Review Article | Volume 13, Supplement 1, July, 2025

Microbial biotransformation for production of valuable aroma compounds: Current research and future challenges

Ajar Nath Yadav Rajeshwari Negi Tawseefa Jan Babita Sharma Tanvir Kaur Naseer Ahmed Sangram Singh Sheikh Shreaz Ashok Yadav Paridhi Puri Narinderpal Kaur Neelam Yadav   

Open Access   

Published:  May 30, 2025

DOI: 10.7324/JABB.2025.214012
Abstract

Aroma and flavor represent the key components of food as they improve the organoleptic characteristics and enhance the acceptability of the consumers. Since ancient times, the concept of commercial production of aromatic and flavoring chemicals has lagged behind human habits, although coming from the industry’s microbiological source. Microbial flavor compounds have garnered attention in recent decades due to their sustainable nature, especially because of their great biological activity and minimal toxicity. Fragrance chemicals are frequently found in medicinal products. The amount of scientific materials containing analytical and biological data on fragrance components is currently more than ever, despite debates regarding their use among academics in the fields of traditional and modern medicine. In addition, the food business, together with the highly significant perfume and cosmetic industries, supports the flavoring and preservation of food items through aromatic volatiles as well as the search for naturally occurring, pleasant-smelling raw components for these products. In addition, it serves as a de-foaming agent for ophthalmic solutions containing high surfactant concentrations. Fruits with mild processing are given a longer shelf life and increased safety by the use of natural fragrance components. The food industry’s expanding demand for natural products has spurred incredible efforts to create biotechnological procedures for the synthesis of fragrance components. The present review assimilates the existing knowledge of microbial transformation to value-added products for their application in food, fragrances, agricultural, and pharmaceutical industries.


Keyword:     Aroma Biotransformation Microbes Natural compounds Sustainability


Citation:

Yadav AN, Negi R, Jan T, Sharma B, Kaur T, Ahmed N, et al. Microbial biotransformation for production of valuable aroma compounds: Current research and future challenges. J App Biol Biotech. 2025;13(Suppl 1):22-33. http://doi.org/10.7324/JABB.2025.214012

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Longo MA, Sanromán MA. Production of food aroma compounds: Microbial and enzymatic methodologies. Food Technol Biotechnol 2006;44:335-53.

2. Surburg H, Panten J. Common fragrance and flavor materials: Preparation, properties and uses. In: Common Fragrance and Favor Materials: Preparation, Properties and Uses. Weinheim: John & Wiley & Sons; 2006. https://doi.org/10.1002/3527608214

3. Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 2017;4:18. https://doi.org/10.1186/s40643-017-0148-6

4. Olguin-Maciel E, Singh A, Chable-Villacis R, Tapia-Tussell R, Ruiz HA. Consolidated bioprocessing, an innovative strategy towards sustainability for biofuels production from crop residues: An overview. Agronomy 2020;10:1834. https://doi.org/10.3390/agronomy10111834

5. Thierry A, Pogacic T, Weber M, Lortal S. Production of flavor compounds by lactic acid bacteria in fermented foods. In: Mozzi F, Raya RR, Vignolo GM, editors. Biotechnology of Lactic Acid Bacteria: Novel Applications. 2nd ed. West Sussex, UK: Wiley- Blackwell; 2015. p. 314-40. https://doi.org/10.1002/9781118868386.ch19

6. Verma DK, Al-Sahlany ST, Niamah AK, Thakur M, Shah N, Singh S, et al. Recent trends in microbial flavour compounds: A review on chemistry, synthesis mechanism and their application in food. Saudi J Biol Sci 2022;29:1565-76. https://doi.org/10.1016/j.sjbs.2021.11.010

7. Michailidou F. The scent of change: Sustainable fragrances through industrial biotechnology. ChemBioChem 2023;24:e202300309. https://doi.org/10.1002/cbic.202300309

8. Mori R. Replacing all petroleum-based chemical products with natural biomass-based chemical products: A tutorial review. RSC Sustain 2023;1:179-212. https://doi.org/10.1039/D2SU00014H

9. Dodds D, Humphreys B. Production of aromatic chemicals from biobased feedstock. In: Catalytic Process Development for Renewable Materials. United States: John Wiley & Sons; 2013. p. 183-237. https://doi.org/10.1002/9783527656639.ch8

10. Ben Akacha N, Gargouri M. Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food Bioprod Process 2015;94:675-706. https://doi.org/10.1016/j.fbp.2014.09.011

11. Abbas F, Zhou Y, O'Neill Rothenberg D, Alam I, Ke Y, Wang HC. Aroma components in horticultural crops: Chemical diversity and usage of metabolic engineering for industrial applications. Plants (Basel) 2023;12:1748. https://doi.org/10.3390/plants12091748

12. Ukwo S, Udo I, Ndaeyo N. Food additives: Overview of related safety concerns. Food Sci Nutr Res 2022;5:1-10. https://doi.org/10.33425/2641-4295.1052

13. Malik T, Rawat S. Biotechnological interventions for production of flavour and fragrance compounds. In: Venkatramanan V, Shah S, Prasad R, editors. Sustainable Bioeconomy. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-15-7321-7_7

14. Kordi M, Salami R, Bolouri P, Delangiz N, Asgari Lajayer B, van Hullebusch ED. White biotechnology and the production of bio-products. Syst Microbiol Biomanufact 2022;2:1-17. https://doi.org/10.1007/s43393-022-00078-8

15. Akacha NB, Gargouri M. Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food Bioprod Process 2015;94: 675-706. https://doi.org/10.1016/j.fbp.2014.09.011

16. Braga A, Guerreiro C, Belo I. Generation of flavors and fragrances through biotransformation and de novo synthesis. Food Bioproc Tech 2018;11:2217-28. https://doi.org/10.1007/s11947-018-2180-8

17. Schempp FM, Drummond L, Buchhaupt M, Schrader J. Microbial cell factories for the production of terpenoid flavor and fragrance compounds. J Agric Food Chem 2017;66:2247-58. https://doi.org/10.1021/acs.jafc.7b00473

18. Marsh AJ, Hill C, Ross RP, Cotter PD. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci Technol 2014;38:113-24. https://doi.org/10.1016/j.tifs.2014.05.002

19. Kumar V, Ahluwalia V, Saran S, Kumar J, Patel AK, Singhania RR. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour Technol 2021;323:124566. https://doi.org/10.1016/j.biortech.2020.124566

20. Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic synthesis for industrial applications. Angew Chem Int Ed 2021;60:88-119. https://doi.org/10.1002/anie.202006648

21. Almeida Sá AG, de Meneses AC, de Araujo PH, de Oliveira D. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci Technol 2017;69:95-105. https://doi.org/10.1016/j.tifs.2017.09.004

22. Paulino BN, Sales A, Felipe L, Pastore GM, Molina G, Bicas JL. Recent advances in the microbial and enzymatic production of aroma compounds. Curr Opin Food Sci 2021;37:98-106. https://doi.org/10.1016/j.cofs.2020.09.010

23. Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. Lignocellulolytic enzymes in biotechnological and industrial processes: A review. Sustainability 2020;12:7282. https://doi.org/10.3390/su12187282

24. Kaushik N, Biswas S, Singh J. Biocatalysis and biotransformation processes-an insight. Sci Technol J 2014;1:15-7.

25. Bution ML, Molina G, Abrahão MR, Pastore GM. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates. Crit Rev Biotechnol 2015;35:313-25. https://doi.org/10.3109/07388551.2013.855161

26. Kallscheuer N, Classen T, Drepper T, Marienhagen J. Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr Opin Biotechnol 2019;56:7-17. https://doi.org/10.1016/j.copbio.2018.07.008

27. De Melo Santos SF, de Sousa CA, de Almeida AF, Santos FA, Oliveira CZ, Cardoso AL, et al. Solid-state fermentation: Use of agroindustrial residues. In: Maddela NR, García Cruzatty LC, Chakraborty S, editors. Advances in the Domain of Environmental Biotechnology: Microbiological Developments in Industries, Wastewater Treatment and Agriculture. Singapore: Springer; 2021. p. 27-57. https://doi.org/10.1007/978-981-15-8999-7_2

28. El-Bakry M, Abraham J, Cerda A, Barrena R, Ponsá S, Gea T, et al. From wastes to high value added products: Novel aspects of SSF in the production of enzymes. Crit Rev Environ Sci Technol 2015;45:1999-2042. https://doi.org/10.1080/10643389.2015.1010423

29. Sharma P, Gaur VK, Sirohi R, Varjani S, Hyoun Kim S, Wong JW. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour Technol 2021;325:124684. https://doi.org/10.1016/j.biortech.2021.124684

30. Soccol CR, da Costa ES, Letti LA, Karp SG, Woiciechowski AL, Vandenberghe LP. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov 2017;1:52-71. https://doi.org/10.1016/j.biori.2017.01.002

31. Leite P, Sousa D, Fernandes H, Ferreira M, Costa AR, Filipe D, et al. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Curr Opin Green Sustain Chem 2021;27:100407. https://doi.org/10.1016/j.cogsc.2020.100407

32. Try S, Voilley A, Chunhieng T, De-Coninck J, Wache Y. Aroma compounds production by solid state fermentation, importance of in situ gas-phase recovery systems. Appl Microbiol Biotechnol 2018;102:7239-55. https://doi.org/10.1007/s00253-018-9157-4

33. Selo G, Planinic M, Tisma M, Tomas S, Koceva Komlenic D, Bucic- Kojic A. A comprehensive review on valorization of agro-food industrial residues by solid-state fermentation. Foods 2021;10:927. https://doi.org/10.3390/foods10050927

34. Premalatha A, Vijayalakshmi K, Shanmugavel M, Rajakumar GS. Optimization of culture conditions for enhanced production of extracellular α?amylase using solid?state and submerged fermentation from Aspergillus tamarii MTCC5152. Biotechnol Appl Biochem 2023;70:835-45. https://doi.org/10.1002/bab.2403

35. Araujo SC, Ramos MR, do Espirito Santo EL, de Menezes LH, de Carvalho MS, Tavares IM, et al. Optimization of lipase production by Penicillium roqueforti ATCC 10110 through solid-state fermentation using agro-industrial residue based on a univariate analysis. Prep Biochem Biotechnol 2022;52:325-30. https://doi.org/10.1080/10826068.2021.1944203

36. Paluzar H, Tuncay D, Aydogdu H. Production and characterization of lipase from Penicillium aurantiogriseum under solid-state fermentation using sunflower pulp. Biocatal Biotransformation. 2021;39:333-42. https://doi.org/10.1080/10242422.2021.1901888

37. Mussatto S, Teixeira J. Lignocellulose as raw material in fermentation processes. In: Current Research Topics in Applied Microbiology and Microbial Biotechnology. Vol. 2. Singapore: World Scientific; 2010. p. 897-907.

38. Couto SR, Sanroman MA. Application of solid-state fermentation to food industry-A review. J Food Eng 2006;76:291-302. https://doi.org/10.1016/j.jfoodeng.2005.05.022

39. Kapoor M, Panwar D, Kaira GS. Bioprocesses for enzyme production using agro-industrial wastes: Technical challenges and commercialization potential. In: Dhillon GS, Kaur S, editors. Agro- Industrial Wastes as Feedstock for Enzyme Production. United States: Academic Press; 2016. p. 61-93. https://doi.org/10.1016/B978-0-12-802392-1.00003-4

40. Thakur N, Sheetal, Bhalla TC. Enzymes and their significance in the industrial bioprocesses. In: Bhatt AK, Bhatia RK, Bhalla TC, editors. Basic Biotechniques for Bioprocess and Bioentrepreneurship. United States: Academic Press; 2023. p. 273-284. https://doi.org/10.1016/B978-0-12-816109-8.00018-0

41. Samanta A, Jana S. Optimization of cold active amylase production by mesophilic Bacillus cereus RGUJS2023 under submerged fermentation. J Environ Biol 2024;45:16-24. https://doi.org/10.22438/jeb/45/1/MRN-5167

42. Ahmed K, Munawar S, Khan MA. 05. Cultural conditions for maximum alpha-amylase production by Penicillium notatum IBGE 03 using shaken flask technique of submerged fermentation. Pure Appl Biol 2021;4:306-12. https://doi.org/10.19045/bspab.2015.43005

43. Castro-Munoz R, Ahmad MZ, Cassano A. Pervaporation-aided processes for the selective separation of aromas, fragrances and essential (AFE) solutes from agro-food products and wastes. Food Rev Int 2023;39:1499-525. https://doi.org/10.1080/87559129.2021.1934008

44. Zhang J, Kang D, Zhang W, Lorenzo JM. Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends Food Sci Technol 2021;111:405-25. https://doi.org/10.1016/j.tifs.2021.02.060

45. Coultate T. Food: The Chemistry of Its Components. 7th ed. London: Royal Society of Chemistry; 2023. https://doi.org/10.1039/9781837670369

46. Chen X, Zhang W, Quek SY, Zhao L. Flavor-food ingredient interactions in fortified or reformulated novel food: Binding behaviours, manipulation strategies, sensory impacts, and future trends in delicious and healthy food design. Compr Rev Food Sci Food Saf 2023;22:4004-29. https://doi.org/10.1111/1541-4337.13195

47. Turner DC, Schafer M, Lancaster S, Janmohamed I, Gachanja A, Creasey J. Gas Chromatography-Mass Spectrometry: How Do I Get the Best Results? London: Royal Society of Chemistry; 2019. https://doi.org/10.1039/9781839169182

48. Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, et al. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances-A review. Anal Chim Acta 2019;1077:67-86. https://doi.org/10.1016/j.aca.2019.05.054

49. Usman I, Hussain M, Imran A, Afzaal M, Saeed F, Javed M, et al. Traditional and innovative approaches for the extraction of bioactive compounds. Int J Food Prop 2022;25:1215-33. https://doi.org/10.1080/10942912.2022.2074030

50. Lefebvre T, Destandau E, Lesellier E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J Chromatogr A 2021;1635:461770. https://doi.org/10.1016/j.chroma.2020.461770

51. Romano R, Aiello A, Pizzolongo F, Rispoli A, De Luca L, Masi P. Characterisation of oleoresins extracted from tomato waste by liquid and supercritical carbon dioxide. Int J Food Sci Technol 2020;55:3334-42. https://doi.org/10.1111/ijfs.14597

52. Saleh MS, Jalil J, Zainalabidin S, Asmadi AY, Mustafa NH, Kamisah Y. Genus Parkia: Phytochemical, medicinal uses, and pharmacological properties. Int J Mol Sci 2021;22:618. https://doi.org/10.3390/ijms22020618

53. Kaur S, Panesar PS, Chopra HK. Standardization of ultrasound-assisted extraction of bioactive compounds from kinnow mandarin peel. Biomass Convers Biorefin 2021;13:8853-63. https://doi.org/10.1007/s13399-021-01674-9

54. Bandar H, Hijazi A, Rammal H, Hachem A, Saad Z, Badran B. Techniques for the extraction of bioactive compounds from Lebanese Urtica dioica. Am J Phytomed Clin Ther 2013;1:507-13.

55. Habib M, Jan K, Bashir K. Extraction and characterization of bioactive compounds from different sources. In: Thakur M, Belwal T, editors. Bioactive Components: A Sustainable System for Good Health and Well-Being. Singapore: Springer; 2022. p. 121-41. https://doi.org/10.1007/978-981-19-2366-1_8

56. Mohsen-Nia M, Amiri H, Jazi B. Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study. J Solution Chem 2010;39:701-8. https://doi.org/10.1007/s10953-010-9538-5

57. Contieri LS, de Souza Mesquita LM, Sanches VL, Chaves J, Pizani RS, da Silva LC, et al. Recent progress on the recovery of bioactive compounds obtained from propolis as a natural resource: Processes, and applications. Sep Purif Technol 2022;298:121640. https://doi.org/10.1016/j.seppur.2022.121640

58. Cerro D, Rojas A, Torres A, Villegas C, Galotto MJ, Guarda A, et al. Nanoencapsulation of food-grade bioactive compounds using a supercritical fluid extraction of emulsions process: Effect of operational variables on the properties of nanocapsules and new perspectives. LWT 2023;184:115115. https://doi.org/10.1016/j.lwt.2023.115115

59. Gupta I, Adin SN, Aqil M, Mujeeb M. QbD based extraction of naringin from Citrus sinensis L. peel and its antioxidant activity. Pharmacogn Res 2023;15:145-54. https://doi.org/10.5530/097484900241

60. Wani TA, Majid D, Dar B, Makroo HA, Allai FM. Utilization of novel techniques in extraction of polyphenols from grape pomace and their therapeutic potential: A review. J Food Meas Charact 2023;17:5412-25. https://doi.org/10.1007/s11694-023-02040-1

61. Raungrusmee S. Underutilized cereals and pseudocereals' nutritional potential and health implications. In: Pandemics and Innovative Food Systems. United States: CRC Press; 2023. p. 163-93. https://doi.org/10.1201/9781003191223-9

62. Wojciak M, Feldo M, Stolarczyk P, P?achno BJ. Carnivorous plants from Nepenthaceae and Droseraceae as a source of secondary metabolites. Molecules 2023;28:2155. https://doi.org/10.3390/molecules28052155

63. Wenzel J, Storer Samaniego C, Wang L, Burrows L, Tucker E, Dwarshuis N, et al. Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier. Food Sci Nutr 2017;5:223-32. https://doi.org/10.1002/fsn3.385

64. Ahmadian-Kouchaksaraie Z, Niazmand R. Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: Optimization using response surface methodology. J Supercrit Fluids 2017;121:19-31. https://doi.org/10.1016/j.supflu.2016.11.008

65. Rahmah NL, Mustapa Kamal SM, Sulaiman A, Taip FS, Siajam SI. Subcritical water extraction of total phenolic compounds from Piper betle L. leaves: Effect of process conditions and characterization. J Food Meas Charact 2023;17:1-13. https://doi.org/10.1007/s11694-023-02068-3

66. Pinto D, Silva AM, Dall'Acqua S, Sut S, Vallverdú-Queralt A, Delerue-Matos C, et al. Simulated gastrointestinal digestion of chestnut (Castanea sativa Mill.) shell extract prepared by subcritical water extraction: Bioaccessibility, bioactivity, and intestinal permeability by in vitro assays. Antioxidants (Basel) 2023;12:1414. https://doi.org/10.3390/antiox12071414

67. Yehia RS, Altwaim SA. An insight into in vitro antioxidant, antimicrobial, cytotoxic, and apoptosis induction potential of mangiferin, a bioactive compound derived from Mangifera indica. Plants (Basel) 2023;12:1539. https://doi.org/10.3390/plants12071539

68. Ko JY, Ko MO, Kim DS, Lim SB. Enhanced production of phenolic compounds from pumpkin leaves by subcritical water hydrolysis. Prev Nutr Food Sci 2016;21:132-7. https://doi.org/10.3746/pnf.2016.21.2.132

69. Gahruie HH, Parastouei K, Mokhtarian M, Rostami H, Niakousari M, Mohsenpour Z. Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. J Appl Res Med Aromat Plants 2020;19:100264. https://doi.org/10.1016/j.jarmap.2020.100264

70. Kainat S, Arshad MS, Khalid W, Zubair Khalid M, Koraqi H, Afzal MF, et al. sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: A review. Int J Food Prop 2022;25:2457-76. https://doi.org/10.1080/10942912.2022.2144884

71. ?ubek-Nguyen A, Ziemichód W, Olech M. Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications. Appl Sci 2022;12:3232. https://doi.org/10.3390/app12073232

72. Majid I, Khan S, Aladel A, Dar AH, Adnan M, Khan MI, et al. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CyTA J Food 2023;21:101-14. https://doi.org/10.1080/19476337.2022.2157492

73. Jha AK, Sit N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci Technol 2022;119:579-91. https://doi.org/10.1016/j.tifs.2021.11.019

74. Khongthaw B, Chauhan P, Dulta K, Kumar V, Ighalo JO. A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. J Food Meas Charact 2023;17:1317-42. https://doi.org/10.1007/s11694-022-01697-4

75. Riswanto FD, Rohman A, Pramono S, Martono S. Soybean (Glycine max L.) isoflavones: Chemical composition and its chemometrics-assisted extraction and authentication. J Appl Pharm Sci 2021;11:12-20.

76. Watrelot AA, Bouska L. Optimization of the ultrasound-assisted extraction of polyphenols from aronia and grapes. Food Chem 2022;386:132703. https://doi.org/10.1016/j.foodchem.2022.132703

77. Aliano-Gonzalez MJ, Richard T, Cantos-Villar E. Grapevine cane extracts: Raw plant material, extraction methods, quantification, and applications. Biomolecules 2020;10:1195. https://doi.org/10.3390/biom10081195

78. Prandi B, Cigognini IM, Faccini A, Zurlini C, Rodríguez Ó, Tedeschi T. Comparative study of different protein extraction technologies applied on mushrooms by-products. Food Bioproc Techn 2023;16:1-12. https://doi.org/10.1007/s11947-023-03015-2

79. Patil SS, Rathod VK. Extraction and purification of curcuminoids from Curcuma longa using microwave assisted deep eutectic solvent based system and cost estimation. Process Biochem 2023;126:61-71. https://doi.org/10.1016/j.procbio.2022.11.010

80. Aziz A, Noreen S, Khalid W, Mubarik F, Niazi MK, Koraqi H, et al. Extraction of bioactive compounds from different vegetable sprouts and their potential role in the formulation of functional foods against various disorders: A literature-based review. Molecules 2022;27:7320. https://doi.org/10.3390/molecules27217320

81. Kumar, K. Nutraceutical potential and utilization aspects of food industry by-products and wastes. In: Kosseva MR, Webb C, editors. Food Industry Wastes. Amsterdam, The Netherlands: Elsevier; 2020. p. 89-111. https://doi.org/10.1016/B978-0-12-817121-9.00005-X

82. Smiderle FR, Morales D, Gil-Ramirez A, de Jesus LI, Gilbert- Lopez B, Iacomini M, et al. Evaluation of microwave-assisted and pressurized liquid extractions to obtain β-d-glucans from mushrooms. Carbohydr Polym 2017;156:165-74. https://doi.org/10.1016/j.carbpol.2016.09.029

83. Sahu A, Nayak G, Bhuyan SK, Akbar A, Bhuyan R, Kar D, et al. Artificial neural network and response surface-based combined approach to optimize the oil content of Ocimum basilicum var. thyrsiflora (Thai Basil). Plants 2023;12:1776. https://doi.org/10.3390/plants12091776

84. Patil A, Bhide S, Bookwala M, Soneta B, Shankar V, Almotairy A, et al. Stability of organoleptic agents in pharmaceuticals and cosmetics. AAPS PharmSciTech 2018;19:36-47. https://doi.org/10.1208/s12249-017-0866-2

85. Sandes RD, dos Santos RA, de Jesus MS, Araujo HC, Leite Neta MT, Rajkumar G, et al. Agro-industrial residues used as substrates for the production of bioaroma compounds with Basidiomycetes: A comprehensive review. Fermentation 2023;10:23. https://doi.org/10.3390/fermentation10010023

86. El Sebaaly Z, Hammoud M, Sassine YN. History, health benefits, market, and production status of button mushroom. In: Sassine YN, editor. Mushrooms: Agaricus bisporus. Boston, MA, USA: CABI; 2021. p. 1-65.

87. Mleczek M, Budka A, Siwulski M, Mleczek P, Budzynska S, Proch J, et al. A comparison of toxic and essential elements in edible wild and cultivated mushroom species. Eur Food Res Technol 2021;247:1249-62. https://doi.org/10.1007/s00217-021-03706-0

88. Kumar K, Mehra R, Guiné RP, Lima MJ, Kumar N, Kaushik R, et al. Edible mushrooms: A comprehensive review on bioactive compounds with health benefits and processing aspects. Foods 2021;10:2996. https://doi.org/10.3390/foods10122996

89. Moro C, Palacios I, Lozano M, D'Arrigo M, Guillamón E, Villares A, et al. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem 2012;130:350-5. https://doi.org/10.1016/j.foodchem.2011.07.049

90. Dubost NJ, Ou B, Beelman RB. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem 2007;105:727-35. https://doi.org/10.1016/j.foodchem.2007.01.030

91. Tian Y, Zeng H, Xu Z, Zheng B, Lin Y, Gan C, et al. Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr Polym 2012;88:522-9. https://doi.org/10.1016/j.carbpol.2011.12.042

92. Zhang K, Pu YY, Sun DW. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci Technol 2018;78:72-82. https://doi.org/10.1016/j.tifs.2018.05.012

93. Salamat R, Ghassemzadeh HR, Ranjbar F, Jalali A, Mahajan P, Herppich WB, et al. The effect of additional packaging barrier, air moment and cooling rate on quality parameters of button mushroom (Agaricus bisporus). Food Packag Shelf Life 2020;23:100448. https://doi.org/10.1016/j.fpsl.2019.100448

94. Dawadi E, Magar PB, Bhandari S, Subedi S, Shrestha S, Shrestha J. Nutritional and post-harvest quality preservation of mushrooms: A review. Heliyon 2022;8:e12093. https://doi.org/10.1016/j.heliyon.2022.e12093

95. Kertesz MA, Thai M. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl Microbiol Biotechnol 2018;102:1639-50. https://doi.org/10.1007/s00253-018-8777-z

96. Aisala H, Sola J, Hopia A, Linderborg KM, Sandell M. Odor-contributing volatile compounds of wild edible nordic mushrooms analyzed with HS-SPME-GC-MS and HS-SPME-GC-O/FID. Food Chem 2019;283:566-78. https://doi.org/10.1016/j.foodchem.2019.01.053

97. Selli S, Guclu G, Sevindik O, Kelebek H. Variations in the key aroma and phenolic compounds of champignon (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms after two cooking treatments as elucidated by GC-MS-O and LC-DAD-ESI-MS/MS. Food Chem 2021;354:129576. https://doi.org/10.1016/j.foodchem.2021.129576

98. Nitthikan N, Leelapornpisid P, Naksuriya O, Intasai N, Kiattisin K. Potential and alternative bioactive compounds from brown Agaricus bisporus mushroom extracts for xerosis treatment. Sci Pharm 2022;90:59. https://doi.org/10.3390/scipharm90040059

99. Kim H, Jeon YE, Kim SM, Jung JI, Ko D, Kim EJ. Agaricus bisporus extract exerts an anti-obesity effect in high-fat diet-induced obese C57BL/6N mice by inhibiting pancreatic lipase-mediated fat absorption. Nutrients 2023;15:4225. https://doi.org/10.3390/nu15194225

100. Xie L, Guo S, Rao H, Lan B, Zheng B, Zhang N. Characterization of volatile flavor compounds and aroma active components in button mushroom (Agaricus bisporus) across various cooking methods. Foods 2024;13:685. https://doi.org/10.3390/foods13050685

101. Abdel-Azeem AM, Salem FM, Abdel-Azeem MA, Nafady NA, Mohesien MT, Soliman E. Biodiversity of the genus Aspergillus in different habitats. In: Gupta VK, ed. New and future developments in microbial biotechnology and bioengineering: Aspergillus system properties and applications. Amsterdam: Elsevier; 2016. p. 3-28. https://doi.org/10.1016/B978-0-444-63505-1.00001-4

102. Zen Siqueira JP. Clinical and Environmental Aspergillus: Morphological and Molecular Characterization, Phylogeny, and Antifungal Susceptibility Profile. Catalonia: Universitat Rovira i Virgili; 2017.

103. Orfali R, Aboseada MA, Abdel-Wahab NM, Hassan HM, Perveen S, Ameen F, et al. Recent updates on the bioactive compounds of the marine-derived genus Aspergillus. RSC Adv 2021;11:17116-50. https://doi.org/10.1039/D1RA01359A

104. Ribeiro L, Ribeiro L, Jorge J, Polizeli M. Screening of filamentous fungi for xylanases and cellulases not inhibited by xylose and glucose. Br Biotechnol J 2014;4:30-9. https://doi.org/10.9734/BBJ/2014/6066

105. Sorgatto M, Guimarães N, Zanoelo F, Marques M, Peixoto- Nogueira S, Giannesi G. Purification and characterization of an extracellular xylanase produced by the endophytic fungus, Aspergillus terreus, grown in submerged fermentation. Afr J Biotechnol 2012;11:8076-84. https://doi.org/10.5897/AJB11.2686

106. Vanishree M, Thatheyus A, Ramya D. Biodegradation of petrol using Aspergillus spp. Annu Res Rev Biol 2014;4:914-23. https://doi.org/10.9734/ARRB/2014/5630

107. Zheng J, Zhang F, Zhou C, Lin M, Kan J. Comparison of flavor compounds in fresh and pickled bamboo shoots by GC-MS and GC-olfactometry. Food Sci Technol Res 2014;20:129-38. https://doi.org/10.3136/fstr.20.129

108. Liao G, Wu P, Xue J, Liu L, Li H, Wei X. Asperimides A-D, anti-inflammatory aromatic butenolides from a tropical endophytic fungus Aspergillus terreus. Fitoterapia 2018;131:50-4. https://doi.org/10.1016/j.fitote.2018.10.011

109. Lubbers RJ, de Vries RP. Production of protocatechuic acid from p-hydroxyphenyl (H) units and related aromatic compounds using an Aspergillus niger cell factory. MBio 2021;12:e0039121. https://doi.org/10.1128/mBio.00391-21

110. Virmani S, Arora A, Kaushik S, Suman A. Lignin degradation by isolated lignolytic Acinetobacter baumanii S2, Aspergillus niger SF4 and Rhodotorula glutinis and profiling products from bio-valorization perspective. Waste Biomass Valorization 2024;15:101-14. https://doi.org/10.1007/s12649-023-02140-5

111. García M, Esteve-Zarzoso B, Cabellos JM, Arroyo T. Advances in the study of Candida stellata. Fermentation 2018;4:74. https://doi.org/10.3390/fermentation4030074

112. Dhevagi P, Ramya A, Priyatharshini S, Geetha Thanuja K, Ambreetha S, Nivetha A. Industrially important fungal enzymes: Productions and applications. Yadav AN, editor. Recent Trends in Mycological Research. Fungal Biology. Cham: Springer; 2021. p. 263-309. https://doi.org/10.1007/978-3-030-68260-6_11

113. Polke M, Hube B, Jacobsen ID. Candida survival strategies. Adv Appl Microbiol 2015;91:139-235. https://doi.org/10.1016/bs.aambs.2014.12.002

114. Filipowicz N, Momotko M, Boczkaj G, Cie?li?ski H. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A011, Candida oregonensis B021 and Schizoblastosporion starkeyi-henricii L012, isolated from Rucianka peatland. Enzyme Microb Technol 2020;141:109663. https://doi.org/10.1016/j.enzmictec.2020.109663

115. Benmessaoud S, Anissi J, Kara M, Assouguem A, Al-Huqail AA, Germoush MO, et al. Isolation and characterization of three new crude oil degrading yeast strains, Candida parapsilosis SK1, Rhodotorula mucilaginosa SK2 and SK3. Sustainability 2022;14:3465. https://doi.org/10.3390/su14063465

116. Al-Ansari MM, Al-Dahmash ND, Jhanani G. Anti-Candida, antioxidant and antidiabetic potential of ethyl acetate extract fraction-7a from Cymodocea serrulata and its bioactive compound characterization through FTIR and NMR. Environ Res 2023;229:115985. https://doi.org/10.1016/j.envres.2023.115985

117. Singh M, Kamal S, Sharma VP. Status and trends in world mushroom production-II-Mushroom production in Japan and China. Mushroom Res 2018;27:1-25.

118. Lee KH, Morris-Natschke SL, Yang X, Huang R, Zhou T, Wu SF, et al. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. J Tradit Complement Med 2012;2:84-95. https://doi.org/10.1016/S2225-4110(16)30081-5

119. Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S. Bioactives from mushroom: Health attributes and food industry applications. Materials 2021;14:7640. https://doi.org/10.3390/ma14247640

120. Bisen P, Baghel RK, Sanodiya BS, Thakur GS, Prasad G. Lentinus edodes: A macrofungus with pharmacological activities. Curr Med Chem 2010;17:2419-30. https://doi.org/10.2174/092986710791698495

121. Nam M, Choi JY, Kim MS. Metabolic profiles, bioactive compounds, and antioxidant capacity in Lentinula edodes cultivated on log versus sawdust substrates. Biomolecules 2021;11:1654. https://doi.org/10.3390/biom11111654

122. Lu X, Hou H, Fang D, Hu Q, Chen J, Zhao L. Identification and characterization of volatile compounds in Lentinula edodes during vacuum freeze?drying. J Food Biochem 2022;46:e13814. https://doi.org/10.1111/jfbc.13814

123. Wu F, Wang H, Chen Q, Pang X, Jing H, Yin L, et al. Lignin promotes mycelial growth and accumulation of polyphenols and ergosterol in Lentinula edodes. J Fungi (Basel) 2023;9:237. https://doi.org/10.3390/jof9020237

124. Hassan MI, Voigt K. Pathogenicity patterns of mucormycosis: Epidemiology, interaction with immune cells and virulence factors. Med Mycol 2019;57:S245-56. https://doi.org/10.1093/mmy/myz011

125. Fazili AB, Shah AM, Zan X, Naz T, Nosheen S, Nazir Y, et al. Mucor circinelloides: A model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb Cell Fact 2022;21:29. https://doi.org/10.1186/s12934-022-01758-9

126. Csernetics Á, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, et al. Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. Fungal Genet Biol 2011;48:696-703. https://doi.org/10.1016/j.fgb.2011.03.006

127. Sánchez-Pujante P, Miras-Moreno B, Soluyanova P, Garre V, Pedreño M, Almagro L. Production of fatty acid methyl esters and other bioactive compounds in elicited cultures of the fungus Mucor circinelloides. Mycol Prog 2017;16:507-12. https://doi.org/10.1007/s11557-017-1278-0

128. Wang J, Yuan P, Zhang W, Liu C, Chen K, Wang G, et al. Separation, purification, structural characterization, and anticancer activity of a novel exopolysaccharide from Mucor spp. Molecules 2022;27:2071. https://doi.org/10.3390/molecules27072071

129. Saikia B, Saikia RR. Enhancing beverage fermentation through synergy of Saccharomycopsis fibuligera and Saccharomyces cerevisiae: A mini-review. J Adv Microbiol 2024;24:86-93. https://doi.org/10.9734/jamb/2024/v24i1789

130. Walker GM, Stewart GG. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2016;2:30. https://doi.org/10.3390/beverages2040030

131. Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 2020;6:1-31. https://doi.org/10.3934/microbiol.2020001

132. Nomura K, Ogura H, Imanishi Y. Direct synthesis of 2-phenylethanol by hydrogenation of methyl phenylacetate using homogeneous ruthenium-phosphine catalysis under low hydrogen pressure. J Mol Catal A Chem 2001;166:345-9. https://doi.org/10.1016/S1381-1169(00)00476-3

133. Fabre CE, Blanc PJ, Goma G. Production of 2?phenylethyl alcohol by Kluyveromyces marxianus. Biotechnol Prog 1998;14:270-4. https://doi.org/10.1021/bp9701022

134. Stark D, Münch T, Sonnleitner B, Marison I, von Stockar U. Extractive bioconversion of 2?phenylethanol from L?phenylalanine by Saccharomyces cerevisiae. Biotechnol Prog 2002;18:514-23. https://doi.org/10.1021/bp020006n

135. Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 2000;74:25-33. https://doi.org/10.1016/S0960-8524(99)00161-3

136. Sues A, Millati R, Edebo L, Taherzadeh MJ. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. FEMS Yeast Res 2005;5:669-76. https://doi.org/10.1016/j.femsyr.2004.10.013

137. Xu A, Xiao Y, He Z, Liu J, Wang Y, Gao B, et al. Use of non- Saccharomyces yeast co-fermentation with Saccharomyces cerevisiae to improve the polyphenol and volatile aroma compound contents in Nanfeng tangerine wines. J Fungi (Basel) 2022;8:128. https://doi.org/10.3390/jof8020128

138. Liu W, Ji R, Aimaier A, Sun J, Pu X, Shi X, et al. Adjustment of impact phenolic compounds, antioxidant activity and aroma profile in cabernet sauvignon wine by mixed fermentation of Pichia kudriavzevii and Saccharomyces cerevisiae. Food Chem X 2023;18:100685. https://doi.org/10.1016/j.fochx.2023.100685

139. Waghunde RR, Shelake RM, Sabalpara AN. Trichoderma: A significant fungus for agriculture and environment. Afr J Agric Res 2016;11:1952-65. https://doi.org/10.5897/AJAR2015.10584

140. Shenouda ML, Cox RJ. Molecular methods unravel the biosynthetic potential of Trichoderma species. RSC Adv 2021;11:3622-35. https://doi.org/10.1039/D0RA09627J

141. Nascimento V, Rodrigues-Santos K, Carvalho-Alencar K, Castro M, Kruger R, Lopes F. Trichoderma: Biological control efficiency and perspectives for the Brazilian Midwest states and Tocantins. Braz J Biol 2022;82:e260161. https://doi.org/10.1590/1519-6984.260161

142. Al Farraj DA, Hadibarata T, Elshikh MS, Al Khulaifi MM, Kristanti RA. Biotransformation and degradation pathway of pyrene by filamentous soil fungus Trichoderma spp. F03. Water Air Soil Pollut 2020;231:1-9. https://doi.org/10.1007/s11270-020-04514-0

143. Starowicz M. Analysis of volatiles in food products. Separations 2021;8:157. https://doi.org/10.3390/separations8090157

144. Liang Z, Zhang P, Fang Z. Modern technologies for extraction of aroma compounds from fruit peels: A review. Crit Rev Food Sci Nutr 2022;62:1284-307. https://doi.org/10.1080/10408398.2020.1840333

145. Vandenberghe L, Valladares-Diestra K, Bittencourt G, Torres LZ, Vieira S, Karp S, et al. Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil. Renew Sustain Energ Rev 2022;167:112721. https://doi.org/10.1016/j.rser.2022.112721

146. Hadj Saadoun J, Bertani G, Levante A, Vezzosi F, Ricci A, Bernini V, et al. Fermentation of agri-food waste: A promising route for the production of aroma compounds. Foods 2021;10:707. https://doi.org/10.3390/foods10040707

147. Sandoval-Lozano CJ, Caballero-Torres D, López-Giraldo LJ. Screening wild yeast isolated from cocoa bean fermentation using volatile compounds profile. Molecules 2022;27:902. https://doi.org/10.3390/molecules27030902

148. Salikin NH, Makhtar MM. Microbial factory; Utilization of pectin-rich agro-industrial wastes for the production of pectinases enzymes through solid state fermentation (SSF). In: Waste Management, Processing and Valorisation. Berlin, Germany: Springer Nature; 2022. p. 175-206. https://doi.org/10.1007/978-981-16-7653-6_10

149. Amara AA, El-Baky NA. Fungi as a source of edible proteins and animal feed. J Fungi (Basel) 2023;9:73. https://doi.org/10.3390/jof9010073

150. Wang D, Zhang M, Huang J, Zhou R, Jin Y, Wu C. Zygosaccharomyces rouxii combats salt stress by maintaining cell membrane structure and functionality. J Microbiol Biotechnol 2020;30:62-70. https://doi.org/10.4014/jmb.1904.04006

151. Sun L, Wang H, Yan M, Sai C, Zhang Z. Research advances of bioactive sesquiterpenoids isolated from marine-derived Aspergillus spp. Molecules 2022;27:7376. https://doi.org/10.3390/molecules27217376

152. Lin S, Gunupuru LR, Ofoe R, Saleh R, Asiedu SK, Thomas RH, et al. Mineralization and nutrient release pattern of vermicast-sawdust mixed media with or without addition of Trichoderma viride. PLoS One 2021;16:e0254188. https://doi.org/10.1371/journal.pone.0254188

153. Sulieman AM, Hakim SM, Alshammari W, Alshammari NI, Salih ZA. Capability of Trichoderma viride to produce cellulolytic and pectolytic enzymes. Adv Life Sci 2023;10:491-6.

154. Elhalis H, Chin XH, Chow Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit Rev Food Sci Nutr 2023;64:7648-70. https://doi.org/10.1080/10408398.2023.2188951

155. Kelly TJ, O'Connor C, Kilcawley KN. Sources of volatile aromatic congeners in whiskey. Beverages 2023;9:64. https://doi.org/10.3390/beverages9030064

156. Lindsay MA, Granucci N, Greenwood DR, Villas-Boas SG. Identification of new natural sources of flavour and aroma metabolites from solid-state fermentation of agro-industrial by-products. Metabolites 2022;12:157. https://doi.org/10.3390/metabo12020157

157. Mantzouridou F, Paraskevopoulou A. Volatile bio-ester production from orange pulp-containing medium using Saccharomyces cerevisiae. Food Bioproc Tech 2013;6:3326-34. https://doi.org/10.1007/s11947-012-1009-0

158. Branta Lopes D, Speranza P, Alves Macedo G. A new approach for flavor and aroma encapsulation. In: Grumezescu AM, editor. Novel Approaches of Nanotechnology in Food. United States: Academic Press; 2016. p. 623-61. https://doi.org/10.1016/B978-0-12-804308-0.00018-2

159. De Melo Pereira GV, Medeiros AB, Camara MC, Magalhães Júnior AI, de Carvalho Neto DP, Bier MC, et al. Production and recovery of bioaromas synthesized by microorganisms. In: Galanakis CM, editor. The Role of Alternative and Innovative Food Ingredients and Products in Consumer Wellness. United States: Academic Press; 2019. p. 315-38. https://doi.org/10.1016/B978-0-12-816453-2.00011-5

160. Felipe LO, de Oliveira AM, Bicas JL. Bioaromas-Perspectives for sustainable development. Trends Food Sci Technol 2017;62:141-53. https://doi.org/10.1016/j.tifs.2017.02.005

161. Anese M, Manzano M, Nicoli M. Quality of minimally processed apple slices using different modified atmosphere conditions. J Food Qual 1997;20:359-70. https://doi.org/10.1111/j.1745-4557.1997.tb00479.x

162. Lanciotti R, Gianotti A, Patrignani F, Belletti N, Guerzoni M, Gardini F. Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends Food Sci Technol 2004;15:201-8. https://doi.org/10.1016/j.tifs.2003.10.004

163. Chyau CC, Ko PT, Chang CH, Mau JL. Free and glycosidically bound aroma compounds in lychee (Litchi chinensis Sonn.). Food Chem 2003;80:387-92. https://doi.org/10.1016/S0308-8146(02)00278-9

164. Sartori SK, Diaz MA, Diaz-Muñoz G. Lactones: Classification, synthesis, biological activities, and industrial applications. Tetrahedron 2021;84:132001. https://doi.org/10.1016/j.tet.2021.132001

165. Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: An industrial perspective. Crit Rev Food Sci Nutr 2023;63:10047-78. https://doi.org/10.1080/10408398.2022.2068124

166. Wang J, Yu Z, Wang C, Tian X, Huo X, Wang Y, et al. Dehydrocostus lactone, a natural sesquiterpene lactone, suppresses the biological characteristics of glioma, through inhibition of the NF-κB/COX-2 signaling pathway by targeting IKKβ. Am J Cancer Res 2017;7:1270.

167. Lee JW, Trinh CT. Towards renewable flavors, fragrances, and beyond. Curr Opin Biotechnol 2020;61:168-80. https://doi.org/10.1016/j.copbio.2019.12.017

168. Wang L, Ying Y, Hu Z, Wang T, Shen X, Wu P. Simultaneous determination of 2- and 3-mcpd esters in infant formula milk powder by solid-phase extraction and GC-MS analysis. J AOAC Int 2019;99:786-91. https://doi.org/10.5740/jaoacint.15-0310

169. Prusova B, Humaj J, Sochor J, Baron M. Formation, losses, preservation and recovery of aroma compounds in the winemaking process. Fermentation 2022;8:93. https://doi.org/10.3390/fermentation8030093

170. Jeromel A, Korenika AM, Tomaz I. An influence of different yeast species on wine aroma composition. In: Grumezescu AM, Holban AM, editors. Fermented Beverages. Sawston, Cambridge: Woodhead Publishing; 2019. p. 171-285. https://doi.org/10.1016/B978-0-12-815271-3.00006-3

171. Kumar RS, Naveena S, Praveen S, Yogadharshini N. Therapeutic aspects of biologically potent vanillin derivatives: A critical review. J Drug Deliv Ther 2023;13:177-89. https://doi.org/10.22270/jddt.v13i7.6159

172. Kim HS, Kim YO, Lee JH. Recent advances in the biotechnological production of natural vanillin. J Life Sci 2021;31:1046-55.

173. D'Arrigo P, Rossato LA, Strini A, Serra S. From waste to value: Recent insights into producing vanillin from lignin. Molecules 2024;29:442. https://doi.org/10.3390/molecules29020442

174. Gendron D. Vanillin: A promising biosourced building block for the preparation of various heterocycles. Front Chem 2022;10:949355. https://doi.org/10.3389/fchem.2022.949355

175. Ciciliato MP, de Souza MC, Tarran CM, de Castilho AL, Vieira AJ, Rozza AL. Anti-inflammatory effect of vanillin protects the stomach against ulcer formation. Pharmaceutics 2022;14:755. https://doi.org/10.3390/pharmaceutics14040755

176. Paul V, Rai DC, Ramyaa Lakshmi RL, Srivastava SK, Tripathi AD. A comprehensive review on vanillin: Its microbial synthesis, isolation and recovery. Food Biotechnol 2021;35:22-49. https://doi.org/10.1080/08905436.2020.1869039

177. Denisov MS, Gorbunov AA, Nebogatikov VO, Pavlogradskaya LV, Glushkov VA. Two-step synthesis of ferrocenyl esters of vanillic acid. Russ J Gen Chem 2017;87:463-9. https://doi.org/10.1134/S107036321703015X

178. Rohmer M. From molecular fossils of bacterial hopanoids to the formation of isoprene units: Discovery and elucidation of the methylerythritol phosphate pathway. Lipids 2008;43:1095-107. https://doi.org/10.1007/s11745-008-3261-7

179. Jansen B, De Groot A. Occurrence, biological activity and synthesis of drimane sesquiterpenoids. Nat Prod Rep 2004;21:449-77. https://doi.org/10.1039/b311170a

180. Paduch R, Kandefer-Szersze? M, Trytek M, Fiedurek J. Terpenes: Substances useful in human healthcare. Arch Immunol Ther Exp 2007;55:315-27. https://doi.org/10.1007/s00005-007-0039-1

181. Ben Salha G, Abderrabba M, Labidi J. A status review of terpenes and their separation methods. Rev Chem Eng 2021;37:433-47. https://doi.org/10.1515/revce-2018-0066

182. Zhang J, Liu W, Luo H. Research progress in the activity of terpenoids in medicinal plants. World Sci Technol Modernization Tradit Chin Med 2018;20:419-30.

183. Fan M, Yuan S, Li L, Zheng J, Zhao D, Wang C, et al. Application of terpenoid compounds in food and pharmaceutical products. Fermentation 2023;9:119. https://doi.org/10.3390/fermentation9020119

184. Yu H, Zhang R, Yang F, Xie Y, Guo Y, Yao W, et al. Control strategies of pyrazines generation from Maillard reaction. Trend Food Sci Technol 2021;112:795-807. https://doi.org/10.1016/j.tifs.2021.04.028

185. Juhas M, Zitko J. Molecular interactions of pyrazine-based compounds to proteins. J Med Chem 2020;63:8901-16. https://doi.org/10.1021/acs.jmedchem.9b02021

186. Fayek NM, Xiao J, Farag MA. A multifunctional study of naturally occurring pyrazines in biological systems; Formation mechanisms, metabolism, food applications and functional properties. Crit Rev Food Sci Nutr 2023;63:5322-38. https://doi.org/10.1080/10408398.2021.2017260

187. Choudhary D, Garg S, Kaur M, Sohal HS, Malhi DS, Kaur L, et al. Advances in the synthesis and bio-applications of pyrazine derivatives: A review. Polycycl Aromat Compd 2023;43:4512-78. https://doi.org/10.1080/10406638.2022.2092873

188. Cui Z, Wang Z, Zheng M, Chen T. Advances in biological production of acetoin: A comprehensive overview. Crit Rev Biotechnol 2022;42:1135-56. https://doi.org/10.1080/07388551.2021.1995319

189. Xiao Z, Lu JR. Generation of acetoin and its derivatives in foods. J Agric Food Chem 2014;62:6487-97. https://doi.org/10.1021/jf5013902

190. Nielsen DR, Yoon SH, Yuan CJ, Prather KL. Metabolic engineering of acetoin and meso?2, 3?butanediol biosynthesis in E. coli. Biotechnol J 2010;5:274-84. https://doi.org/10.1002/biot.200900279

191. Hua D, Xu P. Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 2011;29:654-60. https://doi.org/10.1016/j.biotechadv.2011.05.001

192. Scognamiglio J, Jones L, Letizia CS, Api AM. Fragrance material review on phenylethyl alcohol. Food Chem Toxicol 2012;50:S224-39. https://doi.org/10.1016/j.fct.2011.10.028

193. Qian X, Yan W, Zhang W, Dong W, Ma J, Ochsenreither K, et al. Current status and perspectives of 2-phenylethanol production through biological processes. Crit Rev Biotechnol 2019;39:235-48. https://doi.org/10.1080/07388551.2018.1530634

194. Mitri S, Koubaa M, Maroun RG, Rossignol T, Nicaud JM, Louka N. Bioproduction of 2-phenylethanol through yeast fermentation on synthetic media and on agro-industrial waste and by-products: A review. Foods 2022;11:109. https://doi.org/10.3390/foods11010109

195. Wang Y, Zhang H, Lu X, Zong H, Zhuge B. Advances in 2-phenylethanol production from engineered microorganisms. Biotechnol Adv 2019;37:403-9. https://doi.org/10.1016/j.biotechadv.2019.02.005

196. Garavaglia J, Flôres SH, Pizzolato TM, Peralba MC, Ayub MA. Bioconversion of l-phenylalanine into 2-phenylethanol by Kluyveromyces marxianus in grape must cultures. World J Microbiol Biotechnol 2007;23:1273-9. https://doi.org/10.1007/s11274-007-9361-3

197. Martínez-Avila O, Sánchez A, Font X, Barrena R. Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: Current state and perspectives. Appl Microbiol Biotechnol 2018;102:9991-10004. https://doi.org/10.1007/s00253-018-9384-8

198. King ES, Dunn RL, Heymann H. The influence of alcohol on the sensory perception of red wines. Food Qual Prefer 2013;28:235-43. https://doi.org/10.1016/j.foodqual.2012.08.013

199. Wang D, Chen L, Yang F, Wang H, Wang L. Yeasts and their importance to the flavour of traditional Chinese liquor: A review. J Inst Brew 2019;125:214-21. https://doi.org/10.1002/jib.552

200. Krastanov A, Yeboah PJ, Wijemanna ND, Eddin AS, Ayivi RD, Ibrahim SA. Volatile aromatic flavor compounds in yogurt: A review. In: Current Issues and Advances in the Dairy Industry. Norderstedt, Germany: Books on Demand; 2023. p. 1-23. https://doi.org/10.5772/intechopen.109034

201. Dubal SA, Tilkari YP, Momin S, Borkar IV. Biotechnological routes in flavour industries. Adv Biotechnol 2008;14:20-31. https://doi.org/10.3917/ess.020.0201

202. Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: A state-of-the-art review. Bioresour Bioprocess 2022;9:8. https://doi.org/10.1186/s40643-022-00497-4

203. Liu Q, Liu Y, Chen Y, Nielsen J. Current state of aromatics production using yeast: Achievements and challenges. Curr Opin Biotechnol 2020;65:65-74. https://doi.org/10.1016/j.copbio.2020.01.008

204. Cicero N, Gervasi T, Durazzo A, Lucarini M, Macrì A, Nava V, et al. Mineral and microbiological analysis of spices and aromatic herbs. Foods 2022;11:548. https://doi.org/10.3390/foods11040548

205. Dehsheikh AB, Sourestani MM, Dehsheikh PB, Mottaghipisheh J, Vitalini S, Iriti M. Monoterpenes: Essential oil components with valuable features. Mini Rev Med Chem 2020;20:958-74. https://doi.org/10.2174/1389557520666200122144703

206. Tsolakis N, Bam W, Srai JS, Kumar M. Renewable chemical feedstock supply network design: The case of terpenes. J Clean Prod 2019;222:802-22. https://doi.org/10.1016/j.jclepro.2019.02.108

207. Rincon-Delgadillo M, Lopez-Hernandez A, Wijaya I, Rankin S. Diacetyl levels and volatile profiles of commercial starter distillates and selected dairy foods. J Dairy Sci 2012;95:1128-39. https://doi.org/10.3168/jds.2011-4834

208. Lorenzetto T, Frigatti D, Fabris F, Scarso A. Nanoconfinement effects of micellar media in asymmetric catalysis. Advanced Synth Catal 2022;364:1776-97. https://doi.org/10.1002/adsc.202200225

209. Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, et al. Nature's chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angew Chem Int Ed Engl 2014;53:7124-43. https://doi.org/10.1002/anie.201309508

210. Mojsov KD. Aspergillus enzymes for food industries. In: Gupta VK, editor. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, Netherlands: Elsevier; 2026. p. 215-22. https://doi.org/10.1016/B978-0-444-63505-1.00033-6

211. De Oliveira Felipe L, de Oliveira AM, Bicas JL. Bioaromas-perspectives for sustainable development. Trends Food Sci Technol 2017;62:141-53. https://doi.org/10.1016/j.tifs.2017.02.005

212. Andrew JJ, Dhakal H. Sustainable biobased composites for advanced applications: Recent trends and future opportunities-A critical review. Compos C Open Access 2022;7:100220. https://doi.org/10.1016/j.jcomc.2021.100220

213. Becker J, Wittmann C. Advanced biotechnology: Metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 2015;54:3328-50. https://doi.org/10.1002/anie.201409033

214. Zhang C, Chen X, Too HP. Microbial astaxanthin biosynthesis: Recent achievements, challenges, and commercialization outlook. Appl Microbiol Biotechnol 2020;104:5725-37. https://doi.org/10.1007/s00253-020-10648-2

215. Tullio V. Yeast genomics and its applications in biotechnological processes: What is our present and near future? J Fungi (Basel) 2022;8:752. https://doi.org/10.3390/jof8070752

216. Lee JH, Wendisch VF. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol 2017;257:211-21. https://doi.org/10.1016/j.jbiotec.2016.11.016

217. Liu J, Xu JZ, Rao ZM, Zhang WG. Industrial production of L-lysine in Corynebacterium glutamicum: Progress and prospects. Microbiol Res 2022;262:127101. https://doi.org/10.1016/j.micres.2022.127101

218. Rischer H, Szilvay GR, Oksman-Caldentey KM. Cellular agriculture-industrial biotechnology for food and materials. Curr Opin Biotechnol 2020;61:128-34. https://doi.org/10.1016/j.copbio.2019.12.003

219. Vanholme B, Desmet T, Ronsse F, Rabaey K, Breusegem FV, Mey MD, et al. Towards a carbon-negative sustainable bio-based economy. Front Plant Sci 2013;4:174. https://doi.org/10.3389/fpls.2013.00174

220. Periši? M, Barceló E, Dimic-Misic K, Imani M, Spasojevi? Brki? V. The role of bioeconomy in the future energy scenario: A state-of-the-art review. Sustainability 2022;14:560. https://doi.org/10.3390/su14010560

221. Giri S, Shitut S, Kost C. Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Curr Opin Biotechnol 2020;62:228-38. https://doi.org/10.1016/j.copbio.2019.12.012

222. Sharma P, Singh SP, Iqbal HM, Parra-Saldivar R, Varjani S, Tong YW. Genetic modifications associated with sustainability aspects for sustainable developments. Bioengineered 2022;13:9509-21. https://doi.org/10.1080/21655979.2022.2061146

223. Mehta SS. Commercializing Successful Biomedical Technologies. United Kingdom: Cambridge University Press; 2022. https://doi.org/10.1017/9781108186698

224. Shukla R, Handa M, Pardhi VP. Introduction to pharmaceutical product development. Beg S, Rahman M, Imam SS, Alruwaili NK, Robaian M, Panda SK, editors. Pharmaceutical Drug Product Development and Process Optimization. United Kingdom: Taylor & Francis, Apple Academic Press; 2020. p. 1-32.

225. Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards antibiotic synthesis in continuous-flow processes. Molecules 2023;28:1421. https://doi.org/10.3390/molecules28031421

226. Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, et al. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ Res 2022;204:111967. https://doi.org/10.1016/j.envres.2021.111967

227. Shafi A, Zahoor I. Metabolomics of medicinal and aromatic plants: Goldmines of secondary metabolites for herbal medicine research. In: Aftab T, Hakeem KR, editors. Medicinal and Aromatic Plants. Cambridge: Academic Press; 2021. p. 261-87. https://doi.org/10.1016/B978-0-12-819590-1.00012-4

228. Espro C, Paone E, Mauriello F, Gotti R, Uliassi E, Bolognesi ML, et al. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem Soc Rev 2021;50:11191-207. https://doi.org/10.1039/D1CS00524C

229. Deetae P, Bonnarme P, Spinnler HE, Helinck S. Production of volatile aroma compounds by bacterial strains isolated from different surface- ripened French cheeses. Appl Microbiol Biotechnol 2007;76:1161-71. https://doi.org/10.1007/s00253-007-1095-5

230. Soares M, Christen P, Pandey A, Soccol CR. Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation. Proc Biochem 2000;35:857-61. https://doi.org/10.1016/S0032-9592(99)00144-2

231. Christen P, Meza JC, Revah S. Fruity aroma production in solid state fermentation by Ceratocystis fimbriata: Influence of the substrate type and the presence of precursors. Mycol Res 1997;101:911-9. https://doi.org/10.1017/S0953756297003535

232. Trytek M, J?drzejewski K, Fiedurek J. Bioconversion of α-pinene by a novel cold-adapted fungus Chrysosporium pannorum. J Ind Microbiol Biotechnol 2015;42:181-8. https://doi.org/10.1007/s10295-014-1550-0

233. Trytek M, Fiedurek J, Gromada A. Effect of some abiotic stresses on the biotransformation of α-pinene by a psychrotrophic Chrysosporium pannorum. Biochem Eng J 2016;112:86-93. https://doi.org/10.1016/j.bej.2016.03.010

234. Maróstica MR, Pastore GM. Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 2007;101:345-50. https://doi.org/10.1016/j.foodchem.2005.12.056

235. Li M, Xu X, Bi S, Pan X, Lao F, Wu J. Identification and validation of core microbes associated with key aroma formation in fermented pepper paste (Capsicum annuum L.). Food Res Int 2023;163:112194. https://doi.org/10.1016/j.foodres.2022.112194

236. Medeiros AB, Pandey A, Christen P, Fontoura PS, de Freitas RJ, Soccol CR. Aroma compounds produced by Kluyveromyces marxianus in solid state fermentation on a packed bed column bioreactor. World J Microbiol Biotechnol 2001;17:767-71. https://doi.org/10.1023/A:1013596330389

237. Medeiros AB, Pandey A, Freitas RJ, Christen P, Soccol CR. Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology. Biochem Eng J 2000;6:33-9. https://doi.org/10.1016/S1369-703X(00)00065-6

238. Soares GP, Souza KS, Vilela LF, Schwan RF, Dias DR. γ-decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol. Prep Biochem Biotechnol 2017;47:633-7. https://doi.org/10.1080/10826068.2017.1286601

239. Badee AZ, Helmy SA, Morsy NF. Utilisation of orange peel in the production of α-terpineol by Penicillium digitatum (NRRL 1202). Food Chem 2011;126:849-54. https://doi.org/10.1016/j.foodchem.2010.11.046

240. Tai YN, Xu M, Ren JN, Dong M, Yang ZY, Pan SY, et al. Optimisation of α?terpineol production by limonene biotransformation using Penicillium digitatum DSM 62840. J Sci Food Agric 2016;96:954-61. https://doi.org/10.1002/jsfa.7171

241. Karode B, Patil U, Jobanputra A. Biotransformation of low cost lignocellulosic substrates into vanillin by white rot fungus, Phanerochaete chrysosporium NCIM 1197. Indian J Biotechnol 2013;12:281-3.

242. Dos Santos Barbosa E, Perrone D, do Amaral Vendramini AL, Leite SG. Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid state fermentation. BioResources 2008;3:1042-50. https://doi.org/10.15376/biores.3.4.1042-1050

243. Qadri M, Deshidi R, Shah BA, Bindu K, Vishwakarma RA, Riyaz- Ul-Hassan S. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds. World J Microbiol Biotechnol 2015;31:1647-54. https://doi.org/10.1007/s11274-015-1910-6

244. Lee SY, Kim SH, Hong CY, Park SY, Choi IG. Biotransformation of (-)-α-pinene and geraniol to α-terpineol and p-menthane-3,8-diol by the white rot fungus, Polyporus brumalis. J Microbiol 2015;53:462-7. https://doi.org/10.1007/s12275-015-5081-9

245. Rong S, Yang S, Li Q, Cai B, Guan S, Wang J, et al. Improvement of γ-decalactone production by stimulating the import of ricinoleic acid and suppressing the degradation of γ-decalactone in Saccharomyces cerevisiae. Biocatal Biotransform 2017;35:96-102. https://doi.org/10.1080/10242422.2017.1289182

246. Dufossé L, Feron G, Mauvais G, Bonnarme P, Durand A, Spinnler HE. Production of γ-decalactone and 4-hydroxy-decanoic acid in the genus Sporidiobolus. J Ferment Bioeng 1998;86:169-73. https://doi.org/10.1016/S0922-338X(98)80056-1

247. Chattopadhyay P, Banerjee G, Sen SK. Cleaner production of vanillin through biotransformation of ferulic acid esters from agroresidue by Streptomyces sannanensis. J Clean Prod 2018;182:272-9. https://doi.org/10.1016/j.jclepro.2018.02.043

248. Fadel HH, Mahmoud MG, Asker MM, Lotfy SN. Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electron J Biotechnol 2015;18:5-9. https://doi.org/10.1016/j.ejbt.2014.10.006

249. Gomes N, Braga A, Teixeira JA, Belo I. Impact of lipase-mediated hydrolysis of castor oil on γ-decalactone production by Yarrowia lipolytica. J Am Oil Chem Soc 2013;90:1131-7. https://doi.org/10.1007/s11746-013-2231-2

250. Gomes N, Aguedo M, Teixeira J, Belo I. Oxygen mass transfer in a biphasic medium: Influence on the biotransformation of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica. Biochem Eng J 2007;35:380-6. https://doi.org/10.1016/j.bej.2007.02.002

Article Metrics
34 Views 13 Downloads 47 Total

Year

Month

Related Search

By author names

Similar Articles

Cholesterol oxidase: Role in biotransformation of cholesterol

Lata Kumari, Kanwar S Shamsher

Bioesterification of carboxylic acids by immobilized esterase of Pisum sativum

Rajesh Dattatraya Tak, Amol Ashok Bhosale, Dnyaneshwar Dashrath Gaikwad

Isolation and identification of pathogenic microbes from tomato puree and their delineation of distinctness by molecular techniques

R.K. Garg, N. Batav, N. Silawat, R.K. Singh

Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment

Livleen Shukla, Archna Suman, Priyanka Verma, Ajar Nath Yadav , Anil Kumar Saxena

Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture

Ajar Nath Yadav, Anil Kumar Saxena

Biodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability

Ajar Nath Yadav

Microbes-mediated alleviation of heavy metal stress in crops: Current research and future challenges

Rubee Devi, Tanvir Kaur, Divjot Kour, Macie Hricovec, Rajinikanth Mohan, Neelam Yadav, Pankaj Kumar Rai, Ashutosh Kumar Rai, Ashok Yadav, Manish Kumar, Ajar Nath Yadav

Microbes for Agricultural and Environmental Sustainability

Ajar Nath Yadav, Divjot Kour, Ahmed M. Abdel-Azeem, Murat Dikilitas, Abd El-Latif Hesham, Amrik Singh Ahluwalia

Bioremediation and Waste Management for Environmental Sustainability

Ajar Nath Yadav, Deep Chandra Suyal, Divjot Kour, Vishnu D. Rajput, Ali Asghar Rastegari, Joginder Singh

Microbe-mediated bioremediation: Current research and future challenges

Divjot Kour, Sofia Shareif Khan, Harpreet Kour, Tanvir Kaur, Rubee Devi, Pankaj Kumar Rai, Christina Judy, Chloe McQuestion, Ava Bianchi, Sara Spells, Rajinikanth Mohan, Ashutosh Kumar Rai, Ajar Nath Yadav

Bioremediation— sustainable tool for diverse contaminants management: Current scenario and future aspects

Manali Singh, Kuldeep Jayant, Shivani Bhutani, Anshi Mehra, Tanvir Kaur, Divjot Kour, Deep Chandra Suyal, Sangram Singh, Ashutosh Kumar Rai, Ajar Nath Yadav

Microbes mediated plastic degradation: A sustainable approach for environmental sustainability

Harpreet Kour, Sofia Shareif Khan, Divjot Kour, Shafaq Rasool, Yash Pal Sharma, Pankaj Kumar Rai, Sangram Singh, Kundan Kumar Chaubey, Ashutosh Kumar Rai, Ajar Nath Yadav

Antimicrobial and anticancer potential of soil bacterial metabolites - a comprehensive and updated review

A. Ram Kumar,, S. Kumaresan

Beneficial microorganisms for healthy soils, healthy plants and healthy humans

Ajar Nath Yadav, Divjot Kour, Neelam Yadav

Biotechnological potential of secondary metabolites: Current status and future challenges

Sofia Sharief Khan, Divjot Kour, Seema Ramniwas, Shaveta Singh, Sanjeev Kumar, Satvinder Kour, Roshi Sharma, Harpreet Kour, Shafaq Rasool, Sarvesh Rustagi, Sangram Singh, Kundan Kumar Chaubey, Ashutosh Kumar Rai, Ajar Nath Yadav

Toxins in plant pathogenesis: Understanding the role of toxins in host-pathogen interaction

Seweta Srivastava, Akhilesh Chandrapati, Aakash Gupta, Meenakshi Rana, Arun Karnwal, Kanuri Komala Siva Katyayani, Raghavendra Reddy Manda, Dipshikha Kaushik, Shaptadvipa Bhattacharjee, Ravindra Kumar

Growth and survival of microbes on different material surfaces: Current scenario and future challenges

Divya Chauhan, Devendra Singh, Himanshu Pandey, Dwijesh Chandra Mishra, Suphiya Khan, Minakshi Pandey, Neelam Yadav, Narinderpal Kaur, Sangram Singh, Ashutosh Kumar Rai, Sarvesh Rustagi, Sheikh Shreaz, Rajeshwari Negi, Ajar Nath Yadav

Comparative modeling of sodium- and chloride-dependent GABA transporter 1 and docking studies with natural compounds

Nitya Bankupalli, Shravan Kumar Gunda, Mahmood Shaik

A comprehensive review on global research trends on Aerides genus with reference to Aerides odorata species

Vivek Kumar Paraste, Surendra Sarsaiya,, Umesh C. Mishra, Pragya Sourabh

In silico analysis of garlic phytochemicals binding affinities to skeletal muscle atrophy linked factors through molecular docking

Monika Monika, Sanjeev Gupta, Anita Dua, Ashwani Mittal

Phyllospheric microbiomes for agricultural sustainability

Ajar Nath Yadav,