Review Article | Volume 10, Supplement 2, July, 2022

Microbes-mediated alleviation of heavy metal stress in crops: Current research and future challenges

Rubee Devi Tanvir Kaur Divjot Kour Macie Hricovec Rajinikanth Mohan Neelam Yadav Pankaj Kumar Rai Ashutosh Kumar Rai Ashok Yadav Manish Kumar Ajar Nath Yadav   

Open Access   

Published:  Jun 20, 2022

DOI: 10.7324/JABB.2022.10s203
Abstract

Heavy metals (HMs) pollute the environment on a global scale and have different harmful effect on ecosystem. Outstripping accumulation of diverse toxic HMs in soils has altered the diversity, structure and function of microflora, degraded soils, reduces growth and yield of plant, and entered the food chain. HM treatment is necessary for maintaining the agricultural soil health. Many procedures and approaches have been used to recover contaminated soils in recent time, however, most of them were too pricey not environmentally friendly, and negatively affected soil properties. Usage of microbes was found as cost affective and ecofriendly approach for bioremediation of HMs. Microbes increased sustainability in agriculture soil health, which is essential to uninterrupted plant growth or improvement in stress full condition through mechanism likes productions phytohormones, organic acids, biosurfactants, exopolymers, antioxidant enzymes; and solubilization of phosphorus. It is well known that plant growth-promoting microbes enhance crop productivity and plant resistance to HM stress. In this following review, deep insight have has provided on mechanism of alleviation of HM stress by microbes and enhancement of plant growth promotion.


Keyword:     Alleviation Agriculture Environment Heavy metal Pollution Microbes


Citation:

Devi R, Kaur T, Kour D, Hricovec M, Mohan R, Yadav N, Rai PK, Rai AK, Yadav A, Kumar M, Yadav AN. Microbes-mediated alleviation of heavy metal stress in crops: Current research and future challenges. J App Biol Biotech. 2022;10(Suppl 2):25-37.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1.Bishop PL. Pollution Prevention: Fundamentals and Practice. United States: Waveland Press; 2000.

2. Nagajyoti PC, Lee KD, Sreekanth T. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett 2010;8:199-216. https://doi.org/10.1007/s10311-010-0297-8

3. Singh C, Tiwari S, Singh JS, Yadav AN. Microbes in Agriculture and Environmental Development. Boca Raton: CRC Press; 2020. https://doi.org/10.1201/9781003057819

4. Zhu X, Lv B, Shang X, Wang J, Li M, Yu X. The immobilization effects on Pb, Cd and Cu by the inoculation of organic phosphorusdegrading bacteria (OPDB) with rapeseed dregs in acidic soil. Geoderma 2019;350:1-10. https://doi.org/10.1016/j.geoderma.2019.04.015

5. Jaafari J, Yaghmaeian K. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 2019;217:447-55. https://doi.org/10.1016/j.chemosphere.2018.10.205

6. Leong YK, Chang JS. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour Technol 2020;303:122886. https://doi.org/10.1016/j.biortech.2020.122886

7. Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ. Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environ Pollut 2008;154:203-11. https://doi.org/10.1016/j.envpol.2007.10.015

8. Sharma RK, Archana G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 2016;107:66-78. https://doi.org/10.1016/j.apsoil.2016.05.009

9. Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, et al. Himalayan microbiomes for agro-environmental sustainability: Current perspectives and future challenges. Microbial Ecol 2021;83:1-33. https://doi.org/10.1007/s00248-021-01849-x

10. Yadav AN, Rastegari AA, Yadav N. Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. Boca Raton, USA: CRC Press, Taylor & Francis; 2020. https://doi.org/10.1201/9780429328633

11. Ma Y, Chen L, Liu P, Lu K. Parallel programing templates for remote sensing image processing on GPU architectures: Design and implementation. Computing 2016;98:7-33. https://doi.org/10.1007/s00607-014-0392-y

12. Yadav AN, Singh S, Mishra S, Gupta A. Recent Advancement in White Biotechnology Through Fungi. Perspective for Sustainable Environments. Vol. 3. Cham: Springer International Publishing; 2019. https://doi.org/10.1007/978-3-030-25506-0

13. Yadav AN, Rastegari AA, Gupta VK, Yadav N. Microbial Biotechnology Approaches to Monuments of Cultural Heritage. Singapore: Springer; 2020. https://doi.org/10.1007/978-981-15-3401-0

14. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol Environ Saf 2016;126:111-21. https://doi.org/10.1016/j.ecoenv.2015.12.023

15. Hasegawa H, Rahman IM, Rahman MA. Environmental Remediation Technologies for Metal-Contaminated Soils. Berlin, Germany: Springer; 2016. https://doi.org/10.1007/978-4-431-55759-3

16. Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. J Environ Manage 2017;198:132-43. https://doi.org/10.1016/j.jenvman.2017.04.060

17. Kowalkowski T, Krakowska A, Z?och M, Hrynkiewicz K, Buszewski B. Cadmium?affected synthesis of exopolysaccharides by rhizosphere bacteria. J Appl Microbiol 2019;127:713-23. https://doi.org/10.1111/jam.14354

18. Hu L, Wang R, Liu X, Xu B, Xie T, Li Y, et al. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient. Environ Sci Pollut Res 2018;25:21671-81. https://doi.org/10.1007/s11356-018-2311-9

19. Brunetti G, Ruta C, Traversa A, D'Ambruoso G, Tarraf W, de Mastro F, et al. Remediation of a heavy metals contaminated soil using mycorrhized and non?mycorrhized Helichrysum italicum (Roth) Don. Land Degrad Dev 2018;29:91-104. https://doi.org/10.1002/ldr.2842

20. da Conceição Gomes MA, Hauser-Davis RA, de Souza AN, Vitória AP. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf 2016;134:133-47. https://doi.org/10.1016/j.ecoenv.2016.08.024

21. Kang CH, Kwon YJ, So JS. Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 2016;89:64-9. https://doi.org/10.1016/j.ecoleng.2016.01.023

22. Beškoski VP, Gojgi?-Cvijovi? G, Mili? J, Ili? M, Mileti? S, Šolevi? T, et al. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) A field experiment. Chemosphere 2011;83:34-40. https://doi.org/10.1016/j.chemosphere.2011.01.020

23. Mani D, Kumar C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int J Environ Sci Technol 2014;11:843-72. https://doi.org/10.1007/s13762-013-0299-8

24. Parameswari E, Lakshmanan A, Thilagavathi T. Biosorption and metal tolerance potential of filamentous fungi isolated from metal polluted ecosystem. Electron J Environ Agric Food Chem 2010;9:664-71.

25. Masood F, Malik A. hexavalent chromium reduction by Bacillus sp. Strain FM1 isolated from heavy-metal contaminated soil. Bull Environ Contam Toxicol 2011;86:114-9. https://doi.org/10.1007/s00128-010-0181-z

26. Zhao XQ, Wang RC, Lu XC, Lu JJ, Li J, Hu H. Tolerance and biosorption of heavy metals by C. metallidurans strain XXKD-1 isolated from a subsurface laneway in the qixiashan Pb-Zn sulfide minery in eastern China. Geomicrobiol J 2012;29:274-86. https://doi.org/10.1080/01490451.2011.619637

27. Bhattacharya A, Gupta A. Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res 2013;20:6628-37. https://doi.org/10.1007/s11356-013-1728-4

28. Wang T, Sun H, Jiang C, Mao H, Zhang Y. Immobilization of Cd in soil and changes of soil microbial community by bioaugmentation of UV-mutated Bacillus subtilis 38 assisted by biostimulation. Eur J Soil Biol 2014;65:62-9. https://doi.org/10.1016/j.ejsobi.2014.10.001

29. Gan M, Jie S, Li M, Zhu J, Liu X. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles. Mar Pollut Bull 2015;97:47-55.
https://doi.org/10.1016/j.marpolbul.2015.06.040

30. Zeng X, Wei S, Sun L, Jacques DA, Tang J, Lian M, et al. Bioleaching of heavy metals from contaminated sediments by the Aspergillus niger strain SY1. J Soils Sediment 2015;15:1029-38. https://doi.org/10.1007/s11368-015-1076-8

31. Emenike CU, Agamuthu P, Fauziah SH. Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil. Environ Earth Sci 2015;75:26. https://doi.org/10.1007/s12665-015-4805-9

32. Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang YC. Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 2016;6:242. https://doi.org/10.1007/s13205-016-0560-1

33. Rojjanateeranaj P, Sangthong C, Prapagdee B. Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation. Chemosphere 2017;185:764-71. https://doi.org/10.1016/j.chemosphere.2017.07.074

34. Satyapal GK, Mishra SK, Srivastava A, Ranjan RK, Prakash K, Haque R, et al. Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol Rep 2018;17:117-25. https://doi.org/10.1016/j.btre.2018.02.002

35. Al-Dhabi NA, Esmail GA, Ghilan AK, Arasu MV. optimizing the management of cadmium bioremediation capacity of metal-resistant Pseudomonas sp. strain Al-Dhabi-126 isolated from the industrial city of saudi arabian environment. Int J Environ Res Public Health 2019;16:4788. https://doi.org/10.3390/ijerph16234788

36. Kalaimurugan D, Balamuralikrishnan B, Durairaj K, Vasudhevan P, Shivakumar MS, Kaul T, et al. Isolation and characterization of heavy-metal-resistant bacteria and their applications in environmental bioremediation. Int J Environ Sci Technol 2020;17:1455-62. https://doi.org/10.1007/s13762-019-02563-5

37. Diba H, Cohan RA, Salimian M, Mirjani R, Soleimani M, Khodabakhsh F. Isolation and characterization of halophilic bacteria with the ability of heavy metal bioremediation and nanoparticle synthesis from Khara salt lake in Iran. Arch Microbiol 2021;203:3893-903. https://doi.org/10.1007/s00203-021-02380-w

38. Wheaton G, Counts J, Mukherjee A, Kruh J, Kelly R. The confluence of heavy metal biooxidation and heavy metal resistance: Implications for bioleaching by extreme thermoacidophiles. Minerals 2015;5:397-451. https://doi.org/10.3390/min5030397

39. Mohamed ZA. Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna. Water Res 2001;35:4405-9. https://doi.org/10.1016/S0043-1354(01)00160-9

40. Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN. Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N, editors. Current Trends in Microbial Biotechnology for Sustainable Agriculture. Singapore: Springer; 2021. p. 387-402. https://doi.org/10.1007/978-981-15-6949-4_16

41. Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 2000;45:198-207. https://doi.org/10.1006/eesa.1999.1860

42. Rajkumar M, Ae N, Prasad MN, Freitas H. Potential of siderophoreproducing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 2010;28:142-9. https://doi.org/10.1016/j.tibtech.2009.12.002

43. Pulsawat W, Leksawasdi N, Rogers PL, Foster LJ. Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 2003;25:1267-70. https://doi.org/10.1023/A:1025083116343

44. Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 2013;250-251:477-83. https://doi.org/10.1016/j.jhazmat.2013.02.014

45. Sharma P, Tripathi S, Chaturvedi P, Chaurasia D, Chandra R. Newly isolated Bacillus sp. PS-6 assisted phytoremediation of heavy metals using Phragmites communis: Potential application in wastewater treatment. Bioresour Technol 2021;320:124353. https://doi.org/10.1016/j.biortech.2020.124353

46. Akansha K, Yadav AN, Kumar M, Chakraborty D, Sachan SG. Decolorization and degradation of reactive orange 16 by Bacillus stratosphericus SCA1007. Folia Microbiol (Praha) 2022;67:91-102. https://doi.org/10.1007/s12223-021-00914-9

47. Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol Environ Saf 2018;147:175-91. https://doi.org/10.1016/j.ecoenv.2017.08.032

48. Mondal S, Halder SK, Yadav AN, Mondal KC. Microbial consortium with multifunctional plant growth promoting attributes: Future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D, editors. Advances in Plant Microbiome and Sustainable Agriculture, Functional Annotation and Future Challenges. Vol. 2 Singapore: Springer; 2020. p. 219-54. https://doi.org/10.1007/978-981-15-3204-7_10

49. Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S, et al. Soil microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N, editors. Current Trends in Microbial Biotechnology for Sustainable Agriculture. Singapore: Springer; 2021. p. 1-21. https://doi.org/10.1007/978-981-15-6949-4_1

50. Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG. Tiny microbes, big yields: Microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N, editors. Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Amsterdam: Elsevier; 2020. p. 1-15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

51. Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front Microbiol 2017;8:2104. https://doi.org/10.3389/fmicb.2017.02104

52. Guo J, Tang S, Ju X, Ding Y, Liao S, Song N. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J Microbiol Biotechnol 2011;27:2835-44. https://doi.org/10.1007/s11274-011-0762-y

53. Ji LY, Zhang WW, Yu D, Cao YR, Xu H. Effect of heavy metalsolubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis. World J Microbiol Biotechnol 2012;28:293-301. https://doi.org/10.1007/s11274-011-0819-y

54. He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, et al. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 2013;90:1960-5. https://doi.org/10.1016/j.chemosphere.2012.10.057

55. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, et al. Characterization of bacteria in the rhizosphere soils of Polygonum Pubescens and their potential in promoting growth and Cd, Pb, Zn Uptake by Brassica napus. Int J Phytoremed 2014;16:321-33. https://doi.org/10.1080/15226514.2013.773283

56. Singh R, Pathak B, Fulekar M. Characterization of PGP traits by heavy metals tolerant Pseudomonas putida and Bacillus safensis strain isolated from rhizospheric zone of weed (Phyllanthus urinaria) and its efficiency in Cd and Pb removal. Int J Curr Microbiol Appl Sci 2015;4:954-75.

57. Bensidhoum L, Nabti E, Tabli N, Kupferschmied P, Weiss A, Rothballer M, et al. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in Northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol 2016;75:38-46. https://doi.org/10.1016/j.ejsobi.2016.04.006

58. Kang SM, Waqas M, Hamayun M, Asaf S, Khan AL, Kim AY, et al. Gibberellins and indole-3-acetic acid producing rhizospheric bacterium Leifsonia xyli SE134 mitigates the adverse effects of copper-mediated stress on tomato. J Plant Interact 2017;12:373-80. https://doi.org/10.1080/17429145.2017.1370142

59. Bilal S, Shahzad R, Khan AL, Kang SM, Imran QM, Al-Harrasi A, et al. Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci 2018;9:1273. https://doi.org/10.3389/fpls.2018.01273

60. Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, et al. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One 2018;13:e0208150. https://doi.org/10.1371/journal.pone.0208150

61. Bilal S, Shahzad R, Khan AL, Al-Harrasi A, Kim CK, Lee IJ. Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. J Hazard Mater 2019;379:120824. https://doi.org/10.1016/j.jhazmat.2019.120824

62. Qadir M, Hussain A, Hamayun M, Shah M, Iqbal A, Husna, et al. Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere 2020;258:127386. https://doi.org/10.1016/j.chemosphere.2020.127386

63. Bilal S, Shahzad R, Lee IJ. Synergistic interaction of fungal endophytes, Paecilomyces formosus LHL10 and Penicillium funiculosum LHL06, in alleviating multi-metal toxicity stress in Glycine max L. Environ Sci Pollut Res 2021;28:67429-44. https://doi.org/10.1007/s11356-021-15202-9

64. Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, et al. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 2020;23:101487. https://doi.org/10.1016/j.bcab.2019.101487

65. Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 2005;251:1-7. https://doi.org/10.1016/j.femsle.2005.07.030

66. Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, et al. Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS, editors. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management, Rhizobacteria in Abiotic Stress Management. Vol. 1. Singapore: Springer; 2019. p. 255-308. https://doi.org/10.1007/978-981-13-6536-2_13

67. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 2011;83:57-62. https://doi.org/10.1016/j.chemosphere.2011.01.041

68. Deng Z, Wang W, Tan H, Cao L. Characterization of heavy metalresistant endophytic yeast Cryptococcus sp. CBSB78 from Rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut 2012;223:5321-9. https://doi.org/10.1007/s11270-012-1282-6

69. Guo J, Chi J. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 2014;375:205-14. https://doi.org/10.1007/s11104-013-1952-1

70. Kong Z, Glick BR, Duan J, Ding S, Tian J, McConkey BJ, Wei G. Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminaseoverproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 2015;391:383-98. https://doi.org/10.1007/s11104-015-2434-4

71. Rizvi A, Khan MS. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 2017;185:942-52. https://doi.org/10.1016/j.chemosphere.2017.07.088

72. Singh RP, Jha PN. Priming with ACC-utilizing bacterium attenuated copper toxicity, improved oxidative stress tolerance, and increased phytoextraction capacity in wheat. Environ Sci Pollut Res 2018;25:33755-67. https://doi.org/10.1007/s11356-018-3022-y

73. Danish S, Kiran S, Fahad S, Ahmad N, Ali MA, Tahir FA, et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol Environ Saf 2019;185:109706. https://doi.org/10.1016/j.ecoenv.2019.109706

74. Zainab N, Amna, Din BU, Javed MT, Afridi MS, Mukhtar T, et al. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol Biochem 2020;152:90-9. https://doi.org/10.1016/j.plaphy.2020.04.039

75. Kumar A, Tripti, Maleva M, Bruno LB, Rajkumar M. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere 2021;276:130038. https://doi.org/10.1016/j.chemosphere.2021.130038

76. Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, et al. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal Agric Biotechnol 2021;33:102009. https://doi.org/10.1016/j.bcab.2021.102009

77. Yadav AN. Biodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability. J Appl Biol Biotechnol 2021;9:1-6.

78. Kumar A, Yadav AN, Mondal R, Kour D, Subrahmanyam G, Shabnam AA, et al. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 2021;284:131325. https://doi.org/10.1016/j.chemosphere.2021.131325

79. Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D, et al. Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N, editors. Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Amsterdam: Elsevier; 2020. p. 49-60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

80. Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, et al. Culturable bacteria from Zn?and Cd? accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 2010;108:1471-84. https://doi.org/10.1111/j.1365-2672.2010.04670.x

81. Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, et al. Characterization of lead-resistant and ACC deaminaseproducing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 2011;186:1720-5. https://doi.org/10.1016/j.jhazmat.2010.12.069

82. Cao YR, Zhang XY, Deng JY, Zhao QQ, Xu H. Lead and cadmiuminduced oxidative stress impacting mycelial growth of Oudemansiella radicata in liquid medium alleviated by microbial siderophores. World J Microbiol Biotechnol 2012;28:1727-37. https://doi.org/10.1007/s11274-011-0983-0

83. Gaonkar T, Bhosle S. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 2013;93:1835-43. https://doi.org/10.1016/j.chemosphere.2013.06.036

84. Rojas-Tapias DF, Bonilla R, Dussán J. Effect of inoculation and coinoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on growth, fitness, and copper accumulation of maize (Zea mays). Water Air Soil Pollut 2014;225:2232. https://doi.org/10.1007/s11270-014-2232-2

85. Schütze E, Ahmed E, Voit A, Klose M, Greyer M, Svatoš A, et al. Siderophore production by streptomycetes stability and alteration of ferrihydroxamates in heavy metal-contaminated soil. Environ Sci Pollut Res 2015;22:19376-83. https://doi.org/10.1007/s11356-014-3842-3

86. Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, et al. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf 2016;125:25-34. https://doi.org/10.1016/j.ecoenv.2015.11.020

87. Chen Y, Yang W, Chao Y, Wang S, Tang YT, Qiu RL. Metaltolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 2017;413:203-16. https://doi.org/10.1007/s11104-016-3091-y

88. Dutta P, Karmakar A, Majumdar S, Roy S. Klebsiella pneumoniae (HR1) assisted alleviation of Cd(II) toxicity in Vigna mungo: A case study of biosorption of heavy metal by an endophytic bacterium coupled with plant growth promotion. Euromediterr J Environ Integr 2018;3:1-10. https://doi.org/10.1007/s41207-018-0069-6

89. Ortiz J, Soto J, Almonacid L, Fuentes A, Campos-Vargas R, Arriagada C. Alleviation of metal stress by Pseudomonas orientalis and Chaetomium cupreum strains and their effects on Eucalyptus globulus growth promotion. Plant Soil 2019;436:449-61. https://doi.org/10.1007/s11104-019-03946-w

90. Shilev S, Babrikova I, Babrikov T. Consortium of plant growth? promoting bacteria improves spinach (Spinacea oleracea L.) growth under heavy metal stress conditions. J Chem Technol Biotechnol 2020;95:932-9. https://doi.org/10.1002/jctb.6077

91. Sepehri M, Khatabi B. Combination of siderophore-producing bacteria and Piriformospora indica provides an efficient approach to improve cadmium tolerance in alfalfa. Microb Ecol 2021;81:717-30. https://doi.org/10.1007/s00248-020-01629-z

92. Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and mobilizing microbes: A review. Pedosphere 2021;31:43-75. https://doi.org/10.1016/S1002-0160(20)60057-1

93. Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, et al. Haloarchaea Endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 2015;5:12293. https://doi.org/10.1038/srep12293

94. Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, et al. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 2010;46:383-9. https://doi.org/10.1016/j.apsoil.2010.10.003

95. Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN. Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N, editors. Plant Microbiomes for Sustainable Agriculture. Cham: Springer; 2020. p. 1-52. https://doi.org/10.1007/978-3-030-38453-1_1

96. Rawat R, Tewari L. Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp. Curr Microbiol 2011;62:1521-6. https://doi.org/10.1007/s00284-011-9888-2

97. El-Deeb B, Gherbawy Y, Hassan S. Molecular characterization of endophytic bacteria from metal hyperaccumulator aquatic plant (Eichhornia crassipes) and its role in heavy metal removal. Geomicrobiol J 2012;29:906-15. https://doi.org/10.1080/01490451.2011.635764

98. Oves M, Khan MS, Zaidi A. Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 2013;56:72-83. https://doi.org/10.1016/j.ejsobi.2013.02.002

99. Babu AG, Shim J, Bang KS, Shea PJ, Oh BT. Trichoderma virens PDR-28: A heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 2014;132:129-34. https://doi.org/10.1016/j.jenvman.2013.10.009

100. Sukweenadhi J, Kim YJ, Choi ES, Koh SC, Lee SW, Kim YJ, et al. Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 2015;172:7-15. https://doi.org/10.1016/j.micres.2015.01.007

101. Marzban A, Ebrahimipour G, Karkhane M, Teymouri M. Metal resistant and phosphate solubilizing bacterium improves maize (Zea mays) growth and mitigates metal accumulation in plant. Biocatal Agric Biotechnol 2016;8:13-7. https://doi.org/10.1016/j.bcab.2016.07.005

102. Oves M, Khan MS, Qari HA. Ensifer adhaerens for heavy metal bioaccumulation, biosorption, and phosphate solubilization under metal stress condition. J Taiwan Inst Chem Eng 2017;80:540-52. https://doi.org/10.1016/j.jtice.2017.08.026

103. Mitra S, Pramanik K, Sarkar A, Ghosh PK, Soren T, Maiti TK. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol Environ Saf 2018;156:183-96. https://doi.org/10.1016/j.ecoenv.2018.03.001

104. Oves M, Khan MS, Qari HA. Chromium-reducing and phosphatesolubilizing Achromobacter xylosoxidans bacteria from the heavy metal-contaminated soil of the Brass city, Moradabad, India. Int J Environ Sci Technol 2019;16:6967-84. https://doi.org/10.1007/s13762-019-02300-y

105. Shreya D, Jinal HN, Kartik VP, Amaresan N. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Arch Microbiol 2020;202:887-94. https://doi.org/10.1007/s00203-019-01801-1

106. Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere 2021;274:129819. https://doi.org/10.1016/j.chemosphere.2021.129819

107. Kour D, Rana KL, Yadav N, Yadav AN. Bioprospecting of phosphorus solubilizing bacteria from Renuka Lake ecosystems, lesser Himalayas. J Appl Biolo Biotechnol 2019;7:1-6. https://doi.org/10.7324/JABB.2019.70501

108. Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, et al. Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 2017;3:1-8. https://doi.org/10.19080/IJESNR.2017.03.555601

109. Kavita B, Shukla S, Kumar GN, Archana G. Amelioration of phytotoxic effects of Cd on mung bean seedlings by gluconic acid secreting rhizobacterium Enterobacter asburiae PSI3 and implication of role of organic acid. World J Microbiol Biotechnol 2008;24:2965-72. https://doi.org/10.1007/s11274-008-9838-8

110. Matusik J, Bajda T, Manecki M. Immobilization of aqueous cadmium by addition of phosphates. J Hazard Mater 2008;152:1332-39. https://doi.org/10.1016/j.jhazmat.2007.08.010

111. Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MV, Kumar R, et al. Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 2019;74:1031-43. https://doi.org/10.2478/s11756-019-00259-2

112. Gadd GM. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010;156:609-43. https://doi.org/10.1099/mic.0.037143-0

113. Patel KJ, Singh AK, Nareshkumar G, Archana G. Organicacid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Appl Soil Ecol 2010;44:252-61. https://doi.org/10.1016/j.apsoil.2010.01.002

114. Park JH, Bolan N, Megharaj M, Naidu R. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 2011;185:829-36. https://doi.org/10.1016/j.jhazmat.2010.09.095

115. Li WC, Ye ZH, Wong MH. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 2007;58:4173-82. https://doi.org/10.1093/jxb/erm274

116. Li WC, Ye ZH, Wong MH. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 2010;326:453-67. https://doi.org/10.1007/s11104-009-0025-y

117. Gao Y, Miao C, Xia J, Luo C, Mao L, Zhou P, et al. Effect of citric acid on phytoextraction and antioxidative defense in Solanum nigrum L. as a hyperaccumulator under Cd and Pb combined pollution. Environ Earth Sci 2012;65:1923-32. https://doi.org/10.1007/s12665-011-1174-x

118. Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, Yang X, et al. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: Effects on plant growth and root exudates. Chemosphere 2014;117:367-73. https://doi.org/10.1016/j.chemosphere.2014.07.078

119. Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, et al. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere 2019;230:628-39. https://doi.org/10.1016/j.chemosphere.2019.05.072

120. Pacheco GJ, Ciapina EM, de Barros Gomes E, Pereira N Jr. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz J Microbiol 2010;41:685-93. https://doi.org/10.1590/S1517-83822010000300019

121. Pacwa-P?ociniczak M, P?aza GA, Piotrowska-Seget Z, Cameotra SS. Environmental applications of biosurfactants: Recent advances. Int J Mol Sci 2011;12:633-54. https://doi.org/10.3390/ijms12010633

122. Chakraborty J, Das S. 7-biosurfactant-based bioremediation of toxic metals. In: Das S, editor. Microbial Biodegradation and Bioremediation. Oxford: Elsevier; 2014. p. 167-201. https://doi.org/10.1016/B978-0-12-800021-2.00007-8

123. Juwarkar AA, Nair A, Dubey KV, Singh S, Devotta S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 2007;68:1996-2002. https://doi.org/10.1016/j.chemosphere.2007.02.027

124. Venkatesh NM, Vedaraman N. Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 2012;62:85-91. https://doi.org/10.1007/s13213-011-0230-9

125. Gnanamani A, Kavitha V, Radhakrishnan N, Rajakumar GS, Sekaran G, Mandal AB. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B Biointerfaces 2010;79:334-9. https://doi.org/10.1016/j.colsurfb.2010.04.007

126. Sriram MI, Gayathiri S, Gnanaselvi U, Jenifer PS, Mohan Raj S, Gurunathan S. Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresour Technol 2011;102:9291-5. https://doi.org/10.1016/j.biortech.2011.06.094

127. Rufino RD, Luna JM, Campos-Takaki GM, Ferreira S, Sarubbo LA. Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals. Chem Eng 2012;27:61-6.

128. Singh AK, Cameotra SS. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res 2013;20:7367-76. https://doi.org/10.1007/s11356-013-1752-4

129. de França ÍW, Lima AP, Lemos JA, Lemos CG, Melo VM, de Sant'ana HB, Gonçalves LR. Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal Today 2015;255:10-5. https://doi.org/10.1016/j.cattod.2015.01.046

130. Swapna T, Papathoti N, Khan M, Reddy G, Hameeda B. Bioreduction of Cr(VI) by biosurfactant producing marine bacterium Bacillus subtilis SHB 13. J Sci Ind Res India 2016;75:432-8.

131. Hisham NH, Ibrahim MF, Ramli N, Abd-Aziz S. Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Molecules 2019;24:2617. https://doi.org/10.3390/molecules24142617

132. Gomaa EZ, El-Meihy RM. Bacterial biosurfactant from Citrobacter freundii MG812314.1 as a bioremoval tool of heavy metals from wastewater. Bull Natl Res Centre 2019;43:69. https://doi.org/10.1186/s42269-019-0088-8

133. Mnif I, Bouallegue A, Bouassida M, Ghribi D. Surface properties and heavy metals chelation of lipopeptides biosurfactants produced from date flour by Bacillus subtilis ZNI5: Optimized production for application in bioremediation. Bioprocess Biosyst Eng 2021;45:31-44. https://doi.org/10.1007/s00449-021-02635-2

134. Yadav AN. Phytomicrobiomes for agro-environmental sustainability. J Appl Biol Biotechnol 2021;9:1-4.

135. Yadav AN. Microbial biotechnology for bio-prospecting of microbial bioactive compounds and secondary metabolites. J Appl Biol Biotechnol 2021;9:1-6.

136. Yadav AN. Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 2021;9:1-4.

137. Kaushal M, Wani SP. Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 2016;231:68-78. https://doi.org/10.1016/j.agee.2016.06.031

138. Rajkumar M, Sandhya S, Prasad M, Freitas H. Perspectives of plantassociated microbes in heavy metal phytoremediation. Biotechnol Adv 2012;30:1562-74. https://doi.org/10.1016/j.biotechadv.2012.04.011

139. Xu X, Huang Q, Huang Q, Chen W. Soil microbial augmentation by an EGFP-tagged Pseudomonas putida X4 to reduce phytoavailable cadmium. Int Biodeterior Biodegrad 2012;71:55-60. https://doi.org/10.1016/j.ibiod.2012.03.006

140. Wei X, Fang L, Cai P, Huang Q, Chen H, Liang W, et al. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ Pollut 2011;159:1369-74. https://doi.org/10.1016/j.envpol.2011.01.006

141. Joshi PM, Juwarkar AA. In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Scie Technol 2009;43:5884-9. https://doi.org/10.1021/es900063b

142. Wang J, Li Q, Li MM, Chen TH, Zhou YF, Yue ZB. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresour Technol 2014;163:374-6. https://doi.org/10.1016/j.biortech.2014.04.073

143. Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, et al. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 2011;181:604-11. https://doi.org/10.1016/j.plantsci.2011.04.005

144. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010;48:749-62. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

145. Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X. Involvements of H2 O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 2010;167:1298-306. https://doi.org/10.1016/j.jplph.2010.04.007

146. Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Ann Rev Plant Biol 2007;58:459-81. https://doi.org/10.1146/annurev.arplant.58.032806.103946

147. Pandey N, Pathak GC, Pandey DK, Pandey R. Heavy metals, Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Braz J Plant Physiol 2009;21:103-11. https://doi.org/10.1590/S1677-04202009000200003

148. Miller G, Suzuki N, Ciftci?Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 2010;33:453-67. https://doi.org/10.1111/j.1365-3040.2009.02041.x

149. Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, et al. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 2014;104:285-93. https://doi.org/10.1016/j.ecoenv.2014.03.008

150. Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 2019;139:569-77. https://doi.org/10.1016/j.plaphy.2019.03.041

151. Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN, et al. Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds. In: Singh HB, Gupta VK, Jogaiah S, editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier; 2019. p. 1-23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2

152. Ouziad F, Hildebrandt U, Schmelzer E, Bothe H. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 2005;162:634-49. https://doi.org/10.1016/j.jplph.2004.09.014

153. Dell'Amico E, Cavalca L, Andreoni V. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 2008;40:74-84. https://doi.org/10.1016/j.soilbio.2007.06.024

154. Ma Y, Rajkumar M, Freitas H. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 2009;90:831-7. https://doi.org/10.1016/j.jenvman.2008.01.014

155. Hadi F, Bano A. Effect of diazotrophs (Rhizobium and Azatebactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot 2010;42:4363-70.

156. Wu S, Cheung K, Luo Y, Wong MH. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 2006;140:124-35. https://doi.org/10.1016/j.envpol.2005.06.023

157. Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, et al. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 2015;156:62-9. https://doi.org/10.1016/j.jenvman.2015.03.024

158. Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 2013;250:477-83. https://doi.org/10.1016/j.jhazmat.2013.02.014

159. Jiang CY, Sheng XF, Qian M, Wang QY. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metalcontaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 2008;72:157-64. https://doi.org/10.1016/j.chemosphere.2008.02.006

160. Chen WM, Wu CH, James EK, Chang JS. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 2008;151:364-71. https://doi.org/10.1016/j.jhazmat.2007.05.082

161. Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 2002;40:355-61. https://doi.org/10.1016/S0981-9428(02)01375-X

162. Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y. A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 2002;99:279-93. https://doi.org/10.1016/S0168-1656(02)00219-5

163. Prapagdee B, Chanprasert M, Mongkolsuk S. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 2013;92:659-66. https://doi.org/10.1016/j.chemosphere.2013.01.082

164. Tiwari S, Singh S, Garg S. Stimulated phytoextraction of metals from fly ash by microbial interventions. Environ Technol 2012;33:2405-13. https://doi.org/10.1080/09593330.2012.670269

165. Liang X, Chi-Quan H, Gang N, Tang GE, Xue-Ping C, Yan-Ru L. Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere 2014;24:322-9. https://doi.org/10.1016/S1002-0160(14)60018-7

166. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 2008;156:1164-70. https://doi.org/10.1016/j.envpol.2008.04.007

167. Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 2009;77:153-60. https://doi.org/10.1016/j.chemosphere.2009.06.047

168. Wu CH, Wood TK, Mulchandani A, Chen W. Engineering plantmicrobe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 2006;72:1129-34. https://doi.org/10.1128/AEM.72.2.1129-1134.2006

169. Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, et al. Enhanced cadmium resistance and accumulation in Pseudomonas putida KT 2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 2014;58:255-61. https://doi.org/10.1111/lam.12185

170. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C. Interaction of Cdhyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 2014;68:300-8. https://doi.org/10.1016/j.soilbio.2013.10.021

171. Long XX, Chen XM, Wong JW, Wei ZB, Wu QT. Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria. Trans Nonferrous Metals Soc China 2013;23:2389-96. https://doi.org/10.1016/S1003-6326(13)62746-6

172. Ma Y, Rajkumar M, Freitas H. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 2009;166:1154-61. https://doi.org/10.1016/j.jhazmat.2008.12.018

173. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, et al. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 2014;103:99-104. https://doi.org/10.1016/j.chemosphere.2013.11.040

174. Adediran GA, Ngwenya BT, Mosselmans JF, Heal KV, Harvie BA. Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 2015;283:490-9. https://doi.org/10.1016/j.jhazmat.2014.09.064

175. Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash P, Kumar KV, et al. Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 2013;262:1039-47. https://doi.org/10.1016/j.jhazmat.2012.08.019

176. Mishra J, Singh R, Arora NK. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 2017;8:1706. https://doi.org/10.3389/fmicb.2017.01706

Article Metrics

15 Absract views 139 PDF Downloads 154 Total views

Related Search

By author names

Citiaion Alert By Google Scholar


Similar Articles

Scope of Nanoscience and Nanotechnology in Agriculture

R. Raliya, J. C. Tarafdar, K. Gulecha, K. Choudhary, Rameshwar Ram, Prakash Mal, R. P. Saran

Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment

Livleen Shukla, Archna Suman, Priyanka Verma, Ajar Nath Yadav , Anil Kumar Saxena

Precision Farming: The Future of Indian Agriculture

V. M. Abdul Hakkim , E. Abhilash Joseph, A. J. Ajay Gokul, K. Mufeedha

Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture

Ajar Nath Yadav, Anil Kumar Saxena

An automated segmentation and classification model for banana leaf disease detection

V. Gokula Krishnan, J. Deepa, Pinagadi Venkateswara Rao, V. Divya, S. Kaviarasan

Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability

Kumar Anand, Gaurav Kumar Pandey, Tanvir Kaur, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Kriti Akansha, Ashok Yadav, Rubee Devi, Divjot Kour, Ashutosh Kumar Rai, Manish Kumar, Ajar Nath Yadav

Agrobacterium rhizogenes as molecular tool for the production of hairy roots in Withania somnifera

Manali Singh,, Deep Chandra Suyal, Nisha Dinkar, Soniya Joshi, Nishtha Srivastava, Vineet Kumar Maurya, Abhiruchi Agnihotri, Sanjeev Agrawal

Endophytic nitrogen-fixing bacteria: Untapped treasurer for agricultural sustainability

Kusam Lata Rana, Divjot Kour, Tanvir Kaur, Rajeshwari Negi, Rubee Devi, Neelam Yadav, Pankaj Kumar Rai, Sangram Singh, Ashutosh Kumar Rai, Ashok Yadav, R. Z. Sayyed, Ajar Nath Yadav

A review on the biological properties of Trichoderma spp. as a prospective biocontrol agent and biofertilizer

Abdul Muizz Al-Azim Abdul-Halim, Pooja Shivanand, Sarayu Krishnamoorthy, Hussein Taha

Co-application of Neem-based biochar with poultry manure and its implications for sustainable production of cucumber (Cucumis sativus Linn.) in humid tropical soil

Emmanuel Bassey Effa, David Adie Alawa, Eucharia Agom Ajah, Isong Abraham Isong, Aniefiok Effiong Uko, Inyang Columbus Etimita, Precious Tammy Edet

Screening and isolation of potential nitrogen-fixing Enterobacter sp. GG1 from mangrove soil with its accelerated impact on green chili plant (Capsicum frutescens L.) growth amelioration

Palash Ghorai, Dipankar Ghosh

Indigenous Lakadong turmeric of Meghalaya and its future prospects

Manjit Kumar Ray, Dipak Kumar Santra, Piyush Kumar Mishra, Saurav Das

Nano-biofertilizers for Agricultural Sustainability

Ajar Nath Yadav,, Divjot Kour, Neelam Yadav

Biofertilizer science and practice for agriculture and forestry: A review

Sudipta Saha, Debasish Paul, Tika Ram Poudel, Nafis Mahadi Basunia, Tasnimul Hasan, Mahadi Hasan, Bei Li, Rubel Reza, Ahmed Redwan Haque, Md. Abu Hanif, Manobendro Sarker, Nathan James Roberts, Muneer Ahmad Khoso, Haibo Wu, Hai-long Shen

Beneficial fungal communities for sustainable development: Present scenario and future challenges

Divjot Kour, Sofia Sharief Khan, Seema Ramniwas, Sanjeev Kumar, Ashutosh Kumar Rai, Sarvesh Rustagi, Kundan Kumar Chaubey, Sangram Singh, Ajar Nath Yadav,, Amrik Singh Ahluwalia

Poultry Environment and farm Practices Influencing the Isolation rate of Multi-Drug Resistant Salmonella from water and Poultry feed in Zaria, Nigeria

MUSA, I.W., MANSUR, M.S., SA’IDU, L., MOHAMMED B, ALIYU, H.B

Genotype x environment interaction and kernel yield-stability of groundnut (Arachis hypogaea L.) in Northern Cameroon

Souina Dolinassou,Jean Baptiste Noubissie Tchiagam,Alain Djiranta Kemoral and Nicolas Njintang Yanou

Enzymatic responses of Clarias gariepinus (Burchell, 1822) exposed to sub-lethal concentrations of an oilfield wastewater

Nedie Patience Akani, Ugwemorubon Ujagwung Gabriel

Rational Design of Duplex Specific Nuclease for One-Step Isothermal Viral RNA Detection

Elizabeth M. Wurtzler, Ranjani Ravi, Vikram Kapoor, David Wendell

Environmental risk assessment of pesticide use in Algerian agriculture

Nafissa Soudani, Mohammed Belhamra, Adamu Y. Ugya, Nageshvar Patel, Laura Carretta, Alessandra Cardinali, Khaoula Toumi

Green technology to limit the effects of hexavalent chromium contaminated water bodies on public health and vegetation at industrial sites

Bikash Kumar Das, Pratyush Kumar Das, Bidyut Prava Das, Patitapaban Dash

Nanotechnology for agro-environmental sustainability

Ajar Nath Yadav

Bacterial degradation of sericin for degumming of silk fibers–A green approach

Bhavna Pandya, Soniya Shetty

Phytomicrobiomes for agro-environmental sustainability

Ajar Nath Yadav

Microbes for Agricultural and Environmental Sustainability

Ajar Nath Yadav, Divjot Kour, Ahmed M. Abdel-Azeem, Murat Dikilitas, Abd El-Latif Hesham, Amrik Singh Ahluwalia

Nanotechnology for the bioremediation of heavy metals and metalloids

Urja Sharma, Jai Gopal Sharma

Emerging microplastic contamination in ecosystem: An urge for environmental sustainability

Akanksha Saini, Jai Gopal Sharma

Bioremediation and Waste Management for Environmental Sustainability

Ajar Nath Yadav, Deep Chandra Suyal, Divjot Kour, Vishnu D. Rajput, Ali Asghar Rastegari, Joginder Singh

Microbes mediated plastic degradation: A sustainable approach for environmental sustainability

Harpreet Kour, Sofia Shareif Khan, Divjot Kour, Shafaq Rasool, Yash Pal Sharma, Pankaj Kumar Rai, Sangram Singh, Kundan Kumar Chaubey, Ashutosh Kumar Rai, Ajar Nath Yadav

Microbe-mediated remediation of dyes: Current status and future challenges

Kriti Akansha, Tanvir Kaur, Ashok Yadav, Divjot Kour, Ashutosh Kumar Rai, Sangram Singh, Shashank Mishra, Lalit Kumar, Kanika Miglani, Karan Singh, Ajar Nath Yadav

Environment and climate change: Influence on biodiversity, present scenario, and future prospect

Divjot Kour, Kanwaljit Kaur Ahluwalia, Seema Ramniwas, Sanjeev Kumar, Sarvesh Rustagi, Sangram Singh, Ashutosh Kumar Rai, Ajar Nath Yadav,, Amrik Singh Ahluwalia

Bioremediation of heavy metals from aquatic environment through microbial processes: A potential role for probiotics?

Marie Andrea Laetitia Huët, Daneshwar Puchooa

Evaluation of heavy metals in selected fruits in Umuahia market, Nigeria: Associating toxicity to effect for improved metal risk assessment

Uroko Robert Ikechukwu, Victor Eshu Okpashi, Uchenna Nancy Oluomachi, Nwuke Chunedu Paulinus, Nduka Florence Obiageli, Ogbonnaya Precious

Effect of different industrial and domestic effluents on growth, yield, and heavy metal accumulation in Turnip (Brassica rapa L.)

Noor ul Ain, Qurat ul Ain, Sadaf Javeria, Sana Ashiq, Kanwal Ashiq, Muhammad Sufyan Akhtar

Bioaccumulation of heavy metal lead (Pb) in different tissues of brackish water fish Mugil cephalus (Linnaeus, 1758)

Vardi Venkateswarlu, Chenji Venkatrayulu

Arsenic-induced antibiotic response in bacteria isolated from an arsenic resistance estuary

Dhanasekaran Padmanabhan, Zerubabel Stephen, Somanathan Karthiga Reshmi, Subbiah Kavitha

Analytical study on hexavalent chromium accumulation in plant parts of Pongamia pinnata (L.) Pierre and remediation of contaminated soil

Pratyush Kumar Das, Bidyut Prava Das, Patitapaban Dash

Effect of heavy metals on germination, biochemical, and L-DOPA content in Mucuna pruriens (L.) DC.

Akshatha Banadka, Praveen Nagella

Ex-situ biofilm mediated approach for bioremediation of selected heavy metals in wastewater of textile industry

Anu Kumar, Shivani, Bhanu Krishan, Mrinal Samtiya, Tejpal Dhewa

Bacillus species for sustainable management of heavy metals in soil: Current research and future challenges

Diyashree Karmakar, Shanu Magotra, Rajeshwari Negi, Sanjeev Kumar, Sarvesh Rustagi, Sangram Singh, Ashutosh Kumar Rai, Divjot Kour, Ajar Nath Yadav,

Environmental Impacts of Industrial Pollution on Pollen Morphology of Eucalyptus globulus Labill. (Myrtaceae)

Mohamed Azzazy

Comparative evaluation of air pollution tolerance of plants from polluted and non-polluted regions of Bengaluru

BT Manjunath, Jayaram Reddy

Some roadside medicinal weeds as bio-indicator of air pollution in Kolkata

Pranabesh Ghosh, Sirshendu Chatterjee, Suradipa Choudhury, Tanusree Sarkar, Ahana Sarkar, Susmita Poddar

Mosquitoes as pesticide pollution Indicators: A comparative susceptibility analysis of field and laboratory strains of mosquitoes against different conventional insecticides

Asha Ambadath Velayudhan,, Lakshmi Kalarikkal Venugopalan,, Sudhikumar Ambalaparambil Vasu, Aneesh Embalil Mathachan

Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches

Varsha Yadav, Saveena Dhanger, Jaigopal Sharma

Isolation of toxic gas-producing bacteria (Desulfovibrio spp.) from shrimp ponds and potential of bacteriophages as biocontrol

Truong Thi Bich Van, Tran Vo Minh Thu