;3:1-9. https://doi.org/10.4172/2157-7463.1000116 | |
|
14. Aziz SS. Bioremediation of environmental waste: A review. Univ Wah J Sci Technol 2018;2:35-42. | |
|
15. Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, et al. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 2020;23:101487. https://doi.org/10.1016/j.bcab.2019.101487 | |
|
16. Yadav AN, Singh S, Mishra S, Gupta A. Recent Advancement in White Biotechnology Through Fungi, Perspective for Sustainable Environments. Vol. 3. Cham: Springer International Publishing; 2019. https://doi.org/10.1007/978-3-030-25506-0 | |
|
17. Chandran H, Meena M, Sharma K. Microbial biodiversity and bioremediation assessment through omics approaches. Front Environ Chem 2020;1:570326. https://doi.org/10.3389/fenvc.2020.570326 | |
|
18. Sinigaglia M, Di Benedetto N, Bevilacqua A, Corbo MR, Capece A, Romano P. Yeasts isolated from olive mill wastewaters from southern Italy: Technological characterization and potential use for phenol removal. Appl Microbiol Biotechnol 2010;87:2345-54. https://doi.org/10.1007/s00253-010-2684-2 | |
|
19. Zhang Z, Gai L, Hou Z, Yang C, Ma C, Wang Z, et al. Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresour Technol 2010;101:8452-6. https://doi.org/10.1016/j.biortech.2010.05.060 | |
|
20. Sayara T, Borràs E, Caminal G, Sarrà M, Sánchez A. Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeterior Biodegradation 2011;65:859-65. https://doi.org/10.1016/j.ibiod.2011.05.006 | |
|
21. Janbandhu A, Fulekar MH. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J Hazard Mater 2011;187:333-40. https://doi.org/10.1016/j.jhazmat.2011.01.034 | |
|
22. Cerqueira VS, Hollenbach EB, Maboni F, Camargo FA, do Carmo R Peralba M, Bento FM. Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation. World J Microbiol Biotechnol 2012;28:1203-22. https://doi.org/10.1007/s11274-011-0923-z | |
|
23. Syakti AD, Yani M, Hidayati NV, Siregar AS, Doumenq P, Made Sudiana IM. The bioremediation potential of hydrocarbonoclastic bacteria isolated from a mangrove contaminated by petroleum hydrocarbons on the cilacap Coast, Indonesia. Bioremediat J 2013;17:11-20. https://doi.org/10.1080/10889868.2012.731446 | |
|
24. Roy AS, Baruah R, Borah M, Singh AK, Deka Boruah HP, Saikia N, et al. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int Biodeterior Biodegradation 2014;94:79-89. https://doi.org/10.1016/j.ibiod.2014.03.024 | |
|
25. Goudarztalejerdi A, Tabatabaei M, Eskandari MH, Mowla D, Iraji A. Evaluation of bioremediation potential and biopolymer production of pseudomonads isolated from petroleum hydrocarbon-contaminated areas. Int J Environ Sci Technol 2015;12:2801-8. https://doi.org/10.1007/s13762-015-0779-0 | |
|
26. Godoy P, Reina R, Calderón A, Wittich RM, García-Romera I, Aranda E. Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. Environ Sci Pollut Res 2016;23:20985-96. https://doi.org/10.1007/s11356-016-7257-1 | |
|
27. Sarkar P, Roy A, Pal S, Mohapatra B, Kazy SK, Maiti MK, et al. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresour Technol 2017;242:15-27. https://doi.org/10.1016/j.biortech.2017.05.010 | |
|
28. Aslam F, Yasmin A, Thomas T. Essential gene clusters identified in Stenotrophomonas MB339 for multiple metal/antibiotic resistance and xenobiotic degradation. Curr Microbiol 2018;75:1484-92. https://doi.org/10.1007/s00284-018-1549-2 | |
|
29. Bhakat K, Chakraborty A, Islam E. Characterization of arsenic oxidation and uranium bioremediation potential of arsenic resistant bacteria isolated from uranium ore. Environ Sci Pollut Res 2019;26:12907-19. https://doi.org/10.1007/s11356-019-04827-6 | |
|
30. Góngora-Echeverría VR, García-Escalante R, Rojas-Herrera R, Giácoman-Vallejos G, Ponce-Caballero C. Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. Ecotoxicol Environ Saf 2020;200:110734. https://doi.org/10.1016/j.ecoenv.2020.110734 | |
|
31. Ali SS, Al-Tohamy R, Koutra E, El-Naggar AH, Kornaros M, Sun J. Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. J Hazard Mater 2021;403:123575. https://doi.org/10.1016/j.jhazmat.2020.123575 | |
|
32. Singh C, Chowdhary P, Singh JS, Chandra R. Pulp and paper mill wastewater and coliform as health hazards: A review. Microbiol Res Int 2016;4:28-39. | |
|
33. Saxena G, Chandra R, Bharagava RN. Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In: de Voogt P, editor. Reviews of Environmental Contamination and Toxicology. Vol. 240. Cham: Springer International Publishing; 2017. p. 31-69. https://doi.org/10.1007/398_2015_5009 | |
|
34. Mandal T. Studies in physico-chemical and biological characteristics of pulp and paper mill effluent and its impact on human beings. J Freshw Biol 1996;8:191-6. | |
|
35. Kamali M, Khodaparast Z. Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf 2015;114:326-42. https://doi.org/10.1016/j.ecoenv.2014.05.005 | |
|
36. Haq I, Raj A. Pulp and paper mill wastewater: Ecotoxicological effects and bioremediation approaches for environmental safety. In: Bharagava RN, Saxena G, editors. Bioremediation of Industrial Waste for Environmental Safety: Biological Agents and Methods for Industrial Waste Management. Vol. 2. Singapore: Springer Singapore; 2020. p. 333-56. https://doi.org/10.1007/978-981-13-3426-9_14 | |
|
37. Karn SK, Chakrabarty SK, Reddy MS. Pentachlorophenol degradation by Pseudomonas stutzeri CL7 in the secondary sludge of pulp and paper mill. J Environ Sci 2010;22:1608-12. https://doi.org/10.1016/S1001-0742(09)60296-5 | |
|
38. Singh YP, Dhall P, Mathur RM, Jain RK, vadde Thakur V, Kumar V, et al. Bioremediation of pulp and paper mill effluent by tannic acid degrading Enterobacter sp. Water Air Soil Pollut 2011;218:693-701. https://doi.org/10.1007/s11270-010-0678-4 | |
|
39. Garg SK, Tripathi M, Kumar S, Singh SK, Singh SK. Microbial dechlorination of chloroorganics and simultaneous decolorization of pulp-paper mill effluent by Pseudomonas putida MTCC 10510 augmentation. Environ Monit Assess 2012;184:5533-44. https://doi.org/10.1007/s10661-011-2359-1 | |
|
40. Chandra R, Singh R. Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 2012;61:49-58. https://doi.org/10.1016/j.bej.2011.12.004 | |
|
41. Kuddus M, Joseph B, Wasudev Ramteke P. Production of laccase from newly isolated Pseudomonas putida and its application in bioremediation of synthetic dyes and industrial effluents. Biocat Agric Biotechnol 2013;2:333-8. https://doi.org/10.1016/j.bcab.2013.06.002 | |
|
42. Raj A, Kumar S, Haq I, Singh SK. Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 2014;71:355-62. https://doi.org/10.1016/j.ecoleng.2014.07.002 | |
|
43. Hooda R, Bhardwaj NK, Singh P. Screening and identification of ligninolytic bacteria for the treatment of pulp and paper mill effluent. Water Air Soil Pollut 2015;226:305. https://doi.org/10.1007/s11270-015-2535-y | |
|
44. Haq I, Kumar S, Kumari V, Singh SK, Raj A. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent. J Hazard Mater 2016;305:190-9. https://doi.org/10.1016/j.jhazmat.2015.11.046 | |
|
45. Abhishek A, Dwivedi A, Tandan N, Kumar U. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites. Appl Water Sci 2017;7:757-67. https://doi.org/10.1007/s13201-015-0288-9 | |
|
46. Hooda R, Bhardwaj NK, Singh P. Brevibacillus parabrevis MTCC 12105: A potential bacterium for pulp and paper effluent degradation. World J Microbiol Biotechnol 2018;34:31. https://doi.org/10.1007/s11274-018-2414-y | |
|
47. Majumdar S, Priyadarshinee R, Kumar A, Mandal T, Mandal DD. Exploring Planococcus sp. TRC1, a bacterial isolate, for carotenoid pigment production and detoxification of paper mill effluent in immobilized fluidized bed reactor. J Clean Prod 2019;211:1389-402. https://doi.org/10.1016/j.jclepro.2018.11.157 | |
|
48. Sonkar M, Kumar M, Dutt D, Kumar V. Treatment of pulp and paper mill effluent by a novel bacterium Bacillus sp. IITRDVM-5 through a sequential batch process. Biocatal Agric Biotechnol 2019;20:101232. https://doi.org/10.1016/j.bcab.2019.101232 | |
|
49. Sonkar M, Kumar V, Dutt D. Use of paper mill sludge and sewage sludge powder as nitrogen and phosphorus sources with bacterial consortium for the treatment of paper industry wastewater. Biocatal Agric Biotechnol 2020;30:101843. https://doi.org/10.1016/j.bcab.2020.101843 | |
|
50. An X, Zhong B, Chen G, An W, Xia X, Li H, et al. Evaluation of bioremediation and detoxification potentiality for papermaking black liquor by a new isolated thermophilic and alkali-tolerant Serratia sp. AXJ-M. J Hazard Mater 2021;406:124285. https://doi.org/10.1016/j.jhazmat.2020.124285 | |
|
51. Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G. Microbes as potential tool for remediation of heavy metals: A review. J Microb Biochem Technol 2016;8:364-72. https://doi.org/10.4172/1948-5948.1000310 | |
|
52. Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P, et al. Fungal phytoremediation of heavy metal-contaminated resources: Current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A, editors. Recent Advancement in white Biotechnology Through Fungi: Perspective for Sustainable Environments. Vol. 3. Cham: Springer; 2019. p. 437-61. https://doi.org/10.1007/978-3-030-25506-0_18 | |
|
53. Yadav AN, Rastegari AA, Yadav N. Microbiomes of Extreme Environments: Biotechnological Applications in Agriculture, Environment and Industry. Vol. 2. Boca Raton, USA: CRC Press, Taylor & Francis Group; 2020. https://doi.org/10.1201/9780429328633 | |
|
54. Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N. Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 2011;51:482-7. https://doi.org/10.1007/s12088-011-0110-9 | |
|
55. Choudhary S, Sar P. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazard Mater 2011;186:336-43. https://doi.org/10.1016/j.jhazmat.2010.11.004 | |
|
56. Mohamed RM, Abo-Amer AE. Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. J Basic Microbiol 2012;52:53-65. https://doi.org/10.1002/jobm.201100133 | |
|
57. Bestawy EE, Helmy S, Hussien H, Fahmy M, Amer R. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 2013;3:181-92. https://doi.org/10.1007/s13201-012-0071-0 | |
|
58. Bhakta JN, Munekage Y, Ohnishi K, Jana BB, Balcazar JL. Isolation and characterization of cadmium-and arsenic-absorbing bacteria for bioremediation. Water Air Soil Pollut 2014;225:2151. https://doi.org/10.1007/s11270-014-2151-2 | |
|
59. Kang CH, Oh SJ, Shin Y, Han SH, Nam IH, So JS. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecol Eng 2015;74:402-7. https://doi.org/10.1016/j.ecoleng.2014.10.009 | |
|
60. Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang YC. Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 2016;6:242. https://doi.org/10.1007/s13205-016-0560-1 | |
|
61. Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AM. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. Egypt J Aquat Res 2017;43:65-74. https://doi.org/10.1016/j.ejar.2016.11.002 | |
|
62. Raman NM, Asokan S, Sundari NS, Ramasamy S. Bioremediation of chromium(VI) by Stenotrophomonas maltophilia isolated from tannery effluent. Int J Environ Sci Technol 2018;15:207-16. https://doi.org/10.1007/s13762-017-1378-z | |
|
63. Cai X, Zheng X, Zhang D, Iqbal W, Liu C, Yang B, et al. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotoxicol Environ Saf 2019;181:472-80. https://doi.org/10.1016/j.ecoenv.2019.06.036 | |
|
64. Jalilvand N, Akhgar A, Alikhani HA, Rahmani HA, Rejali F. Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from iranian mine calcareous soils. J Soil Sci Plant Nutr 2020;20:206-19. https://doi.org/10.1007/s42729-019-00121-z | |
|
65. Aibeche C, Selami N, Zitouni-Haouar FE, Oeunzar K, Addou A, Kaid- Harche M, et al. Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (Northwest of Algeria). Int Microbiol 2022;25:61-73. https://doi.org/10.1007/s10123-021-00191-z | |
|
66. Gursahani Y, Gupta S. Decolourization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. J Pet Environ Biotechnol 2011;2:1-4. | |
|
67. Sridevi V, Lakshmi MC, Swamy A, Rao MN. Implementation of response surface methodology for phenol degradation using Pseudomonas putida (NCIM 2102). J Bioremediat Biodegrad 2011;2:121. https://doi.org/10.4172/2155-6199.1000121 | |
|
68. Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhyay D, et al. Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 2009;8:6016-27. https://doi.org/10.5897/AJB09.740 | |
|
69. Bharadwaj A. Bioremediation of xenobiotics: An eco-friendly cleanup approach. In: Virinder SP, Malhotra P, Mathur D, editors. Green Chemistry in Environmental Sustainability and Chemical Education. Berlin, Germany: Springer; 2018. p. 1-13. https://doi.org/10.1007/978-981-10-8390-7_1 | |
|
70. Yadav AN. Microbial biotechnology for bio-prospecting of microbial bioactive compounds and secondary metabolites. J Appl Biol Biotechnol 2021;9:1-6. | |
|
71. Amoozegar MA, Hajighasemi M, Hamedi J, Asad S, Ventosa A. Azo dye decolorization by halophilic and halotolerant microorganisms. Annal Microbiol 2011;61:217-30. https://doi.org/10.1007/s13213-010-0144-y | |
|
72. Yadav N, Yadav A. Biodegradation of biphenyl compounds by soil microbiomes. Biodivers Int J 2019;3:37-40. https://doi.org/10.15406/bij.2019.03.00125 | |
|
73. Verma P, Verma P, Sagar R. Variations in N mineralization and herbaceous species diversity due to sites, seasons, and N treatments in a seasonally dry tropical environment of India. Forest Ecol Manag 2013;297:15-26. https://doi.org/10.1016/j.foreco.2013.02.006 | |
|
74. Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS. Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol 2020;31:101883. https://doi.org/10.1016/j.bcab.2020.101883 | |
|
75. Kumar M, Philip L. Enrichment and isolation of a mixed bacterial culture for complete mineralization of endosulfan. J Environ Sci Health B 2006;41:81-96. https://doi.org/10.1080/03601230500234935 | |
|
76. Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X. Isolation and characterization of a chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 2005;251:67-73. https://doi.org/10.1016/j.femsle.2005.07.031 | |
|
77. Zhu J, Zhao Y, Qiu J. Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 2010;4:2410-3. | |
|
78. Kulshrestha G, Kumari A. Fungal degradation of chlorpyrifos by Acremonium sp. Strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 2011;47:219-25. https://doi.org/10.1007/s00374-010-0505-5 | |
|
79. Wu S, Peng Y, Huang Z, Huang Z, Xu L, Ivan G, et al. Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos. J Basic Microbiol 2015;55:389-97. https://doi.org/10.1002/jobm.201300501 | |
|
80. Latifi AM, Khodi S, Mirzaei M, Miresmaeili M, Babavalian H. Isolation and characterization of five chlorpyrifos degrading bacteria. Afr J Biotechnol 2012;11:3140-6. https://doi.org/10.5897/AJB11.2814 | |
|
81. Rani MS, Devi KV, Madhuri RJ, Aruna S, Jyothi K, Narasimha G, et al. Isolation and characterization of a chlorpyrifos-degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2008;2:26-31. | |
|
82. Silambarasan S, Abraham J. Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLoS One 2013;8:e77170. https://doi.org/10.1371/journal.pone.0077170 | |
|
83. Wang D, Xue Q, Zhou X, Tang X, Hua R. Isolation and characterization of a highly efficient chlorpyrifos degrading strain of Cupriavidus taiwanensis from sludge. J Basic Microbiol 2015;55:229-35. https://doi.org/10.1002/jobm.201400571 | |
|
84. Jaiswal DK, Verma JP, Yadav J. Microbe induced degradation of pesticides in agricultural soils. In: Singh SN, editor. Microbe-induced Degradation of Pesticides. Germany: Springer; 2017. p. 167-89. https://doi.org/10.1007/978-3-319-45156-5_8 | |
|
85. Gao B, Liu WB, Jia LY, Xu L, Xie J. Isolation and characterization of an Alcaligenes sp. strain DG-5 capable of degrading DDTs under aerobic conditions. J Environ Sci Health Part B 2011;46:257-63. https://doi.org/10.1080/03601234.2011.540534 | |
|
86. Pan X, Xu T, Xu H, Fang H, Yu Y. Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. Sci Total Environ 2017;592:593-9. https://doi.org/10.1016/j.scitotenv.2017.03.052 | |
|
87. Fang H, Dong B, Yan H, Tang F, Yu Y. Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 2010;184:281-9. https://doi.org/10.1016/j.jhazmat.2010.08.034 | |
|
88. Pan X, Lin D, Zheng Y, Zhang Q, Yin Y, Cai L, et al. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis. Sci Rep 2016;6:1-10. https://doi.org/10.1038/srep21332 | |
|
89. Sutherland T, Horne I, Harcourt R, Russell R, Oakeshott J. Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J Appl Microbiol 2002;93:380-9. https://doi.org/10.1046/j.1365-2672.2002.01728.x | |
|
90. Kumar A, Bhoot N, Soni I, John P. Isolation and characterization of a Bacillus subtilis strain that degrades endosulfan and endosulfan sulfate. 3 Biotech 2014;4:467-75. https://doi.org/10.1007/s13205-013-0176-7 | |
|
91. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JA. Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microbiol 2001;67:2270-5. https://doi.org/10.1128/AEM.67.5.2270-2275.2001 | |
|
92. Harada N, Takagi K, Harazono A, Fujii K, Iwasaki A. Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. Soil Biol Biochem 2006;38:173-9. https://doi.org/10.1016/j.soilbio.2005.04.015 | |
|
93. Chirnside AE, Ritter WF, Radosevich M. Isolation of a selected microbial consortium from a pesticide-contaminated mix-load site soil capable of degrading the herbicides atrazine and alachlor. Soil Biol Biochem 2007;39:3056-65. https://doi.org/10.1016/j.soilbio.2007.06.018 | |
|
94. Navrátilová J, Tvrzová L, Durnová E, Spröer C, Sedlá?ek I, Ne?a J, et al. Characterization of Rhodococcus wratislaviensis strain J3 that degrades 4-nitrocatechol and other nitroaromatic compounds. Antonie Van Leeuwenhoek 2005;87:149-53. https://doi.org/10.1007/s10482-004-2480-z | |
|
95. Qiu X, Wu P, Zhang H, Li M, Yan Z. Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. Biores Technol 2009;100:5243-8. https://doi.org/10.1016/j.biortech.2009.05.056 | |
|
96. Xie B, Yang J, Yang Q. Isolation and characterization of an efficient nitro-reducing bacterium, Streptomyces mirabils DUT001, from soil. World J Microbiol Biotechnol 2010;26:855-62. https://doi.org/10.1007/s11274-009-0243-8 | |
|
97. Xu W, Zhao Q, Li Z, Lu X, Han S, Ye Z. Biodegradation of dinitrotoluene sulfonates and other nitro-aromatic compounds by Pseudomonas sp. X5 isolated from TNT red water contaminated soil. J Clean Prod 2019;214:782-90. https://doi.org/10.1016/j.jclepro.2019.01.025 | |
|
98. Wang H, Zhao HP, Zhu L. Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants. J Hazard Mater 2020;384:121495. https://doi.org/10.1016/j.jhazmat.2019.121495 | |
|
99. Leahy JG, Tracy KD, Eley MH. Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Ecol 2003;43:271-6. https://doi.org/10.1111/j.1574-6941.2003.tb01067.x | |
|
100. Rayu S, Nielsen UN, Nazaries L, Singh BK. Isolation and molecular characterization of novel chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol-degrading bacteria from sugarcane farm soils. Front Microbiol 2017;8:518. https://doi.org/10.3389/fmicb.2017.00518 | |
|
101. El-Bestawy E, Mansy A, Attia A, Zahran H. Biodegradation of persistent chlorinated hydrocarbons using selected freshwater bacteria. J Bioremediat Biodegred 2014;5:1. | |
|
102. Li J, Gu JD. Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from Wetland sediment. Sci Total Environ 2007;380:181-7. https://doi.org/10.1016/j.scitotenv.2006.12.033 | |
|
103. Baek JH, Gu MB, Sang BI, Kwack SJ, Kim KB, Lee BM. Risk reduction of adverse effects due to di-(2-ethylhexyl) phthalate (DEHP) by utilizing microbial degradation. J Toxicol Environ Health Part A 2009;72:1388-94. https://doi.org/10.1080/15287390903212733 | |
|
104. Yuan SY, Huang IC, Chang BV. Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment. J Hazard Mater 2010;184:826-31. https://doi.org/10.1016/j.jhazmat.2010.08.116 | |
|
105. Jun W, Zhang MY, Ting C, Ye Z, Ying T, Yong-Ming L, et al. Isolation and identification of a di-(2-ethylhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil. Pedosphere 2015;25:202-11. https://doi.org/10.1016/S1002-0160(15)60005-4 | |
|
106. Wang Q, Jiang L, Fang C, Chen L. Effects of di-n-butyl phthalate and di-2-ethylhexyl phthalate on pollutant removal and microbial community during wastewater treatment. Ecotoxicol Environ Saf 2020;198:110665. https://doi.org/10.1016/j.ecoenv.2020.110665 | |
|
107. Wei R, Ni J, Li X, Chen W, Yang Y. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly | |
|
Kour, et al.: Microbe-mediated bioremediation 2022;10(Suppl 2):6-24 20 | |
|
spiked and long-term field-contaminated soils. Environ Sci Pollut Res 2017;24:7994-8003. https://doi.org/10.1007/s11356-017-8459-x | |
|
108. Wattiau P. Microbial aspects in bioremediation of soils polluted by polyaromatic hydrocarbons. In: Agathos SN, Reineke W, editors. Biotechnology for the Environment: Strategy and Fundamentals. Germany: Springer; 2002. p. 69-89. https://doi.org/10.1007/978-94-010-0357-5_5 | |
|
109. Quinn L, Pieters R, Nieuwoudt C, Borgen AR, Kylin H, Bouwman H. Distribution profiles of selected organic pollutants in soils and sediments of industrial, residential and agricultural areas of South Africa. J Environ Monit 2009;11:1647-57. https://doi.org/10.1039/b905585a | |
|
110. Bossert I, Bartha R. The fate of petroleum in soil ecosystems. In: Atlas RM, editor. Petroleum Microbiology. New York: Macmillan Co.; 2003. p. 434-76. | |
|
111. Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J Hazard Mater 2009;169:1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137 | |
|
112. Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod JL. Biodegradation of anthracene by soil fungi. Chemosphere 1998;37:523-30. https://doi.org/10.1016/S0045-6535(98)00067-8 | |
|
113. Annweiler E, Richnow H, Antranikian G, Hebenbrock S, Garms C, Franke S, et al. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 2000;66:518-23. https://doi.org/10.1128/AEM.66.2.518-523.2000 | |
|
114. Chauhan A, Oakeshott JG, Jain RK. Bacterial metabolism of polycyclic aromatic hydrocarbons: Strategies for bioremediation. Indian J Microbiol 2008;48:95-113. https://doi.org/10.1007/s12088-008-0010-9 | |
|
115. Chaudhary P, Sahay H, Sharma R, Pandey AK, Singh SB, Saxena A, et al. Identification and analysis of polyaromatic hydrocarbons (PAHs)-biodegrading bacterial strains from refinery soil of India. Environ Monit Assess 2015;187:1-9. https://doi.org/10.1007/s10661-015-4617-0 | |
|
116. Mangwani N, Kumari S, Surajit D. Marine bacterial biofilms in bioremediation of polycyclic aromatic hydrocarbons (PAHs) under terrestrial condition in a soil microcosm. Pedosphere 2017;27:548-58. https://doi.org/10.1016/S1002-0160(17)60350-3 | |
|
117. Sangwan S, Dukare A. Microbe-mediated bioremediation: An eco-friendly sustainable approach for environmental clean-up. In: Adhya TK, Lal B, Mohapatra B, Paul D, Das S, editors. Advances in Soil Microbiology: Recent Trends and Future Prospects. Germany: Springer; 2018. p. 145-63. https://doi.org/10.1007/978-981-10-6178-3_8 | |
|
118. Girma G. Microbial bioremediation of some heavy metals in soils: An updated review. Egypt Acad J Biol Sci 2015;7:29-45. https://doi.org/10.21608/eajbsg.2015.16483 | |
|
119. Evan G, Furlong J. Environmental Biotechnology-Theory and Application. India: Wiley India Pvt Ltd.; 2016. | |
|
120. Vidali M. Bioremediation. An overview. Pure Appl Chem 2001;73:1163-72. https://doi.org/10.1351/pac200173071163 | |
|
121. Jørgensen K. In situ Bioremediation. Comprehensive Biotechnology. 2nd ed., Vol. 6. Netherlands: Elsevier; 2011. p. 59-67. https://doi.org/10.1016/B978-0-08-088504-9.00372-X | |
|
122. Chiu TC, Yen JH, Liu TL, Wang YS. Anaerobic degradation of the organochlorine pesticides DDT and heptachlor in river sediment of Taiwan. Bull Environ Contam Toxicol 2004;72:821-8. https://doi.org/10.1007/s00128-004-0318-z | |
|
123. Cartwright CD, Thompson IP, Burns RG. Degradation and impact of phthalate plasticizers on soil microbial communities. Environ Toxicol Chem An Int J 2000;19:1253-61. https://doi.org/10.1002/etc.5620190506 | |
|
124. Coates JD, Chakraborty R, Lack JG, O'Connor SM, Cole KA, Bender KS, et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 2001;411:1039-43. https://doi.org/10.1038/35082545 | |
|
125. Wang L, Barrington S, Kim JW. Biodegradation of pentyl amine and aniline from petrochemical wastewater. J Environ Manage 2007;83:191-7. https://doi.org/10.1016/j.jenvman.2006.02.009 | |
|
126. Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 1999;65:3056-63. https://doi.org/10.1128/AEM.65.7.3056-3063.1999 | |
|
127. Ruppe S, Neumann A, Braekevelt E, Tomy GT, Stern GA, Maruya KA, et al. Anaerobic transformation of compounds of technical toxaphene. 2. Fate of compounds lacking geminal chlorine atoms. Environ Toxicol Chem An Int J 2004;23:591-8. https://doi.org/10.1897/03-221 | |
|
128. Wang CC, Lee CM, Chen LJ. Removal of nitriles from synthetic wastewater by acrylonitrile utilizing bacteria. J Environ Sci Health Part A 2004;39:1767-79. https://doi.org/10.1081/ESE-120037876 | |
|
129. da Silva S, Gonçalves I, Gomes de Almeida FC, da Rocha e Silva NM, Casazza AA, Converti A, et al. Soil bioremediation: Overview of technologies and trends. Energies 2020;13:4664. https://doi.org/10.3390/en13184664 | |
|
130. Kao C, Chen C, Chen S, Chien H, Chen Y. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere 2008;70:1492-9. https://doi.org/10.1016/j.chemosphere.2007.08.029 | |
|
131. Godheja J, Modi DR, Kolla V, Pereira AM, Bajpai R, Mishra M, et al. Environmental remediation: Microbial and nonmicrobial prospects. In: Singh DP, Gupta VK, Prabha R, editors. Microbial Interventions in Agriculture and Environment: Rhizosphere, Microbiome and Agro-ecology. Vol. 2. Singapore: Springer; 2019. p. 379-409. https://doi.org/10.1007/978-981-13-8383-0_13 | |
|
132. Sharma S. Bioremediation: Features, strategies and applications. Asian J Pharm Life Sci 2012;2231:4423. | |
|
133. Brown LD, Ulrich AC. Bioremediation of oil spills on land. In: Handbook of Oil Spill Science and Technology. Vol 724. United States: Wiley; 2014. p. 395-406. https://doi.org/10.1002/9781118989982.ch15 | |
|
134. Höhener P, Ponsin V. In situ vadose zone bioremediation. Curr Opin Biotechnol 2014;27:1-7. https://doi.org/10.1016/j.copbio.2013.08.018 | |
|
135. Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ Pollut 2009;157:763-71. https://doi.org/10.1016/j.envpol.2008.11.024 | |
|
136. Zeneli A, Kastanaki E, Simantiraki F, Gidarakos E. Monitoring the biodegradation of TPH and PAHs in refinery solid waste by biostimulation and bioaugmentation. J Environ Chem Eng 2019;7:103054. https://doi.org/10.1016/j.jece.2019.103054 | |
|
137. Bodor A, Petrovszki P, Erdeiné Kis Á, Vincze GE, Laczi K, Bounedjoum N, et al. Intensification of ex situ bioremediation of soils polluted with used lubricant oils: A comparison of biostimulation and bioaugmentation with a special focus on the type and size of the inoculum. Int J Env Res Public Health 2020;17:4106. https://doi.org/10.3390/ijerph17114106 | |
|
138. Sharma I. Bioremediation techniques for polluted environment: Concept, advantages, limitations, and prospects. In: Sharma I, editor. Trace Metals in the Environment-new Approaches and Recent Advances. India: IntechOpen; 2020. https://doi.org/10.5772/intechopen.90453 | |
|
139. Pavel LV, Gavrilescu M. Overview of ex situ decontamination techniques for soil cleanup. Environ Eng Manag J 2008;7:815-34. https://doi.org/10.30638/eemj.2008.109 | |
|
140. Wolicka D, Suszek A, Borkowski A, Bielecka A. Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products. Bioresour Technol 2009;100:3221-27. https://doi.org/10.1016/j.biortech.2009.02.020 | |
|
141. Atlas RM, Philp J. Bioremediation. Applied Microbial Solutions for Real-world Environmental Cleanup. Netherlands: ASM Press; 2005. https://doi.org/10.1128/9781555817596 | |
|
142. Zengler K. Accessing Uncultivated Microorganisms: From the Environment to Organisms and Genomes and Back. Netherlands: ASM Press; 2008. https://doi.org/10.1128/9781555815509 | |
|
143. Adoki A, Orugbani T. Removal of crude petroleum hydrocarbons by heterotrophic bacteria in soils amended with nitrogenous fertilizer plant effluents. Afr J Biotechnol 2007;6:1529-35. https://doi.org/10.5897/AJB2007.000-2267 | |
|
144. Chikere C, Okpokwasili G, Surridge A, Cloete T. Molecular approach to aerobic biodegradation of crude oil. In: Biotechnologies for Improved Production of Oil and Gas in the Gulf of Guinea-bipog3, International Conference, Workshop and Exhibition. United States: ISAAA Inc.; 2009. p. 1-3. | |
|
145. Singh A, Kuhad RC, Shareefdeen Z, Ward OP. Methods for monitoring and assessment of bioremediation processes. In: Singh A, Ward OP, editor. Biodegradation and Bioremediation. Berlin, Germany: Springer; 2004. p. 279-304. https://doi.org/10.1007/978-3-662-06066-7_12 | |
|
146. Alvim GM, Pontes PP. Aeration and sawdust application effects as structural material in the bioremediation of clayey acid soils contaminated with diesel oil. Int Soil Water Conserv Res 2018;6:253-60. https://doi.org/10.1016/j.iswcr.2018.04.002 | |
|
147. Mariano AP, de Arruda Geraldes Kataoka AP, de Franceschi de Angelis D, Bonotto DM. Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station. Braz J Microbiol 2007;38:346-53. https://doi.org/10.1590/S1517-83822007000200030 | |
|
148. Chikere CB, Okpokwasili GC, Chikere BO. Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 2011;1:117-38. https://doi.org/10.1007/s13205-011-0014-8 | |
|
149. Bosco F, Casale A, Chiampo F, Godio A. Removal of diesel oil in soil microcosms and implication for geophysical monitoring. Water 2019;11:1661. https://doi.org/10.3390/w11081661 | |
|
150. Chang W, Dyen M, Spagnuolo L, Simon P, Whyte L, Ghoshal S. Biodegradation of semi-and non-volatile petroleum hydrocarbons in aged, contaminated soils from a sub-Arctic site: Laboratory pilot-scale experiments at site temperatures. Chemosphere 2010;80:319-26. https://doi.org/10.1016/j.chemosphere.2010.03.055 | |
|
151. Eriksson M, Swartling A, Dalhammar G, Fäldt J, Borg-Karlson AK. Biological degradation of diesel fuel in water and soil monitored with solid-phase micro-extraction and GC-MS. Appl Microbiol Biotechnol 1998;50:129-34. https://doi.org/10.1007/s002530051267 | |
|
152. Balba M, Al-Awadhi N, Al-Daher R. Bioremediation of oil-contaminated soil: Microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 1998;32:155-64. https://doi.org/10.1016/S0167-7012(98)00020-7 | |
|
153. Bogardt AH, Hemmingsen BB. Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation of petroleum-contaminated sites. Appl Environ Microbiol 1992;58:2579-82. https://doi.org/10.1128/aem.58.8.2579-2582.1992 | |
|
154. Fathi Z, Ebrahimipour G, Najmi Z. Isolation and identification of phenanthrene-degrading bacteria and increasing the biodegrading ability by synergistic relationship. R Mol Med 2017;5:22-7. https://doi.org/10.29252/rmm.5.2.22 | |
|
155. Brown EJ, Braddock JF. Sheen screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Appl Environ Microbiol 1990;56:3895-6. https://doi.org/10.1128/aem.56.12.3895-3896.1990 | |
|
156. Naseby D, Lynch J. Functional impact of genetically modified micro-organisms on the soil ecosystem. In: Zelikoff JT, Schepers J, Lynch JM, editors. Ecotoxicology: Responses, Biomarkers and Risk Assessment. England: SOS Publications; 1997. p. 419-42. | |
|
157. Olsson PA, Larsson L, Bago B, Wallander H, Van Aarle IM. Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytol 2003;159:7-10. https://doi.org/10.1046/j.1469-8137.2003.00810.x | |
|
158. Quideau SA, McIntosh AC, Norris CE, Lloret E, Swallow MJ, Hannam K. Extraction and analysis of microbial phospholipid fatty acids in soils. J Vis Exp 2016;114:54360. https://doi.org/10.3791/54360 | |
|
159. Margesin R, Zimmerbauer A, Schinner F. Monitoring of bioremediation by soil biological activities. Chemosphere 2000;40:339-46. https://doi.org/10.1016/S0045-6535(99)00218-0 | |
|
160. Lee SH, Kim MS, Kim JG, Kim SO. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability 2020;12:8209. https://doi.org/10.3390/su12198209 | |
|
161. Van Elsas J, Duarte G, Rosado A, Smalla K. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Methods 1998;32:133-54. https://doi.org/10.1016/S0167-7012(98)00025-6 | |
|
162. Al-Dhabaan FA, Bakhali AH. Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community. Saudi J Biol Sci 2017;24:901-6. https://doi.org/10.1016/j.sjbs.2016.01.043 | |
|
163. Van Emon JM, Gerlach CL. Environmental monitoring and human exposure assessment using immunochemical techniques. J Microbiol Methods 1998;32:121-31. https://doi.org/10.1016/S0167-7012(98)00019-0 | |
|
164. Brigmon R, Franck M, Bray J, Scott D, Lanclos K, Fliermans C. Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating organic contaminant degrading bacteria. J Microbiol Method 1998;32:1-10. https://doi.org/10.1016/S0167-7012(97)00092-4 | |
|
165. Kent AD, Triplett EW. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 2002;56:211-36. https://doi.org/10.1146/annurev.micro.56.012302.161120 | |
|
166. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, et al. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J Microbiol Method 2007;69:470-9. https://doi.org/10.1016/j.mimet.2007.02.014 | |
|
167. Simon C, Daniel R. Metagenomic analysis: Past and present. Appl Environ Microbiol 2011;77:1153-61. https://doi.org/10.1128/AEM.02345-10 | |
|
168. Rajendhran J, Gunasekaran P. Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 2011;166:99-110. https://doi.org/10.1016/j.micres.2010.02.003 | |
|
169. Gentry T, Wickham G, Schadt C, He Z, Zhou J. Microarray applications in microbial ecology research. Microbial Ecol 2006;52:159-75. https://doi.org/10.1007/s00248-006-9072-6 | |
|
170. Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: Recommended definitions and classification. Biosens Bioelectron 2001;16:121-31. https://doi.org/10.1016/S0956-5663(01)00115-4 | |
|
171. Willardson BM, Wilkins JF, Rand TA, Schupp JM, Hill KK, Keim P, et al. Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 1998;64:1006-12. https://doi.org/10.1128/AEM.64.3.1006-1012.1998 | |
|
172. Werlen C, Jaspers MC, van der Meer JR. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 2004;70:43-51. https://doi.org/10.1128/AEM.70.1.43-51.2004 | |
|
173. Tecon R, Wells M, Van Der Meer JR. A new green fluorescent protein-based bacterial biosensor for analysing phenanthrene fluxes. Environ Microbiol 2006;8:697-708. https://doi.org/10.1111/j.1462-2920.2005.00948.x | |
|
174. Hay AG, Rice JF, Applegate BM, Bright NG, Sayler GS. A bioluminescent whole-cell reporter for detection of 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol in soil. Appl Environ Microbiol 2000;66:4589-94. https://doi.org/10.1128/AEM.66.10.4589-4594.2000 | |
|
175. Ravikumar S, Baylon MG, Park SJ, Choi JI. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact 2017;16:1-10. https://doi.org/10.1186/s12934-017-0675-z | |
|
176. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ. Rhizoremediation: A beneficial plant-microbe interaction. Mol Plant Microbe Interact 2004;17:6-15. https://doi.org/10.1094/MPMI.2004.17.1.6 | |
|
177. Liu S, Suflita JM. Ecology and evolution of microbial populations for bioremediation. Trends Biotechnol 1993;11:344-52. https://doi.org/10.1016/0167-7799(93)90157-5 | |
|
178. Malhautier L, Khammar N, Bayle S, Fanlo JL. Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 2005;68:16-22. https://doi.org/10.1007/s00253-005-1960-z | |
|
179. Yadav AN, Rastegari AA, Yadav N, Gaur R. Biofuels Production-sustainability and Advances in Microbial Bioresources. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-53933-7 | |
|
180. Litchfield C. Thirty years and counting: Bioremediation in its prime? BioScience 2005;55:273-9. https://doi.org/10.1641/0006-3568(2005)055[0273:TYACBI]2.0.CO;2 | |
|
181. Apted J, Mead I, Sharif S. Delivering London 2012: Contaminated soil treatment at the olympic park. Proc Inst Civil Eng Geotech Eng 2013;166:8-17. https://doi.org/10.1680/geng.11.00109 | |
|
182. Ray P, Lakshmanan V, Labbé JL, Craven KD. Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Front Microbiol 2020;11:622926. https://doi.org/10.3389/fmicb.2020.622926 | |
|
183. Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front Microbiol 2016;7:01369. https://doi.org/10.3389/fmicb.2016.01369 | |
|
184. Lladó S, Covino S, Solanas AM, Viñas M, Petruccioli M, D'Annibale A. Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real | |
|
Kour, et al.: Microbe-mediated bioremediation 2022;10(Suppl 2):6-24 22 | |
|
industrial polluted soil. J Hazard Mater 2013;248-249:407-14. https://doi.org/10.1016/j.jhazmat.2013.01.020 | |
|
185. Boufadel MC, Sharifi Y, Van Aken B, Wrenn BA, Lee K. Nutrient and oxygen concentrations within the sediments of an alaskan beach polluted with the exxon valdez oil spill. Environ Sci Technol 2010;44:7418-24. https://doi.org/10.1021/es102046n | |
|
186. Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA. Oil spill bioremediation: Experiences, lessons and results from the exxon valdez oil spill in alaska. Biodegradation 1992;3:315-35. https://doi.org/10.1007/BF00129091 | |
|
187. Sigler M. The effects of plastic pollution on aquatic wildlife: Current situations and future solutions. Water Air Soil Pollut 2014;225:2184. https://doi.org/10.1007/s11270-014-2184-6 | |
|
188. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. Int J Mol Sci 2009;10:3722-42. https://doi.org/10.3390/ijms10093722 | |
|
189. Ghatge S, Yang Y, Ahn JH, Hur HG. Biodegradation of polyethylene: A brief review. Appl Biol Chem 2020;63:27. https://doi.org/10.1186/s13765-020-00511-3 | |
|
190. Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes. Front Microbiol 2020;11:442. https://doi.org/10.3389/fmicb.2020.00442 | |
|
191. Butbunchu N, Pathom-Aree W. Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Front Microbiol 2019;10:02834. https://doi.org/10.3389/fmicb.2019.02834 | |
|
192. Cassone BJ, Grove HC, Elebute O, Villanueva SM, LeMoine CM. Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc R Soc B Biol Sci 2020;287:20200112. https://doi.org/10.1098/rspb.2020.0112 | |
|
193. Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AM, et al. Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc Lond B Biol Sci 2013;368:20130116. https://doi.org/10.1098/rstb.2013.0116 | |
|
194. Ikemoto Y, Teraguchi M, Kobayashi Y. Plasma levels of nitrate in congenital heart disease: Comparison with Healthy Children. Pediatr Cardiol 2002;23:132-6. https://doi.org/10.1007/s00246-001-0036-9 | |
|
195. Zhao B, Sun Z, Liu Y. An overview of in-situ remediation for nitrate in groundwater. Sci Total Environ 2022;804:149981. https://doi.org/10.1016/j.scitotenv.2021.149981 | |
|
196. Barh A, Singh S, Chandra D, Bhatt P, Pandey RK, Chandra S, et al. Enhanced bioremediation techniques for agricultural soils. Int J Curr Res Acad Rev 2015;3215:166-73. | |
|
197. Dong D, Sun H, Qi Z, Liu X. Improving microbial bioremediation efficiency of intensive aquacultural wastewater based on bacterial pollutant metabolism kinetics analysis. Chemosphere 2021;265:129151. https://doi.org/10.1016/j.chemosphere.2020.129151 | |
|
198. Das S, Raj R, Mangwani N, Dash HR, Chakraborty J. 2-Heavy metals and hydrocarbons: Adverse effects and mechanism of toxicity. In: Das S, editor. Microbial Biodegradation and Bioremediation. Oxford: Elsevier; 2014. p. 23-54. https://doi.org/10.1016/B978-0-12-800021-2.00002-9 | |
|
199. Hou D, O'Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DC, et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 2020;1:366-81. https://doi.org/10.1038/s43017-020-0061-y | |
|
200. Kapahi M, Sachdeva S. Bioremediation options for heavy metal pollution. J Health Pollut 2019;9:191203. https://doi.org/10.5696/2156-9614-9.24.191203 | |
|
201. Tarekegn MM, Salilih FZ, Ishetu AI. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 2020;6:1783174. https://doi.org/10.1080/23311932.2020.1783174 | |
|
202. Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 2007;146:270-7. https://doi.org/10.1016/j.jhazmat.2006.12.017 | |
|
203. Kumar N, Pathera A, Saini P, Kumar M. Harmful effects of pesticides on human health. Ann Agric Bio Res 2012;17:165-8. | |
|
204. Rastegari AA, Yadav AN, Yadav N. New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Amsterdam: Elsevier; 2020 | |
|
205. Jayaraj R, Megha P, Sreedev P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 2016;9:90-100. https://doi.org/10.1515/intox-2016-0012 | |
|
206. Chung SY, Maeda M, Song E, Horikoshij K, Kudo T. A gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain TA421, isolated from a termite ecosystem. Biosci Biotechnol Biochem 1994;58:2111-3. https://doi.org/10.1271/bbb.58.2111 | |
|
207. Damaj M, Ahmad D. Biodegradation of polychlorinated biphenyls by Rhizobia: A Novel Finding. Biochem Biophys Res Commun 1996;218:908-15. https://doi.org/10.1006/bbrc.1996.0161 | |
|
208. Chaudhary T, Shukla P. Bioinoculants for bioremediation applications and disease resistance: Innovative Perspectives. Indian J Microbiol 2019;59:129-36. https://doi.org/10.1007/s12088-019-00783-4 | |
|
209. Burback BL, Perry JJ. Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 1993;59:1025-9. https://doi.org/10.1128/aem.59.4.1025-1029.1993 | |
|
210. Baba U, Mudasir S, Nazir R. Review on bioremediation of pesticides. J Bioremed Biodegrad 2016;7:343. | |
|
211. Nduka J, Umeh L, Okerulu I. Utilization of different microbes in bioremediation of hydrocarbon contaminated soils stimulated with inorganic and organic fertilizers. J Pet Environ Biotechn 2012;3:1000116. https://doi.org/10.4172/2157-7463.1000116 | |
|
212. Survery S, Ahmad S, Subhan Sa, Ajaz M, Rasool S. Hydrocarbon degrading bacteria from pakistani soil: Isolation, identification, screening and genetical studies. Pak J Biol Sci 2004;7:1518-22. https://doi.org/10.3923/pjbs.2004.1518.1522 | |
|
213. Ismail H, Ijah U, Riskuwa-Shehu M, Allamin I. Biodegradation of spent engine oil by bacteria isolated from the rhizosphere of legumes grown in contaminated soil. Int J Environ 2014;3:10515. https://doi.org/10.3126/ije.v3i2.10515 | |
|
214. Tiku DK, Kumar A, Chaturvedi R, Makhijani SD, Manoharan A, Kumar R. Holistic bioremediation of pulp mill effluents using autochthonous bacteria. Int Biodeterior Biodegradation 2010;64:173-83. https://doi.org/10.1016/j.ibiod.2010.01.001 | |
|
215. Karn SK, Chakrabarty SK, Sudhakara Reddy M. Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp-and-paper-industry sludge. Int Biodeterior Biodegradation 2010;64:609-13. https://doi.org/10.1016/j.ibiod.2010.05.017 | |
|
216. Tripathi M, Vikram S, Jain RK, Garg SK. Isolation and growth characteristics of chromium(VI) and pentachlorophenol tolerant bacterial isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian J Microbiol 2011;51:61-9. https://doi.org/10.1007/s12088-011-0089-2 | |
|
217. Chandra R, Abhishek A, Sankhwar M. Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. Bioresour Technol 2011;102:6429-36. https://doi.org/10.1016/j.biortech.2011.03.048 | |
|
218. Das MT, Budhraja V, Mishra M, Thakur IS. Toxicological evaluation of paper mill sewage sediment treated by indigenous dibenzofuran-degrading Pseudomonas sp. Bioresour Technol 2012;110:71-8. https://doi.org/10.1016/j.biortech.2012.01.078 | |
|
219. Chavan MN, Dandi ND, Kulkarni MV, Chaudhari AB. Biotreatment of melanoidin-containing distillery spent wash effluent by free and immobilized Aspergillus oryzae MTCC 7691. Water Air Soil Pollut 2013;224:1755. https://doi.org/10.1007/s11270-013-1755-2 | |
|
220. Mathews SL, Pawlak JJ, Grunden AM. Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste. Bioresour Technol 2014;164:100-5. https://doi.org/10.1016/j.biortech.2014.04.093 | |
|
221. Paliwal R, Uniyal S, Rai JP. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation. Environ Sci Pollut Res 2015;22:6842-53. https://doi.org/10.1007/s11356-014-3872-x | |
|
222. Fonseca MI, Fariña JI, Sadañoski MA, D'Errico R, Villalba LL, Zapata PD. Decolorization of Kraft liquor effluents and biochemical characterization of laccases from Phlebia brevispora BAFC 633. Int Biodeterior Biodegradation 2015;104:443-51. https://doi.org/10.1016/j.ibiod.2015.07.014 | |
|
223. Yadav S, Chandra R. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry. J Environ Sci 2015;33:229-38. https://doi.org/10.1016/j.jes.2015.01.018 | |
|
224. Bramhachari PV, Reddy DR, Kotresha D. Biodegradation of catechol by free and immobilized cells of Achromobacter xylosoxidans strain 15DKVB isolated from paper and pulp industrial effluents. Biocatal Agric Biotechnol 2016;7:36-44. https://doi.org/10.1016/j.bcab.2016.05.003 | |
|
225. Barapatre A, Jha H. Decolourization and biological treatment of pulp and paper mill effluent by lignin-degrading fungus Aspergillus flavus strain F10. Int J Curr Microbiol App Sci 2016;5:19-32. https://doi.org/10.20546/ijcmas.2016.505.003 | |
|
226. Ahmadi M, Jorfi S, Kujlu R, Ghafari S, Soltani RD, Haghighifard NJ. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater. J Environ Manag 2017;191:198-208. https://doi.org/10.1016/j.jenvman.2017.01.010 | |
|
227. Patel A, Arora N, Pruthi V, Pruthi PA. Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. J Clean Product 2017;142:2858-64. https://doi.org/10.1016/j.jclepro.2016.10.184 | |
|
228. Rivera-Hoyos CM, Morales-Álvarez ED, Abelló-Esparza J, Buitrago-Pérez DF, Martínez-Aldana N, Salcedo-Reyes JC, et al. Detoxification of pulping black liquor with Pleurotus ostreatus or recombinant Pichia pastoris followed by CuO/TiO2/visible photocatalysis. Sci Rep 2018;8:3503. https://doi.org/10.1038/s41598-018-21597-2 | |
|
229. Zainith S, Purchase D, Saratale GD, Ferreira LF, Bilal M, Bharagava RN. Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech 2019;9:92. https://doi.org/10.1007/s13205-019-1631-x | |
|
230. Barik M, Das CP, Verma AK, Sahoo S, Sahoo NK. Metabolic profiling of phenol biodegradation by an indigenous Rhodococcus pyridinivorans strain PDB9T N-1 isolated from paper pulp wastewater. Int Biodeterior Biodegradation 2021;158:105168. https://doi.org/10.1016/j.ibiod.2020.105168 | |
|
231. Xie X, Fu J, Wang H, Liu J. Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China. Afr J Biotechnol 2010;9:4056-66. | |
|
232. Rehman A, Butt SA, Hasnain S. Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. Afr J Biotechnol 2010;9:1493-8. https://doi.org/10.5897/AJB09.1663 | |
|
233. Alexandrino M, Macías F, Costa R, Gomes NC, Canário AV, Costa MC. A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance. J Hazard Mater 2011;187:362-70. https://doi.org/10.1016/j.jhazmat.2011.01.035 | |
|
234. Iskandar NL, Zainudin NA, Tan SG. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci 2011;23:824-30. https://doi.org/10.1016/S1001-0742(10)60475-5 | |
|
235. del Carmen Vargas-García M, López MJ, Suárez-Estrella F, Moreno J. Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection. Sci Total Environ 2012;431:62-7. https://doi.org/10.1016/j.scitotenv.2012.05.026 | |
|
236. Gupta K, Chatterjee C, Gupta B. Isolation and characterization of heavy metal tolerant Gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India. Biologia 2012;67:827-36. https://doi.org/10.2478/s11756-012-0099-5 | |
|
237. Bachate SP, Nandre VS, Ghatpande NS, Kodam KM. Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent. Chemosphere 2013;90:2273-78. https://doi.org/10.1016/j.chemosphere.2012.10.081 | |
|
238. Abo-Amer AE, Abu-Gharbia MA, Soltan ES, Abd El-Raheem WM. Isolation and molecular characterization of heavy metal-resistant Azotobacter chroococcum from agricultural soil and their potential application in bioremediation. Geomicrobiol J 2014;31:551-61. https://doi.org/10.1080/01490451.2013.850561 | |
|
239. Chiboub M, Saadani O, Fatnassi IC, Abdelkrim S, Abid G, Jebara M, et al. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. C R Biol 2016;339:391-8. https://doi.org/10.1016/j.crvi.2016.04.015 | |
|
240. Sánchez-Castro I, Amador-García A, Moreno-Romero C, López-Fernández M, Phrommavanh V, Nos J, et al. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes. J Environ Radioact 2017;166:130-41. https://doi.org/10.1016/j.jenvrad.2016.03.016 | |
|
241. Saranya K, Sundaramanickam A, Shekhar S, Meena M, Sathishkumar RS, Balasubramanian T. Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. J Environ Manag 2018;222:396-401. https://doi.org/10.1016/j.jenvman.2018.05.083 | |
|
242. Nokman W, Benluvankar V, Packiam SM, Vincent S. Screening and molecular identification of heavy metal resistant Pseudomonas putida S4 in tannery effluent wastewater. Biocatal Agric Biotechnol 2019;18:101052. https://doi.org/10.1016/j.bcab.2019.101052 | |
|
243. Sher S, Ghani A, Sultan S, Rehman A. Bacterial strains isolated from heavy metals contaminated soil and wastewater with potential to oxidize arsenite. Environ Process 2021;8:333-47. https://doi.org/10.1007/s40710-020-00488-7 | |
|
244. Alegbeleye OO, Opeolu BO, Jackson V. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (Acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz J Microbiol 2017;48:314-25. https://doi.org/10.1016/j.bjm.2016.07.027 | |
|
245. John R, Essien J, Akpan S, Okpokwasili G. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria. Bull Environ Contam Toxicol 2012;88:1014-9. https://doi.org/10.1007/s00128-012-0598-7 | |
|
246. Acevedo F, Pizzul L, del Pilar Castillo M, Cuevas R, Diez MC. Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 2011;185:212-9. https://doi.org/10.1016/j.jhazmat.2010.09.020 | |
|
247. Reda AB. Bacterial bioremediation of polycyclic aromatic hydrocarbons in heavy oil contaminated soil. J Appl Sci Res 2009;5:197-211. | |
|
248. Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G. Burkholderia fungorum DBT1: A promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett 2011;319:11-8. https://doi.org/10.1111/j.1574-6968.2011.02259.x | |
|
249. Zhang H, Kallimanis A, Koukkou AI, Drainas C. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 2004;65:124-31. https://doi.org/10.1007/s00253-004-1614-6 | |
|
250. Li X, Wu Y, Lin X, Zhang J, Zeng J. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in soil microcosms amended with mushroom cultivation substrate. Soil Biol Biochem 2012;47:191-7. https://doi.org/10.1016/j.soilbio.2012.01.001 | |
|
251. Wong JW, Fang M, Zhao Z, Xing B. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. J Environ Qual 2004;33:2015-25. https://doi.org/10.2134/jeq2004.2015 | |
|
252. Jacques RJ, Santos EC, Bento FM, Peralba MC, Selbach PA, Sá EL, et al. Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. Int Biodeterior Biodegradation 2005;56:143-50. https://doi.org/10.1016/j.ibiod.2005.06.005 | |
|
253. Yessica GP, Alejandro A, Ronald FC, José AJ, Esperanza MR, Samuel CS, et al. Tolerance, growth and degradation of phenanthrene and benzo [a] pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Appl Soil Ecol 2013;63:105-11. https://doi.org/10.1016/j.apsoil.2012.09.010 | |
|
254. Lang FS, Destain J, Delvigne F, Druart P, Ongena M, Thonart P. Biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments under different strategies: Natural attenuation, biostimulation, and bioaugmentation with Rhodococcus erythropolis T902. 1. Water Air Soil Pollut 2016;227:1-15. https://doi.org/10.1007/s11270-016-2999-4 | |
|
255. Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull 2011;62:2122-8. https://doi.org/10.1016/j.marpolbul.2011.07.013 | |