Bioremediation is well accepted technology for the removal of pollutants produced by the anthropogenic activities and rapid industrialization. Different innovative tools such as microbes could be employed for the bioremediation of toxicity in environment. The microbial based bioremediation is one of the most effective tools due to maximum output, cost-effectiveness, and non-toxic process. Microbes having capability to remediate, habors the different hot spots such as plant microbiomes (epiphytic, endophytic, and rhizospheric), and diverse extreme environments (psychrophilic, thermophilic, xerophilic, halophilic, acidophilic, and alkaliphilic). Microbes are known to degrade the different pollutants including azo dyes, heavy metals, agricultural wastes, pesticides, and polycyclic aromatic hydrocarbons. Thus, utilization of microbes and their consortia is highly accepted and recommended technology for decontamination of environment is a prime concern on account of being eco-friendly, non-hazardous, safe, and cost-effective. In the past two decades, there have been recent advances in bioremediation techniques with the ultimate goal to restore polluted environment for better survival of living beings and protecting the sanctity of nature. In the present review, the current scenario of microbial bioremediation of different pollutants is discussed along with factors affecting the bioremediation.
Singh M, Kuldeep, Bhutani S, Mehra A, Kaur T, Kour D, Suyal DC, Singh S, Rai AK, Yadav AN. Bioremediation a sustainable tool for diverse contaminants management: Current scenario and future aspects. J App Biol Biotech. 2022;10(Suppl 2):48-63. DOI: https://doi.org/10.7324/JABB.2022.10s205
1. Snellinx Z, Nepovím A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D. Biological remediation of explosives and related nitroaromatic compounds. Environ Sci Pollut Res 2002;9:48-61. https://doi.org/10.1007/BF02987316 | |
2. Parales RE, Haddock JD. Biocatalytic degradation of pollutants. Curr Opin Biotechnol 2004;15:374-9. https://doi.org/10.1016/j.copbio.2004.06.003 | |
3. Kamaludeen SP, Megharaj M, Juhasz AL, Sethunathan N, Naidu R. Chromium-microorganism interactions in soils: Remediation implications. In: Ware GW, editor. Reviews of Environmental Contamination and Toxicology. New York, NY: Springer;2003. p. 93-164. https://doi.org/10.1007/0-387-21728-2_4 | |
4. Travis AS. Contaminated earth and water: A legacy of the synthetic dyestuffs industry. Ambix 2002;49:21-50. https://doi.org/10.1179/amb.2002.49.1.21 | |
5. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet 2006;368:2167-78. https://doi.org/10.1016/S0140-6736(06)69665-7 | |
6. Sturman PJ, Stewart PS, Cunningham AB, Bouwer EJ, Wolfram JH. Engineering scale-up of in situ bioremediation processes: A review. J Contam Hydrol 1995;19:171-203. https://doi.org/10.1016/0169-7722(95)00017-P | |
7. Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, et al. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. Environ Sci Poll Res 2021;28:24917-39. https://doi.org/10.1007/s11356-021-13252-7 | |
8. Vidali M. Bioremediation. An overview. Pure Appl Chem 2001;73:1163-72. https://doi.org/10.1351/pac200173071163 | |
9. Wackett LP, Hershberger CD. Biocatalysis and biodegradation: Microbial transformation of organic compounds. Washington, DC: ASM Press;2001. https://doi.org/10.1128/9781555818036 | |
10. Benghazi L, Record E, Suárez A, Gomez-Vidal JA, Martínez J, de la Rubia T. Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 2014;30:201-11. https://doi.org/10.1007/s11274-013-1440-z | |
11. Gupta A, Kaushik C, Kaushik A. Degradation of hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull Environ Contam Toxicol 2001;66:794-800. https://doi.org/10.1007/s001280078 | |
12. Kiamarsi Z, Soleimani M, Nezami A, Kafi M. Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils. Int J Environ Sci Technol 2019;16:6805-16. https://doi.org/10.1007/s13762-018-2087-y | |
13. Wang HY, Fan BQ, Hu QX, Yin ZW. Effect of inoculation with Penicillium expansum on the microbial community and maturity of compost. Bioresour Technol 2011;102:11189-93. https://doi.org/10.1016/j.biortech.2011.07.044 | |
14. Gajera HP, Bambharolia RP, Hirpara DG, Patel SV, Golakiya BA. Molecular identification and characterization of novel Hypocrea koningii associated with azo dyes decolorization and biodegradation of textile dye effluents. Process Saf Environ Prot 2015;98:406-16. https://doi.org/10.1016/j.psep.2015.10.005 | |
15. Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Park H, et al. Zobellella maritima sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium, isolated from beach sediment. Int J Syst Evol Microbiol 2018;68:2279-84. https://doi.org/10.1099/ijsem.0.002825 | |
16. Chibuike G, Obiora S. Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int J Environ Sci 2013;4:223239. | |
17. Bhandari S, Poudel DK, Marahatha R, Dawadi S, Khadayat K, Phuyal S, et al. Microbial enzymes used in bioremediation. J Chem 2021;2021:1-17. https://doi.org/10.1155/2021/8849512 | |
18. Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, et al. Himalayan microbiomes for agro-environmental sustainability: Current perspectives and future challenges. Microb Ecol 2021. https://doi.org/10.1007/s00248-021-01849-x https://doi.org/10.1007/s00248-021-01849-x | |
19. Pant G, Garlapati D, Agrawal U, Prasuna RG, Mathimani T, Pugazhendhi A. Biological approaches practised using genetically engineered microbes for a sustainable environment: A review. J Hazard Mater 2021;405:124631. https://doi.org/10.1016/j.jhazmat.2020.124631 | |
20. Xu Z, Lei Y, Patel J. Bioremediation of soluble heavy metals with recombinant Caulobacter crescentus. Bioeng Bugs 2010;1:207-12. https://doi.org/10.4161/bbug.1.3.11246 | |
21. Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 2011;11:82. https://doi.org/10.1186/1472-6750-11-82 | |
22. Liu S, Zhang F, Chen J, Sun G. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 2011;23:1544-50. https://doi.org/10.1016/S1001-0742(10)60570-0 | |
23. Chaturvedi S, Chandra R, Rai V. Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecol Eng 2006;27:202-7. https://doi.org/10.1016/j.ecoleng.2006.02.008 | |
24. Bhakta JN, Munekage Y, Ohnishi K, Jana BB, Balcazar JL. Isolation and characterization of cadmium- and arsenic-absorbing bacteria for bioremediation. Water Air Soil Pollut 2014;225:2151. https://doi.org/10.1007/s11270-014-2151-2 | |
25. Anwar F, Hussain S, Ramzan S, Hafeez F, Arshad M, Imran M, et al. Characterization of Reactive Red-120 decolorizing bacterial strain Acinetobacter junii FA10 capable of simultaneous removal of azo dyes and hexavalent chromium. Water Air Soil Pollut 2014;225:2017. https://doi.org/10.1007/s11270-014-2017-7 | |
26. Pushkar B, Sevak P, Singh A. Bioremediation treatment process through mercury-resistant bacteria isolated from Mithi river. Appl Water Sci 2019;9:117. https://doi.org/10.1007/s13201-019-0998-5 | |
27. Dey U, Chatterjee S, Mondal NK. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 2016;10:1-7. https://doi.org/10.1016/j.btre.2016.02.002 | |
28. Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut 2018;241:254-64. https://doi.org/10.1016/j.envpol.2018.05.070 | |
29. Gupta A, Kaushik C, Kaushik A. Degradation of hexachlorocyclohexane (HCH;α, β, γ and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biol Biochem 2000;32:1803-5. https://doi.org/10.1016/S0038-0717(00)00072-9 | |
30. Maliji D, Olama Z, Holail H. Environmental studies on the microbial degradation of oil hydrocarbons and its application in Lebanese oil polluted coastal and marine ecosystem. Int J Curr Microbiol Appl Sci 2013;2:1-18. | |
31. Cerqueira VS, Hollenbach EB, Maboni F, Camargo FA, Peralba MC, Bento FM. Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation. World J Microbiol Biotechnol 2012;28:1203-22. https://doi.org/10.1007/s11274-011-0923-z | |
32. Kehinde FO, Isaac SA. Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented with pig dung. Afr J Microbiol Res 2016;10:1637-44. https://doi.org/10.5897/AJMR2016.8249 | |
33. Adebajo S, Balogun S, Akintokun A. Decolourization of vat dyes by bacterial isolates recovered from local textile mills in Southwest, Nigeria. Microbiol Res J Int 2017 ;18:1-8. https://doi.org/10.9734/MRJI/2017/29656 | |
34. Eskandary S, Tahmourespour A, Hoodaji M, Abdollahi A. The synergistic use of plant and isolated bacteria to clean up polycyclic aromatic hydrocarbons from contaminated soil. J Environ Health Sci Eng 2017;15:12. https://doi.org/10.1186/s40201-017-0274-2 | |
35. Das A, Mishra S, Verma VK. Enhanced biodecolorization of textile dye remazol navy blue using an isolated bacterial strain Bacillus pumilus HKG212 under improved culture conditions. J Biochem Technol 2016;6:962-9. | |
36. Phulpoto AH, Qazi MA, Mangi S, Ahmed S, Kanhar NA. Biodegradation of oil-based paint by Bacillus species monocultures isolated from the paint warehouses. Int J Environ Sci Technol 2016;13:125-34. https://doi.org/10.1007/s13762-015-0851-9 | |
37. Dash HR, Mangwani N, Das S. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 2014;21:2642-53. https://doi.org/10.1007/s11356-013-2206-8 | |
38. Chen W, Li W, Wang T, Wen Y, Shi W, Zhang W, et al. Isolation of functional bacterial strains from chromium-contaminated site and Singh, et al.: Bioremediation for diverse contaminants management 2022;10(Suppl 2):48-63 59 | |
bioremediation potentials. J Environ Manag 2022;307:114557. https://doi.org/10.1016/j.jenvman.2022.114557 | |
39. Wong JW, Lai KM, Wan CK, Ma KK, Fang M. Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water Air Soil Pollut 2002;139:1-13. https://doi.org/10.1023/A:1015883924901 | |
40. Jami M, Lai Q, Ghanbari M, Moghadam MS, Kneifel W, Domig KJ. Celeribacter persicus sp. nov., a polycyclic-aromatic-hydrocarbon-degrading bacterium isolated from mangrove soil. Int J Syst Evol Microbiol 2016;66:1875-80. https://doi.org/10.1099/ijsem.0.000961 | |
41. Ghoreishi G, Alemzadeh A, Mojarrad M, Djavaheri M. Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran. Sustain Environ Res 2017;27:195-202. https://doi.org/10.1016/j.serj.2017.05.002 | |
42. Ghosh A, Ali S, Mukherjee SK, Saha S, Kaviraj A. Bioremediation of copper and nickel from freshwater fish Cyprinus carpio using rhiozoplane bacteria isolated from Pistia stratiotes. Environ Process 2020;7:443-61. https://doi.org/10.1007/s40710-020-00436-5 | |
43. Zhang H, Tang J, Wang L, Liu J, Gurav RG, Sun K. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. J Environ Sci 2016;47:7-13. https://doi.org/10.1016/j.jes.2015.12.023 | |
44. Zhang S, Sun C, Xie J, Wei H, Hu Z, Wang H. Defluviimonas pyrenivorans sp. nov., a novel bacterium capable of degrading polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2018;68:957-61. https://doi.org/10.1099/ijsem.0.002629 | |
45. Kang CH, Oh SJ, Shin Y, Han SH, Nam IH, So JS. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecol Eng 2015;74:402-7. https://doi.org/10.1016/j.ecoleng.2014.10.009 | |
46. Liu G, Zhou J, Chen C, Wang J, Jin R, Lv H. Decolorization of azo dyes by Geobacter metallireducens. Appl Microbiol Biotechnol 2013;97:7935-42. https://doi.org/10.1007/s00253-012-4545-7 | |
47. Mehta A, Bhardwaj KK, Shaiza M, Gupta R. Isolation, characterization and identification of pesticide degrading bacteria from contaminated soil for bioremediation. Biol Futura 2021;72:317-23. https://doi.org/10.1007/s42977-021-00080-6 | |
48. Hassan M, Alam M, Anwar M. Biodegradation of textile azo dyes by bacteria isolated from dyeing industry effluent. Int Res J Biol Sci 2013;2:27-31. | |
49. Sari IP, Simarani K. Comparative static and shaking culture of metabolite derived from methyl red degradation by Lysinibacillus fusiformis strain W1B6. R Soc Open Sci 2019;6:190152. https://doi.org/10.1098/rsos.190152 | |
50. Peña-Montenegro TD, Lozano L, Dussán J. Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand Genomic Sci 2015;10:1-10. https://doi.org/10.1186/1944-3277-10-2 | |
51. Cui Z, Gao W, Xu G, Luan X, Li Q, Yin X, et al. Marinobacter aromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from sea sediment. Int J Syst Evol Microbiol 2016;66:353-9. https://doi.org/10.1099/ijsem.0.000722 | |
52. Sánchez-Castro I, Amador-García A, Moreno-Romero C, López-Fernández M, Phrommavanh V, Nos J, et al. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes. J Environ Radioact 2017;166:130-41. https://doi.org/10.1016/j.jenvrad.2016.03.016 | |
53. Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Park H, et al. Oceanimonas marisflavi sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 2018;68:2990-5. https://doi.org/10.1099/ijsem.0.002932 | |
54. Bezza FA, Nkhalambayausi Chirwa EM. Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Saf Environ Prot 2015;98:354-64. https://doi.org/10.1016/j.psep.2015.09.004 | |
55. Rawat M, Rai J. Adsorption of heavy metals by Paenibacillus validus Strain MP5 isolated from industrial effluent-polluted soil. Bioremediat J 2012;16:66-73. https://doi.org/10.1080/10889868.2012.665959 | |
56. Shukla A, Parmar P, Saraf M, Patel B. Isolation and screening of bacteria from radionuclide containing soil for bioremediation of contaminated sites. Environ Sustain 2019;2:255-64. https://doi.org/10.1007/s42398-019-00068-y | |
57. Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, et al. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environ Sci Pollut Res 2016;23:220-33. https://doi.org/10.1007/s11356-015-5354-1 | |
58. Kalita D, Joshi SR. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol Rep 2017;16:48-57. https://doi.org/10.1016/j.btre.2017.11.003 | |
59. Paranthaman S, Karthikeyan B. Bioremediation of heavy metal in paper mill effluent using Pseudomonas spp. Int J Microbiol 2015;1:1-5. | |
60. Safiyanu I, Isah AA, Abubakar U, Rita Singh M. Review on comparative study on bioremediation for oil spills using microbes. Res J Pharm Biol Chem Sci 2015;6:783-90. | |
61. Zhou M, Ye H, Zhao X. Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB for bioremediation of wastewater. Biotechnol Bioproc Eng 2014;19:231-8. https://doi.org/10.1007/s12257-013-0580-1 | |
62. Teng Y, Shen Y, Luo Y, Sun X, Sun M, Fu D, et al. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 2011;186:1271-6. https://doi.org/10.1016/j.jhazmat.2010.11.126 | |
63. Guisado IM, Purswani J, Gonzalez-Lopez J, Pozo C. Physiological and genetic screening methods for the isolation of methyl tert-butyl ether-degrading bacteria for bioremediation purposes. Int Biodeterior Biodegr 2015;97:67-74. https://doi.org/10.1016/j.ibiod.2014.11.008 | |
64. Chaudhary DK, Jeong SW, Kim J. Sphingobium naphthae sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017;67:2986-93. https://doi.org/10.1099/ijsem.0.002064 | |
65. Böltner D, Moreno?Morillas S, Ramos JL. 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane?degrading Sphingomonas strains. Environ Microbiol 2005;7:1329-38. https://doi.org/10.1111/j.1462-5822.2005.00820.x | |
66. Chaudhary DK, Kim J. Sphingomonas olei sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017;67:2731-8. https://doi.org/10.1099/ijsem.0.002010 | |
67. Zahoor A, Rehman A. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 2009;21:814-20. https://doi.org/10.1016/S1001-0742(08)62346-3 | |
68. Li L, Shang X, Sun X, Xiao X, Xue J, Gao Y, et al. Bioremediation potential of hexavalent chromium by a novel bacterium Stenotrophomonas acidaminiphila 4-1. Environ Technol Innov 2021;22:101409. https://doi.org/10.1016/j.eti.2021.101409 | |
69. Misra CS, Appukuttan D, Kantamreddi VS, Rao AS, Apte SK. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioengineered 2012;3:44-8. https://doi.org/10.4161/bbug.3.1.18878 | |
70. Ji X, Ripp S, Layton A, Sayler G, Debruyn J. Assessing long term effects of bioremediation: Soil bacterial communities 14 years after polycyclic aromatic hydrocarbon contamination and introduction of a genetically engineered microorganism. J Bioremed Biodeg 2013;4:1-8. | |
71. Zuo Z, Gong T, Che Y, Liu R, Xu P, Jiang H, et al. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation 2015;26:223-33. https://doi.org/10.1007/s10532-015-9729-2 | |
72. Geva P, Kahta R, Nakonechny F, Aronov S, Nisnevitch M. Increased copper bioremediation ability of new transgenic and adapted Saccharomyces cerevisiae strains. Environ Sci Pollut Res 2016;23:19613-25. https://doi.org/10.1007/s11356-016-7157-4 | |
73. Mardani G, Mahvi AH, Hashemzadeh-Chaleshtori M, Naseri S, Dehghani MH, Ghasemi-Dehkordi P. Application of genetically engineered dioxygenase producing Pseudomonas putida on decomposition of oil from spiked soil. Jundishapur. J Nat Pharm Prod 2017;12:e64313. https://doi.org/10.5812/jjnpp.64313 | |
74. Liu Y, Zhang H, He X, Liu J. Genetically engineered methanotroph as a platform for bioaugmentation of chemical pesticide contaminated soil. ACS Synth Biol 2021;10:487-94. https://doi.org/10.1021/acssynbio.0c00532 | |
75. Garg S. Bioremediation of agricultural, municipal, and industrial wastes. In: Bhakta J, editor. Waste Management: Concepts, Methodologies, Tools, and Applications. Hershey: IGI Global; 2020. p. 948-70. https://doi.org/10.4018/978-1-7998-1210-4.ch043 | |
76. Bhatnagar A, Sillanpää M, Witek-Krowiak A. Agricultural waste peels as versatile biomass for water purification - A review. Chem Eng J 2015;270:244-71. https://doi.org/10.1016/j.cej.2015.01.135 | |
77. Suthar S. Bioremediation of agricultural wastes through vermicomposting. Bioremediat J 2009;13:21-8. https://doi.org/10.1080/10889860802690513 | |
78. Sarkar S, Banerjee R, Chanda S, Das P, Ganguly S, Pal S. Effectiveness of inoculation with isolated Geobacillus strains in the thermophilic stage of vegetable waste composting. Bioresour Technol 2010;101:2892-5. https://doi.org/10.1016/j.biortech.2009.11.095 | |
79. Zhang J, Zeng G, Chen Y, Yu M, Huang H, Fan C, et al. Impact of Phanerochaete chrysosporium inoculation on indigenous bacterial communities during agricultural waste composting. Appl Microbiol Biotechnol 2013;97:3159-69. https://doi.org/10.1007/s00253-012-4124-y | |
80. Kumar M, Revathi K, Khanna S. Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28. Carbohydr Polym 2015;134:761-6. https://doi.org/10.1016/j.carbpol.2015.08.072 | |
81. Asgher M, Wahab A, Bilal M, Nasir Iqbal HM. Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatal Agric Biotechnol 2016;6:195-201. https://doi.org/10.1016/j.bcab.2016.04.003 | |
82. Pathania S, Sharma N, Handa S. Immobilization of co-culture of Saccharomyces cerevisiae and Scheffersomyces stipitis in sodium alginate for bioethanol production using hydrolysate of apple pomace under separate hydrolysis and fermentation. Biocatal Biotransform 2017;35:450-9. https://doi.org/10.1080/10242422.2017.1368497 | |
83. Tri CL, Khuong LD, Kamei I. The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. Int Biodeterior Biodegr 2018;133:86-92. https://doi.org/10.1016/j.ibiod.2018.06.010 | |
84. Stoknes K, Scholwin F, Jasinska A, Wojciechowska E, Mleczek M, Hanc A, et al. Cadmium mobility in a circular food-to-waste-to-food system and the use of a cultivated mushroom (Agaricus subrufescens) as a remediation agent. J Environ Manag 2019;245:48-54. https://doi.org/10.1016/j.jenvman.2019.03.134 | |
85. Ni'matuzahroh, Sari SK, Trikurniadewi N, Ibrahim SN, Khiftiyah AM, Abidin AZ, et al. Bioconversion of agricultural waste hydrolysate from lignocellulolytic mold into biosurfactant by Achromobacter sp. BP(1)5. Biocatal Agric Biotechnol 2020;24:101534. https://doi.org/10.1016/j.bcab.2020.101534 | |
86. Du X, Li B, Chen K, Zhao C, Xu L, Yang Z, et al. Rice straw addition and biological inoculation promote the maturation of aerobic compost of rice straw biogas residue. Biomass Convers Biorefin 2021;11:1885-96. https://doi.org/10.1007/s13399-019-00587-y | |
87. Gan S, Lau EV, Ng HK. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 2009;172:532-49. https://doi.org/10.1016/j.jhazmat.2009.07.118 | |
88. Hota S, Sharma GK, Subrahmanyam G, Kumar A, Shabnam AA, Baruah P, et al. Fungal communities for bioremediation of contaminated soil for sustainable environments. In: Yadav AN, editor. Recent Trends in Mycological Research: Environmental and Industrial Perspective. Vol. 2. Cham: Springer International Publishing; 2021. p. 27-42. https://doi.org/10.1007/978-3-030-68260-6_2 | |
89. Teng Y, Luo Y, Sun M, Liu Z, Li Z, Christie P. Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol 2010;101:3437-43. https://doi.org/10.1016/j.biortech.2009.12.088 | |
90. Zhang J, Lin X, Liu W, Wang Y, Zeng J, Chen H. Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils. J Environ Sci 2012;24:1476-82. https://doi.org/10.1016/S1001-0742(11)60951-0 | |
91. Wu M, Chen L, Tian Y, Ding Y, Dick WA. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Pollut 2013;178:152-8. https://doi.org/10.1016/j.envpol.2013.03.004 | |
92. Zafra G, Absalón ÁE, Cuevas MD, Cortés-Espinosa DV. Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water Air Soil Pollut 2014;225:1826. https://doi.org/10.1007/s11270-013-1826-4 | |
93. Mao J, Guan W. Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric Scand B Soil Plant Sci 2016;66:399-405. https://doi.org/10.1080/09064710.2015.1137629 | |
94. Chebbi A, Hentati D, Zaghden H, Baccar N, Rezgui F, Chalbi M, et al. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int Biodeterior Biodegr 2017;122:128-40. https://doi.org/10.1016/j.ibiod.2017.05.006 | |
95. Koshlaf E, Shahsavari E, Haleyur N, Mark Osborn A, Ball AS. Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation. Geoderma 2019;338:216-25. https://doi.org/10.1016/j.geoderma.2018.12.001 | |
96. Mandree P, Masika W, Naicker J, Moonsamy G, Ramchuran S, Lalloo R. Bioremediation of polycyclic aromatic hydrocarbons from industry contaminated soil using indigenous Bacillus spp. Processes 2021;9:1606. https://doi.org/10.3390/pr9091606 | |
97. Lin SY, Shen FT, Lai WA, Zhu ZL, Chen WM, Chou JH, et al. Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2012;62:1581-6. https://doi.org/10.1099/ijs.0.034728-0 | |
98. Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA. Better together: Engineering and application of microbial symbioses. Curr Opin Biotechnol 2015;36:40-9. https://doi.org/10.1016/j.copbio.2015.08.008 | |
99. Faust K, Raes J. Microbial interactions: From networks to models. Nat Rev Microbiol 2012;10:538-50. https://doi.org/10.1038/nrmicro2832 | |
100. HuiJie L, Cai-Yun Y, Yun T, Guang-Hui L, Tian-Ling Z. Using population dynamics analysis by DGGE to design the bacterial consortium isolated from mangrove sediments for biodegradation of PAHs. Int Biodeterior Biodegr 2011;65:269-75. https://doi.org/10.1016/j.ibiod.2010.11.010 | |
101. Wanapaisan P, Laothamteep N, Vejarano F, Chakraborty J, Shintani M, Muangchinda C, et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J Hazard Mater 2018;342:561-70. https://doi.org/10.1016/j.jhazmat.2017.08.062 | |
102. Gupta VK, Suhas. Application of low-cost adsorbents for dye removal - A review. J Environ Manag 2009;90:2313-42. https://doi.org/10.1016/j.jenvman.2008.11.017 | |
103. Hunger K. Industrial Dyes: Chemistry, Properties, Applications. Hoboken, NJ: John Wiley & Sons; 2007. | |
104. Ajaz M, Shakeel S, Rehman A. Microbial use for azo dye degradation - A strategy for dye bioremediation. Int Microbiol 2020;23:149-59. https://doi.org/10.1007/s10123-019-00103-2 | |
105. Singh RL, Singh PK, Singh RP. Enzymatic decolorization and degradation of azo dyes - A review. Int Biodeterior Biodegr 2015;104:21-31. https://doi.org/10.1016/j.ibiod.2015.04.027 | |
106. Delsarte I, Veignie E, Landkocz Y, Rafin C. Bioremediation performance of two telluric saprotrophic fungi, Penicillium brasilianum and Fusarium solani, in aged dioxin-contaminated soil microcosms. Soil Sediment Contamin Int J 2021;30:743-56. https://doi.org/10.1080/15320383.2021.1890692 | |
107. Barnes NM, Khodse VB, Lotlikar NP, Meena RM, Damare SR. Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech 2017;8:21. https://doi.org/10.1007/s13205-017-1043-8 | |
108. Rubilar O, Tortella G, Cea M, Acevedo F, Bustamante M, Gianfreda L, et al. Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi. Biodegradation 2011;22:31-41. https://doi.org/10.1007/s10532-010-9373-9 | |
109. Talukdar D, Sharma R, Jaglan S, Vats R, Kumar R, Mahnashi MH, et al. Identification and characterization of cadmium resistant fungus Singh, et al.: Bioremediation for diverse contaminants management 2022;10(Suppl 2):48-63 61 | |
isolated from contaminated site and its potential for bioremediation. Environ Technol Innov 2020;17:100604. https://doi.org/10.1016/j.eti.2020.100604 | |
110. Chaudhary P, Chhokar V, Choudhary P, Kumar A, Beniwal V. Optimization of chromium and tannic acid bioremediation by Aspergillus niveus using Plackett-Burman design and response surface methodology. AMB Express 2017;7:1-12. https://doi.org/10.1186/s13568-017-0504-0 | |
111. Paria K, Chakraborty SK. Eco-potential of Aspergillus penicillioides (F12): Bioremediation and antibacterial activity. SN Appl Sci 2019;1:1515. https://doi.org/10.1007/s42452-019-1545-6 | |
112. Passarini MR, Rodrigues MV, da Silva M, Sette LD. Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Marine Pollut Bull 2011;62:364-70. https://doi.org/10.1016/j.marpolbul.2010.10.003 | |
113. Feng M, Zhou J, Yu X, Mao W, Guo Y, Wang H. Insights into biodegradation mechanisms of triphenyl phosphate by a novel fungal isolate and its potential in bioremediation of contaminated river sediment. J Hazard Mater 2022;424:127545. https://doi.org/10.1016/j.jhazmat.2021.127545 | |
114. Silambarasan S, Abraham J. Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 2012;224:1369. https://doi.org/10.1007/s11270-012-1369-0 | |
115. Prigione V, Trocini B, Spina F, Poli A, Romanisio D, Giovando S, et al. Fungi from industrial tannins: Potential application in biotransformation and bioremediation of tannery wastewaters. Appl Microbiol Biotechnol 2018;102:4203-16. https://doi.org/10.1007/s00253-018-8876-x | |
116. Benguenab A, Chibani A. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecol Sin 2021;41:416-23. https://doi.org/10.1016/j.chnaes.2020.10.008 | |
117. Rosales E, Pérez-Paz A, Vázquez X, Pazos M, Sanromán MA. Isolation of novel benzo[a]anthracene-degrading microorganisms and continuous bioremediation in an expanded-bed bioreactor. Bioproc Biosyst Eng 2012;35:851-5. https://doi.org/10.1007/s00449-011-0669-x | |
118. Verma AK, Raghukumar C, Verma P, Shouche YS, Naik CG. Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation 2010;21:217-33. https://doi.org/10.1007/s10532-009-9295-6 | |
119. Chakroun H, Mechichi T, Martinez MJ, Dhouib A, Sayadi S. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds. Proc Biochem 2010;45:507-13. https://doi.org/10.1016/j.procbio.2009.11.009 | |
120. Badali H, Prenafeta-Boldu FX, Guarro J, Klaassen CH, Meis JF, de Hoog GS. Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in the bioremediation of volatile aromatic hydrocarbons. Fungal Biol 2011;115:1019-29. https://doi.org/10.1016/j.funbio.2011.04.005 | |
121. Erguven GO. Comparison of some soil fungi in bioremediation of herbicide acetochlor under agitated culture media. Bull Environ Contam Toxicol 2018;100:570-5. https://doi.org/10.1007/s00128-018-2280-1 | |
122. Song Z, Song L, Shao Y, Tan L. Degradation and detoxification of azo dyes by a salt-tolerant yeast Cyberlindnera samutprakarnensis S4 under high-salt conditions. World J Microbiol Biotechnol 2018;34:131. https://doi.org/10.1007/s11274-018-2515-7 | |
123. Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA. Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 2013;117:268-74. https://doi.org/10.1016/j.funbio.2013.02.004 | |
124. Sharma S, Malaviya P. Bioremediation of tannery wastewater by chromium resistant fungal isolate Fusarium chlamydosporium SPFS2-g. Curr World Environ 2014;9:721-7. https://doi.org/10.12944/CWE.9.3.21 | |
125. Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegr 2017;116:48-57. https://doi.org/10.1016/j.ibiod.2016.09.030 | |
126. Malaviya P, Rathore VS. Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresour Technol 2007;98:3647-51. https://doi.org/10.1016/j.biortech.2006.11.021 | |
127. Mitra J, Mukherjee PK, Kale SP, Murthy NB. Bioremediation of DDT in soil by genetically improved strains of soil fungus Fusarium solani. Biodegradation 2001;12:235-45. https://doi.org/10.1023/A:1013117406216 | |
128. Rigas F, Papadopoulou K, Dritsa V, Doulia D. Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 2007;140:325-32. https://doi.org/10.1016/j.jhazmat.2006.09.035 | |
129. Coelho E, Reis TA, Cotrim M, Mullan TK, Corrêa B. Resistant fungi isolated from contaminated uranium mine in Brazil shows a high capacity to uptake uranium from water. Chemosphere 2020;248:126068. https://doi.org/10.1016/j.chemosphere.2020.126068 | |
130. Hong J, Park J, Gadd G. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol 2010;108:2030-40. https://doi.org/10.1111/j.1365-2672.2009.04613.x | |
131. Novotný ?, Erbanová P, Cajthaml T, Rothschild N, Dosoretz C, Šašek V. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 2000;54:850-3. https://doi.org/10.1007/s002530000432 | |
132. Cui Z, Zhang X, Yang H, Sun L. Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp. J Environ Chem Eng 2017;5:3616-21. https://doi.org/10.1016/j.jece.2017.07.021 | |
133. Maamar A, Lucchesi ME, Debaets S, van Long NN, Quemener M, Coton E, et al. Highlighting the crude oil bioremediation potential of marine fungi isolated from the Port of Oran (Algeria). Diversity 2020;12:196. https://doi.org/10.3390/d12050196 | |
134. Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M, et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Sci Total Environ 2017;576:310-8. https://doi.org/10.1016/j.scitotenv.2016.10.064 | |
135. Zapana-Huarache SV, Romero-Sánchez CK, Gonza AP, Torres-Huaco FD, Rivera AM. Chromium (VI) bioremediation potential of filamentous fungi isolated from Peruvian tannery industry effluents. Braz J Microbiol 2020;51:271-8. https://doi.org/10.1007/s42770-019-00209-9 | |
136. Bhargavi SD, Savitha J. Arsenate resistant Penicillium coffeae: A potential fungus for soil bioremediation. Bull Environ Contam Toxicol 2014;92:369-73. https://doi.org/10.1007/s00128-014-1212-y | |
137. Tigini V, Prigione V, Di Toro S, Fava F, Varese GC. Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Fact 2009;8:54. https://doi.org/10.1186/1475-2859-8-5 | |
138. Mancera-López ME, Esparza-García F, Chávez-Gómez B, Rodríguez-Vázquez R, Saucedo-Castañeda G, Barrera-Cortés J. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeterior Biodegr 2008;61:151-60. https://doi.org/10.1016/j.ibiod.2007.05.012 | |
139. Mann J, Markham JL, Peiris P, Nair N, Spooner-Hart RN, Holford P. Screening and selection of fungi for bioremediation of olive mill wastewater. World J of Microbiol Biotechnol 2010;26:567-71. https://doi.org/10.1007/s11274-009-0200-6 | |
140. Skariyachan S, Prasanna A, Manjunath SP, Karanth SS, Nazre A. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India. Environ Monit Assess 2016;188:121. https://doi.org/10.1007/s10661-016-5125-6 | |
141. Godoy P, Reina R, Calderón A, Wittich RM, García-Romera I, Aranda E. Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. Environ Sci Pollut Res. 2016;23:20985-96. https://doi.org/10.1007/s11356-016-7257-1 | |
142. Sharma R, Talukdar D, Bhardwaj S, Jaglan S, Kumar R, Kumar R, et al. Bioremediation potential of novel fungal species isolated from wastewater for the removal of lead from liquid medium. Environ Technol Innov 2020;18:100757. https://doi.org/10.1016/j.eti.2020.100757 | |
143. Husaini A, Roslan HA, Hii KS, Ang CH. Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J Microbiol Biotechnol 2008;24:2789-97. https://doi.org/10.1007/s11274-008-9806-3 | |
144. Kumar V, Dwivedi SK. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater. Ecotoxicol Environ Saf 2019;185:109734. https://doi.org/10.1016/j.ecoenv.2019.109734 | |
145. Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N. Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 2011;51:482-7. https://doi.org/10.1007/s12088-011-0110-9 | |
146. Huang Y, Wang J. Degradation and mineralization of DDT by the ectomycorrhizal fungi, Xerocomus chrysenteron. Chemosphere 2013;92:760-4. https://doi.org/10.1016/j.chemosphere.2013.04.002 | |
147. Qu Y, Shi S, Ma F, Yan B. Decolorization of Reactive Dark Blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresour Technol 2010;101:8016-23. https://doi.org/10.1016/j.biortech.2010.05.025 | |
148. Liu G, Zhou J, Wang J, Wang X, Jin R, Lv H. Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Appl Microbiol Biotechnol 2011;91:417-24. https://doi.org/10.1007/s00253-011-3273-8 | |
149. Kolekar YM, Kodam KM. Decolorization of textile dyes by Alishewanella sp. KMK6. Appl Microbiol Biotechnol 2012;95:521-9. https://doi.org/10.1007/s00253-011-3698-0 | |
150. Revathi S, Kumar SM, Santhanam P, Kumar SD, Son N, Kim MK. Bioremoval of the indigo blue dye by immobilized microalga Chlorella vulgaris (PSBDU06). J Sci Ind Res 2017;76:50-6. | |
151. Ali SS, Al-Tohamy R, Xie R, El-Sheekh MM, Sun J. Construction of a new lipase- and xylanase-producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. Bioresour Technol 2020;313:123631. https://doi.org/10.1016/j.biortech.2020.123631 | |
152. El-Sheekh MM, El-Shanshoury AR, Abou-El-Souod GW, Gharieb DY, El Shafay SM. Decolorization of dyestuffs by some species of green algae and cyanobacteria and its consortium. Int J Environ Sci Technol 2021;18:3895-906. https://doi.org/10.1007/s13762-020-03108-x | |
153. Duan Q, Lee J, Liu Y, Chen H, Hu H. Distribution of heavy metal pollution in surface soil samples in China: A graphical review. Bull Environ Contam Toxicol 2016;97:303-9. https://doi.org/10.1007/s00128-016-1857-9 | |
154. Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 2010;174:1-8. https://doi.org/10.1016/j.jhazmat.2009.09.113 | |
155. Deshmukh R, Khardenavis AA, Purohit HJ. Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 2016;56:247-64. https://doi.org/10.1007/s12088-016-0584-6 | |
156. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015;7:2189-212. https://doi.org/10.3390/su7022189 | |
157. Kumar V, Singh S, Singh G, Dwivedi S. Exploring the cadmium tolerance and removal capability of a filamentous fungus Fusarium solani. Geomicrobiol J 2019;36:782-91. https://doi.org/10.1080/01490451.2019.1627443 | |
158. Kumar V, Dwivedi SK. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ Sci Pollut Res 2021;28:10375-412. https://doi.org/10.1007/s11356-020-11491-8 | |
159. Singh A, Kumari R, Yadav AN. Fungal Secondary Metabolites for Bioremediation of Hazardous Heavy Metals. In: Yadav AN, editor. Recent Trends in Mycological Research: Environmental and Industrial Perspective. Vol. 2. Cham: Springer International Publishing; 2021. p. 65-98. https://doi.org/10.1007/978-3-030-68260-6_4 | |
160. Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, et al. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 2010;101:8599-605. https://doi.org/10.1016/j.biortech.2010.06.085 | |
161. Kamika I, Momba MN. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol 2013;13:28. https://doi.org/10.1186/1471-2180-13-28 | |
162. Sen SK, Raut S, Dora TK, Mohapatra PK. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. J Hazard Mater 2014;265:47-60. https://doi.org/10.1016/j.jhazmat.2013.11.036 | |
163. Tiwary M, Dubey AK. Cypermethrin bioremediation in presence of heavy metals by a novel heavy metal tolerant strain, Bacillus sp. AKD1. Int Biodeterior Biodegr 2016;108:42-7. https://doi.org/10.1016/j.ibiod.2015.11.025 | |
164. Nayak A, Panda S, Basu A, Dhal N. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediat 2018;20:682-91. https://doi.org/10.1080/15226514.2017.1413332 | |
165. Teng Z, Shao W, Zhang K, Huo Y, Li M. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. J Environ Manag 2019;231:189-97. https://doi.org/10.1016/j.jenvman.2018.10.012 | |
166. Jalilvand N, Akhgar A, Alikhani HA, Rahmani HA, Rejali F. Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from Iranian mine calcareous soils. J Soil Sci Plant Nutr 2020;20:206-19. https://doi.org/10.1007/s42729-019-00121-z | |
167. Orji O, Awoke J, Aloke C, Obasi O, Oke B, Njoku M, et al. Toxic metals bioremediation potentials of Paenibacillus sp. strain SEM1 and Morganella sp. strain WEM7 isolated from Enyigba Pb-Zn mining site, Ebonyi State Nigeria. Bioremediat J 2021;25:285-96. https://doi.org/10.1080/10889868.2020.1871315 | |
168. Kumar P, Dash B, Suyal DC, Gupta SB, Singh AK, Chowdhury T, et al. Characterization of arsenic-resistant Klebsiella pneumoniae RnASA11 from contaminated soil and water samples and its bioremediation potential. Curr Microbiol 2021;78:3258-67. https://doi.org/10.1007/s00284-021-02602-w | |
169. Darvishzadeh T, Priezjev NV. Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions. J Membr Sci 2012;423-424:468-76. https://doi.org/10.1016/j.memsci.2012.08.043 | |
170. Tripathi M, Vikram S, Jain RK, Garg SK. Isolation and growth characteristics of chromium(VI) and pentachlorophenol tolerant bacterial isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian J Microbiol 2011;51:61-9. https://doi.org/10.1007/s12088-011-0089-2 | |
171. Dubey KK, Fulekar MH. Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World J Microbiol Biotechnol 2012;28:1715-25. https://doi.org/10.1007/s11274-011-0982-1 | |
172. Bajaj A, Mayilraj S, Mudiam MK, Patel DK, Manickam N. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro- 2,2-bis(4-chlorophenyl)ethane (DDT). Bioresour Technol 2014;167:398-406. https://doi.org/10.1016/j.biortech.2014.06.007 | |
173. Marco-Urrea E, García-Romera I, Aranda E. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 2015;32:620-8. https://doi.org/10.1016/j.nbt.2015.01.005 | |
174. Rezaei Somee M, Shavandi M, Dastgheib SM, Amoozegar MA. Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil. 3 Biotech 2018;8:229. https://doi.org/10.1007/s13205-018-1261-8 | |
175. Bhattacharya M, Guchhait S, Biswas D, Singh R. Evaluation of a microbial consortium for crude oil spill bioremediation and its potential uses in enhanced oil recovery. Biocatal Agric Biotechnol 2019;18:101034. https://doi.org/10.1016/j.bcab.2019.101034 | |
176. Liu Y, Wan YY, Wang C, Ma Z, Liu X, Li S. Biodegradation of n-alkanes in crude oil by three identified bacterial strains. Fuel 2020;275:117897. https://doi.org/10.1016/j.fuel.2020.117897 | |
177. Nazirkar A, Wagh M, Qureshi A, Bodade R, Kutty R. Development of tracking tool for p-nitrophenol monooxygenase genes from soil augmented with p-Nitrophenol degrading isolates: Bacillus, Pseudomonas and Arthrobacter. Bioremediat J 2020;24:71-9. https://doi.org/10.1080/10889868.2019.1672620 | |
178. Zhang Y, Cao B, Jiang Z, Dong X, Hu M, Wang Z. Metabolic ability and individual characteristics of an atrazine-degrading consortium DNC5. J Hazard Mater 2012;237-238:376-81. https://doi.org/10.1016/j.jhazmat.2012.08.047 | |
179. Yu SH, Ke L, Wong YS, Tam NF. Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int 2005;31:149-54. https://doi.org/10.1016/j.envint.2004.09.008 | |
180. Roane T, Josephson K, Pepper I. Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 2001;67:3208-15. https://doi.org/10.1128/AEM.67.7.3208-3215.2001 | |
181. Hernández-Adame NM, López-Miranda J, Martínez-Prado MA, Cisneros-de la Cueva S, Rojas-Contreras JA, Medrano-Singh, et al.: Bioremediation for diverse contaminants management 2022;10(Suppl 2):48-63 63 | |
Roldán H. Increase in total petroleum hydrocarbons removal rate in contaminated mining soil through bioaugmentation with autochthonous fungi during the slow bioremediation stage. Water Air Soil Pollut 2021;232:95. https://doi.org/10.1007/s11270-021-05051-0 | |
182. Mishra A, Malik A. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 2014;171:217-26. https://doi.org/10.1016/j.biortech.2014.08.047 | |
183. Hassan A, Periathamby A, Ahmed A, Innocent O, Hamid FS. Effective bioremediation of heavy metal-contaminated landfill soil through bioaugmentation using consortia of fungi. J Soils Sediments 2020;20:66-80. https://doi.org/10.1007/s11368-019-02394-4 | |
184. Talukdar D, Jasrotia T, Sharma R, Jaglan S, Kumar R, Vats R, et al. Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ Technol Innov 2020;20:101050. https://doi.org/10.1016/j.eti.2020.101050 | |
185. Sharma S, Malaviya P. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng 2016;91:419-25. https://doi.org/10.1016/j.ecoleng.2016.03.005 | |
186. Góngora-Echeverría VR, García-Escalante R, Rojas-Herrera R, Giácoman-Vallejos G, Ponce-Caballero C. Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. Ecotoxicol Environ Saf 2020;200:110734. https://doi.org/10.1016/j.ecoenv.2020.110734 | |
187. Janbandhu A, Fulekar MH. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J Hazard Mater 2011;187:333-40. https://doi.org/10.1016/j.jhazmat.2011.01.034 | |
188. Salinas-Martínez A, de los Santos-Córdova M, Soto-Cruz O, Delgado E, Pérez-Andrade H, Háuad-Marroquín LA, et al. Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J Environ Manag 2008;88:115-9. https://doi.org/10.1016/j.jenvman.2007.01.038 | |
189. Molina MC, González N, Bautista LF, Sanz R, Simarro R, Sánchez I, et al. Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation 2009;20:789-800. https://doi.org/10.1007/s10532-009-9267-x | |
190. Lee Y, Jeong SE, Hur M, Ko S, Jeon CO. Construction and Evaluation of a Korean Native Microbial Consortium for the bioremediation of diesel fuel-contaminated soil in Korea. Front Microbiol 2018;9:2594. https://doi.org/10.3389/fmicb.2018.02594 | |
191. Wang J, Xu H, Guo S. Isolation and characteristics of a microbial consortium for effectively degrading phenanthrene. Pet Sci 2007;4:68-75. https://doi.org/10.1007/s12182-007-0012-y | |
192. Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 2008;99:2637-43. https://doi.org/10.1016/j.biortech.2007.04.047 | |
193. Ghazali FM, Rahman RN, Salleh AB, Basri M. Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegr 2004;54:61-7. https://doi.org/10.1016/j.ibiod.2004.02.002 | |
194. Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol 2009;100:2493-500. https://doi.org/10.1016/j.biortech.2008.12.013 | |
195. Mukherjee AK, Bordoloi NK. Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: A pilot-scale study. Environ Sci Pollut Res 2011;18:471-8. https://doi.org/10.1007/s11356-010-0391-2 | |
196. Waszak DQ, da Cunha AC, Agarrallua MR, Goebel CS, Sampaio CH. Bioremediation of a benzo[a]pyrene-contaminated soil using a microbial consortium with Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus, and Fusarium sp. Water Air Soil Pollut 2015;226:319. https://doi.org/10.1007/s11270-015-2582-4 | |
197. Bao MT, Wang LN, Sun PY, Cao LX, Zou J, Li YM. Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar Pollut Bull 2012;64:1177-85. https://doi.org/10.1016/j.marpolbul.2012.03.020 | |
198. Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, et al. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res 2015;22:14852-61. https://doi.org/10.1007/s11356-015-4488-5 | |
199. Sharma A, Singh SB, Sharma R, Chaudhary P, Pandey AK, Ansari R, et al. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. J Environ Manag 2016;181:728-36. https://doi.org/10.1016/j.jenvman.2016.08.024 | |
200. Bacosa HP, Suto K, Inoue C. Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. Int Biodeterior Biodegr 2012;74:109-15. https://doi.org/10.1016/j.ibiod.2012.04.022 | |
201. Wang VB, Chua SL, Cai Z, Sivakumar K, Zhang Q, Kjelleberg S, et al. A stable synergistic microbial consortium for simultaneous azo dye removal and bioelectricity generation. Bioresour Technol 2014;155:71-6. https://doi.org/10.1016/j.biortech.2013.12.078 | |
202. Lal R, Dadhwal M, Kumari K, Sharma P, Singh A, Kumari H, et al. Pseudomonas sp. to Sphingobium indicum: A journey of microbial degradation and bioremediation of hexachlorocyclohexane. Indian J Microbiol 2008;48:3-18. https://doi.org/10.1007/s12088-008-0002-9 | |
203. Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S. Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 2009;168:400-5. https://doi.org/10.1016/j.jhazmat.2009.02.059 | |
204. Hu L, Zhang F, Liu C, Wang M. Biodegradation of Microcystins by Bacillus sp. strain EMB. Energy Procedia 2012;16:2054-9. https://doi.org/10.1016/j.egypro.2012.01.312 | |
205. Boopathy R. Factors limiting bioremediation technologies. Bioresour Technol 2000;74:63-7. https://doi.org/10.1016/S0960-8524(99)00144-3 | |
206. Boopathy R, Manning J, Kulpa CF. A laboratory study of the bioremediation of 2, 4, 6?trinitrotoluene?contaminated soil using aerobic/anoxic soil slurry reactor. Water Environ Res 1998;70:80-6. https://doi.org/10.2175/106143098X126919 | |
207. Blackburn JW, Hafker WR. The impact of biochemistry, bioavailability and bioactivity on the selection of bioremediation techniques. Trends Biotechnol 1993;11:328-33. https://doi.org/10.1016/0167-7799(93)90155-3 | |
Year
Month
Isolation and identification of pathogenic microbes from tomato puree and their delineation of distinctness by molecular techniques
R.K. Garg, N. Batav, N. Silawat, R.K. SinghSyntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment
Livleen Shukla, Archna Suman, Priyanka Verma, Ajar Nath Yadav , Anil Kumar SaxenaBiodiversity and biotechnological applications of halophilic microbes for sustainable agriculture
Ajar Nath Yadav, Anil Kumar SaxenaBiodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability
Ajar Nath YadavMicrobes-mediated alleviation of heavy metal stress in crops: Current research and future challenges
Rubee Devi, Tanvir Kaur, Divjot Kour, Macie Hricovec, Rajinikanth Mohan, Neelam Yadav, Pankaj Kumar Rai, Ashutosh Kumar Rai, Ashok Yadav, Manish Kumar, Ajar Nath YadavMicrobes for Agricultural and Environmental Sustainability
Ajar Nath Yadav, Divjot Kour, Ahmed M. Abdel-Azeem, Murat Dikilitas, Abd El-Latif Hesham, Amrik Singh AhluwaliaBioremediation and Waste Management for Environmental Sustainability
Ajar Nath Yadav, Deep Chandra Suyal, Divjot Kour, Vishnu D. Rajput, Ali Asghar Rastegari, Joginder SinghMicrobe-mediated bioremediation: Current research and future challenges
Divjot Kour, Sofia Shareif Khan, Harpreet Kour, Tanvir Kaur, Rubee Devi, Pankaj Kumar Rai, Christina Judy, Chloe McQuestion, Ava Bianchi, Sara Spells, Rajinikanth Mohan, Ashutosh Kumar Rai, Ajar Nath YadavMicrobes mediated plastic degradation: A sustainable approach for environmental sustainability
Harpreet Kour, Sofia Shareif Khan, Divjot Kour, Shafaq Rasool, Yash Pal Sharma, Pankaj Kumar Rai, Sangram Singh, Kundan Kumar Chaubey, Ashutosh Kumar Rai, Ajar Nath YadavAntimicrobial and anticancer potential of soil bacterial metabolites - a comprehensive and updated review
A. Ram Kumar,, S. KumaresanBeneficial microorganisms for healthy soils, healthy plants and healthy humans
Ajar Nath Yadav, Divjot Kour, Neelam YadavBiotechnological potential of secondary metabolites: Current status and future challenges
Sofia Sharief Khan, Divjot Kour, Seema Ramniwas, Shaveta Singh, Sanjeev Kumar, Satvinder Kour, Roshi Sharma, Harpreet Kour, Shafaq Rasool, Sarvesh Rustagi, Sangram Singh, Kundan Kumar Chaubey, Ashutosh Kumar Rai, Ajar Nath YadavToxins in plant pathogenesis: Understanding the role of toxins in host-pathogen interaction
Seweta Srivastava, Akhilesh Chandrapati, Aakash Gupta, Meenakshi Rana, Arun Karnwal, Kanuri Komala Siva Katyayani, Raghavendra Reddy Manda, Dipshikha Kaushik, Shaptadvipa Bhattacharjee, Ravindra KumarGrowth and survival of microbes on different material surfaces: Current scenario and future challenges
Divya Chauhan, Devendra Singh, Himanshu Pandey, Dwijesh Chandra Mishra, Suphiya Khan, Minakshi Pandey, Neelam Yadav, Narinderpal Kaur, Sangram Singh, Ashutosh Kumar Rai, Sarvesh Rustagi, Sheikh Shreaz, Rajeshwari Negi, Ajar Nath YadavCharacterization of tannery effluents by analyzing the recalcitrant organic pollutants and phytotoxicity assay
Sandeep Kumar, Ashutosh Yadav, Annapurna Maurya,,Shalini G. Pratap, Pramod Kumar Singh, Abhay Raj,