Research Article | Volume: 3, Issue: 6, Nov-Dec, 2015

Cholesterol oxidase: Role in biotransformation of cholesterol

Lata Kumari Kanwar S Shamsher   

Open Access   

Published:  Dec 19, 2015

DOI: 10.7324/JABB.2015.3609

Cholesterol oxidase (COX, E.C. catalyses the oxidation of cholesterol to 4-cholestene-3-one with the reduction of oxygen to hydrogen peroxides. COXs are secreted bacterial enzymes that catalyze the first step in the degradation of cholesterol. Some bacteria, such as Mycobacterium, Rhodococcus and Nocardia sp. produce an intracellular form of the enzyme that is membrane bound, while the enzyme from Arthrobacter, Schizopyllum, Streptoverticillium, Brevibacterium and Streptomyces is found in the extracellular fraction. These organisms play important roles in biotransformation and bioconversion of organic compounds. Bioconversion reactions are the subject of increasing interest in the pharmaceutical industry because of the demand for enantiomerically pure compounds. Bioconversion processes that involve enzymatic or microbial biocatalysts, when compared to their chemical counterparts, offer the advantages of high selectivity and mild operating conditions. Bioconversions may involve isolated and purified enzymes directly in free or immobilized form in order to enhance process stability. Medium engineering attempts to enhance the solubility of substrate and remove(s) the inhibition of product simultaneously by adding an inherently biocompatible and non-biodegradable ingredient to bioconversion medium. The extremely poor solubility of cholesterol as a substrate or steroids in aqueous media lowers the transformation rate and increase costs. The methods of enhancing steroid solubility in bioconversion media include substrate derivatization or micronization, ultrasonication or the use of detergents, water miscible co-solvents, cyclodextrins, polymers and liposomal aqueous biphasic media. Steroids like cholesterol are completely soluble in some organic solvents like benzene, toluene and butanol. Biphasic systems where in the microbial cells are present in the aqueous phase and steroids dissolved in the organic phase is considered an ideal system. In the present review article we try to discuss on the solvent tolerant properties and biotransformation capability of cholesterol oxidase producing different organisms of different species and their applications in different fields.

Keyword:     Microbial cholesterol oxidases biotransformation sbioconversion organic solvent-tolerance industrial applications.


Kumari L, Shamsher KS. Cholesterol oxidase: Role in biotransformation of cholesterol. J App Biol Biotech, 2015; 3 (06): 053-065. DOI: 10.7324/JABB.2015.3609

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Bru R, Sanchez-Ferrer A, Garcia-Carmona F.Characterization of cholesterol oxidase activity in AOT-isooctane reverse micelles and its dependence on micelle size. Biotechnology Letters. 1989; 11: 237-242.

2. Johnson TL and Sonkut GA. Properties of cholesterol dissimilation by Rhodococcus equi. Journal of Food Protection, 1990; 53: 332-335.

3. Xiansheng W and Hung TV, Drew PG, Versteeg K. Enzymatic degradation of cholesterol in milk. Australian Journal of Dairy Technology, 1990; 45: 50-52.

4. Lee Y and Liu WH, Production of androsta-1,4-diene-3,17-dione from cholesterol using immobilized growing cells of Mycobacterium sp. NRRL B-3683 adsorbed on solid carriers. Applied Microbiology and Biotechnology, vol. 36, pp. 598-603, 1992.

5. Niwas R, Singh V, Singh R, Pant G, Mitra K, Kant C, Tripathi M. Cholesterol oxidase production from entrapped cells of Streptomyces sp. Journal of Basic Microbiology, 2014; 54: 1-7.

6. Liu J, Xian G, Li M, Zhang Y, Yang M, Yu Y, Lv H, Xuan S, Lin Y, Gao L. Cholesterol oxidase from Bordetella species promotes irreversible cell apoptosis in lung adenocarcinoma by cholesterol oxidation. Cell death and disease. 2014; 5:1372: doi:10.1038/cddis.2014.324.

7. García JL, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microbial Biotechnology, 2012; 5: 679-699.

8. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997; 89: 331-40.

9. Corbin R, Purcell JP, Greenplate JT, Jennings MG, Ryerse JS, Pershing JC, Sims SR, Prinsen MJ, Tran M, Sammons RD, Stonard RJ. Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochemical and Biophysical Research Communications, 1993; 196: 1406-1413.

10. Corbin DR, Greenplate JT, Purcell JP. The identification and development of proteins for control of insects in genetically modified crops. HortScience. 1998; 33: 614- 617.

11. Li J, Vrielink A, Brick P, Blow DMR. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry. 1993; 32: 11507-11515.

12. Sampson NS, Kass IJ, Ghoshroy KB. Assessment of the role of v loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity. Biochemistry.1998; 37: 5770-5778.

13. Brzostek B, Dziadek A, Rumijowska-Galewicz J, Pawelczyk, Dziadek J. Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. Federation of European Microbiology Societies Microbiology Letters. 2007; 275: 106-112.

14. Doukyu N and Aono R. Cloning, sequence analysis and expression of a gene encoding an organic solvent- and detergent-tolerant cholesterol oxidase of Burkholderia cepacia strain ST-200. Applied Microbiology and Biotechnology. 2001; 57: 146-152.

15. Navas J, Gonzalez-Zorn B, Ladron N, Garrido P, J. A. Vazquez-Boland, “Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. Journal of Bacteriology. 2001; 183: 4796-805.

16. Kanchana R, Correia D, Sarkar S, Gawde P, Rodrigues A. Production and partia characterization of cholesterol oxidase from micrococcus sp .isolated from Goa, India. International Journal of Applied Biology and Pharmaceutical Technology. 2011; 2:393-398.

17. Vrielink, Lloyd LF, Blow DM. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 a resolution. Journal of Molecular Biology. 1991; 219: 533-554.

18. Yue QK, Kass IJ, Sampson NS, Vrielink A. Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants. Biochemistry. 1999; 38: 4277-4286.

19. Lario PI, Sampson N, Vrielink A. Sub-atomic resolution crystal structure of cholesterol oxidase: What atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. Journal of Molecular Biology. 2003; 326: 1635-1650.

20. Buckland C, Dunnill P, Lilly MD. The enzymatic transformation of water-insoluble reactants in non-aqueous solvents, Conversion of cholesterol to cholest-4-ene-3-one by a Nocardia sp. Biotechnology and Bioengineering. 1975; 17: 815-826.

21. Zajaczkowska, Sedlaczek L. Microbiological degradation of sterols. I selective induction of enzyme of the cholesterol side chain cleavage in the Rhodococcus sp IM 58. Acta Microbiologica Polonica.1988; 37: 27-44.

22. Wilmanska D, Dziadek J, Sajduda A, Milczarek K, Jaworski A, Murooka Y. Identification of cholesterol oxidase from fast-growing Mycobacterial strains and Rhodococcus sp. Journal of Bioscience and Bioengineering. 1995; 79: 119-124.

23. Gelb MH, Jain MK, Hanel AM, Berg OG. Interfacial enzymology of glycerolipid hydrolysis: lessons from secretory phospholipase A2. Annual Reviews of Biochemistry. 1995; 64: 653-688.

24. Jain MK, Gelb MH, Roger J, Berg OG. Kinetic basis for interfactial catalysis by phospholipase A2. Methods Enzymology. 1995; 249: 567-614.

25. Berg OG, Gelb MH, Tsai MD, Jain MK. Interfacial enzymology: the secreted phospholipase A2-paradigm. Chemical Reviews. 2001; 101: 2613-2653.

26. Talalay P, Wang VS. Enzymatic isomerization of D 5 -3-keto- steroids. Biochimica et Biophysica Acta. 1955; 18: 300-301.

27. Cherradi N, Defaye G, Chambaz EM. Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome p450scc and 3b-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. The Journal of Biological Chemistry. 1997; 272: 7899-7907.

28. Cherradi N, Defaye G, Chambaz EM. Characterization of 3 beta-hydroxysteroid dehydrogenase activity associated with bovine adrenocortical mitochondria. Endcrinology. 1994; 134: 1358-1364.

29. Sauer LA, Chapman JC, Dauchy RT. Topology of 3 beta-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in adrenal cortex mitochondria and microsomes. Endocrinology. 1994; 134: 751-759.

30. Thomas JL, Evans BW, Blanco G, Mercer RW, Mason JI, Adler S, Nash WE, Isenberg KE and Strickler RC. Site-directed mutagenesis identifies amino acid residues associated with the dehydrogenase and isomerase activities of human type I (placental) 3â-hydroxysteroid dehydrogenase/isomerases. Journal of Steroid Biochemistry and Molecular Biology. 1998; 66: 327-334.

31. Gérard P. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens. 2014; 3: 14-24.

32. Goetschel R, Bar R. Dehydrogenation of hydrocortisone by Arthrobacter simplex in a liposomal medium. Enzyme and Microbial Technology. 1991; 13: 245-251.

33. Deziel, Comeau Y, Villemur R. Two-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation. 1999; 10: 219-233.

34. Bluemke W and Schrader J. Integrated bioprocess for enhance production of natural flavors and fragrances by Ceratocystis moniliformis. Biomolecular Engineering. 2001; 17: 137-142.

35. Doig SD, Boam AT, Leak DL, Livingston AG and Stuckey DC. A membrane bioreactor for biotransformations of hydrophobic molecules. Biotechnology and Bioengineering, 1998; 58: 587-594.

36. Fernandes P, Cabral JMS, Pinheiro HM. Influence of some operational parameters on the bioconversion of sitosterol with immobilized whole cells in organic medium. Journal Molecular Catalysis B Enzymetic. 1998; 5: 307-310.

37. Fernandes CP, Cabral JMS, Pinheiro HM. Effect of phase composition on the whole-cell bioconversion of β-sitosterol in biphasic media. Journal Molecular Catalysis B Enzymetic. 2002; 19: 371-375.

38. Zhilong W, Fengsheng Z, Hao X, Chen D, Li D. Microbial transformation of hydrophobic compound in cloud point system. Journal of Molecular Catalysis B-enzymatic, 2004; 27: 147-153.

39. Wang Z, Zhao F, Hao X, Chen D, Li D. Model of bioconversion of cholesterol in cloud point system. Biochemical Engineering Journal. 2004; 19: 9-13.

40. Aono R, Aibe K, Inoue A, Horikoshi K. Preparation of organic solvent tolerant mutants from Escherichia coli K-12. Agricultural Biology and Chemistry. 1991; 55: 1935-1938.

41. Cruden DL, Wolfram JH, Rogers RD, Gibson DT. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Applied Environmental Microbiology. 1992; 58: 2723-2729.

42. Nakajima, Kobayashi H, Aono R, Horikoshi K. Effective isolation and identification of toluene-tolerant Pseudomonas strains. Bioscience, Biotechnology and Biochemistry. 1992; 56: 1872-1873.

43. Chenfeng L, Yixin T, Longgang W, Wenming J, Yili C, Shengli Y. Bioconversion of yolk cholesterol by extracellular cholesterol oxidase from Brevibacterium sp. Food Chemistry. 2002; 77:457-463.

44. Leo, Jow PYC, Silipo C, Hansch C. Calculation of hydrophobic constant (Log P) from n and f constants. Journal of Medicianl Chemistry. 1975; 18: 865-868.

45. Sikkema J, de Bont JAM, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews. 1995; 59: 201-222.

46. Isken S, Heipieper HJ. Toxicity of organic solvents to microorganisms. In: Encyclopedia of Environmental Microbiology. Bitton G. (Ed.) John Wiley: New York; 2002: 6: 3147-3155.

47. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A. Mechanisms of solvent tolerance in gram-negative bacteria. Annual Review of Microbiology. 2002; 56: 743-768.

48. Kabelitz N, Santos PM, Heipieper HJ. Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. Federation of European Microbiology Socities Microbiology Letters. 2003;220:223-227.

49. Sikkema J, de Bont JAM, Poolman B. Interaction of cyclic hydrocarbons with biological membranes. Journal of Biology and Chemistry. 1994; 269: 8022-8028.

50. Schmid, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature. 2001; 409: 258-268.

51. Daugulis J, Amsden BG, Bochanysz J, Ahmed K. Delivery of benzene to Alcaligenes xylosoxidans by solid polymers in a two-phase partitioning bioreactor. Biotechnology Letters. 2003; 25: 1203-1207.

52. Leon R, Fernandes P, Pinheiro HM, Cabral JMS. Wholecell biocatalysis in organic media. Enzyme and Microbial Technology. 1998; 23: 483-500.

53. Malinowski JJ. Two-phase partitioning bioreactors in fermentation technology. Biotechnology Advances. 2001; 19: 525-538.

54. Sikkema J, Poolman B, Konings WN, de Bont JAM. Effects of the membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes. Journal of Bacteriology. 1994; 174: 2986-2992.

55. Salter J and Kell DB. Solvent selection for whole cell biotransformations in organic media. Institute of Biological Sciences, University of Wales: Aberystwyth; U.K. 1995.

56. Klibanov M. Improving enzymes by using them in organic solvents. Nature. 2001; 409: 241-246.

57. Ramos L, Duque E, Huertas MJ, Haidour A. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. Journal of Bacteriology. 1995; 177: 3911-3916.

58. Shima H, Kudo T, Horikoshi K. Isolation of toluene-resistant mutants from Pseudomonas put/da PpGl (ATCC 17453). Agricultural and Biological Chemistry. 1991; 55: 1197-1199.

59. Aono R, Ito M, Inoue, Horikoshi K. Isolation of novel toluene-tolerant strain Pseudomonas aeruginosa. Bioscience, Biotechnology and Biochemistry. 1992; 56:145-146.

60. Weber J, Ooijkaas LP, Schemen RMW, Hartmans S, Bont de JAM. Adaptation of Pseudomonas putida to high concentrations of styrene and other organic compounds. Applied Environmental Microbiology. 1993; 59: 3502-3504.

61. Moriya, Horikoshi K. Isolation of a benzene-tolerant bacterium and its hydrocarbon degradation. Journal of Fermentation and Bioengineering. 1993(a); 76: 168-173.

62. Komatsu T, Moriya K, Horikoshi K. Preparation of organic solvent-tolerant mutants from Pseudomonas aeruginosa strain PA01161. Bioscience, Biotechnology and Biochemistry. 1994; 59: 1754-1755.

63. Ogino, Miyamoto K, Ishikawa H. Organic solvent-tolerant bacterium which secretes an organic solvent-stable lipolytic enzyme. Applied Environmental and Microbiology. 1994; 60: 3884-3886.

64. Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC. Aromatic-degrading Sphingomonas iso-lates from the deep surface. Applied Environmental microbiology. 1995; 61: 1917-1922.

65. Fredrickson JK, Balkwill DL, Romine MF, Shi T. Ecology, physiology, and phylogeny of deep surface Sphingomonas strains. Journal of Industrial Microbiology and Biotechnology. 1999; 23: 273-283.

66. Kato, Inoue A, Horikoshi K. Isolating and characterizing deep sea marine microorganisms. Trends Biotechnology. 1996; 14: 6-12.

67. Yoshida Y, Ikura Y, Kudo T. Production of 3-vinylcatechol and physiological properties of pseudomonas lf-3, which can assimilate styrene in a two-phase (solvent-aqueous) system. Bioscience, Biotechnology and Biochemistry. 1997; 61: 46-50.

68. Ikura Y, Yoshida Y, Kudo T. Physiological properties of two Pseudomonas mendocina strains which assimilate styrene in a two-phase (solvent-aqueous) system under static culture conditions. Journal of Fermentation and Bioengineering. 1997; 83: 604-607.

69. Paje LF, Neilan BA, Couperwhite I. A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology. 1997; 143: 2975-2981.

70. Kim K, Lee L., Lee K, Lim D. Isolation and characterization of toluene-sensitive mutants from the toluene- resistant bacterium Pseudomonas putida GM73. Journal of Bacteriology. 1998; 180: 3692-3696.

71. Matsumoto, de Bont JA M, Isken S. Isolation and characterization of the solvent tolerant Bacillus cereus strain R1. Journal of Bioscience and Bioengineering. 2002; 94: 45-51.

72. McEvoy E, Wright PC, Bustard MT. The effect of high concentration isopropanol on the growth of a solvent-tolerant strain of Chlorella vulgaris. Enzyme and Microbial Technology. 2004; 35: 140-146.

73. Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. Journal of Bioscience and Bioengineering. 2005; 99: 378-382.

74. Zahir Z, Seed KD, Dennis JJ. Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles. 2006; 10: 129-138.

75. Sardessai YN, Bhosle S. Industrial potential of organic solvent tolerant bacteria,” Biotechnology Progress. 2004; 20: 655-660.

76. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Applied Environmental Microbiology. 2000; 66: 3262-3268.

77. Navas J, Gonzalez-Zorn B, Ladron N, Garrido P, Vazquez-Boland JA. Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. Journal of Bacteriology. 2001; 183: 4796-805.

78. Singh, Solanki PR, Pandey MK, Malhotra BD. Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films. Sensors and Actuators B-chemical. 2006; 115: 534-541.

79. Singh P, Arya SK, Pandey P, Malhotra BD, Saha S, Sreenivas K, Gupta V, Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Journal Applied Physics Letters. 2007; 91: 063901-063903.

80. Srivastava RC, Sahney R, Upadhyay S, Gupta RL. Membrane permeability based cholesterol sensor -A new possibility. Journal of Membrane Science. 2000; 164: 45-49.

81. Foster R, Cassidy J, O'Donoghue E. Electrochemical diagnostic strip device for total cholesterol and its subfractions. Electroanalysis. 2000; 12: 716-72.

82. Hogg J.A. Steroids, the steroid community, and Upjohn in perspective: a profile of innovation. Steroids. 1992; 257: 593-616.

83. Mahato SB and Garai S. Advances in microbial steroid biotransformation. Steroids. 1997; 62: 332-345.

84. Bortolini O, Medici A, Poli S.Biotransformations of the steroid nucleus of bile acids. Steroids. 1997; 62: 564-577.

85. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. Microbial conversion of steroid compounds: recent developments. Enzyme and Microbial Technology. 2003; 32: 688-705.

86. Szykula J, Hebda C, Orpiszewski J. Microbial transformation of neutral fraction and upgraded neutral fraction of polish tall oil. Biotechnology Letters. 1991; 13, 917-922.

87. Hung, Falero A., Llanes N., Perez C, Ramirez MA. Testosterone as biotransformation product in steroid conversion by Mycobacterium sp,” Ibid. 1994; 16: 497-500.

88. Perez, Perez I, Herve E. Isolation and partial characterization of a new mutant for sterol biotransformation in Mycobacterium sp. Ibid. 1995; 17: 1241-1246.

89. Llanes N, Hung B, Falero A, Perez C, Aguita B. Glucose and lactose effect on AD and ADD bioconversion by Mycobacterium sp. Ibid. 1995; 17: 1237-1240.

90. Schubert K, Boehme KH, Hoerhold C.The formation of seven low-molecular-weight degradation products of progesterone. Biochimica et Biophysica Acta. 1965; 111: 529-536.

91. Atrat P, Hoerhold C, Bukhar MI, Koshcheenko KA. Androst-4-ene-3,17-dione from sterols. Ger East DD. 1981; 152: 580.

92. Sharma P, Slathia PS, Somal P, Mehta P. Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species. Annals Microbiology.2012; 62: 1651-1659.

93. Ahmed S and Johri BN. A cholesterol degrading bacteria: isolation, characterization and bioconversion. Indian Journal of Experimental Biology. 1991; 29: 76-77.

94. Ahmed S, Garg SK, Johri B. N. Biotransformation of sterols: selective cleavage of the side chain. Biotechnology Advances. 1992; 10: 1-67.

95. Ahmed S, Roy PK, Basu SK, Johri BN. Cholesterol side chain cleavage by immobilized cells of Rhodococcus equi DSM 89-133. Indian Journal of Experimental Biology. 1993; 31: 319-322.

96. Mahato SB and Garai S. Advances in microbial steroid biotransformation. Steroids. 1997; 63: 332-345.

97. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. Microbial conversion of steroid compounds: recent developments. Enzyme and Microbial Technology. 2003; 32: 688-705.

98. Malaviya and Gomes J. Androstenedione production by biotransformation of phytosterols. Bioresource Technology. 2008; 99: 6725-6737.

99. Szentirmai. Microbial physiology of side chain degradation of sterols. Journal of Industrial Microbiology. 1990; 6: 101-116.

100. Wilson MR, Gallimore WA, Reese PB. Steroid transformations with Fusarium oxysporum var.cubense and Colletotrichum musae. Steroids. 1999; 64: 834-843.

101. Dogra N, Qazi G. N. Steroid biotransformation by different strains of Micrococcus sp. Folia Microbiologica. 2001;46:17-20.

102. Lee H, Chen C, Liu WH. Production of androsta-1,4-diene- 3,17-dione from cholesterol using two step microbial transformation. Applied Microbiology and Biotechnology. 1993; 38: 447-452.

103. Perez, Falero A, Llanes N, Hung BR, Herve ME, Palmer A, Marti E. Resistance to androstanes as an approach for industrial Mycobacteria. Journal of Industrial Microbiology and Biotechnology. 2003(b); 30: 623-626.

104. Dias CP, Fernandes P, Cabral JMS, Pinheiro HM. Isolation of biodegradable sterol rich fraction from industrial wastes. Bioresource Technology. 2002; 82: 253-260.

105. Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W. Efficient biotransformation of cholesterol to androsta-1,4-diene- 3,17-dione by a newly isolated Actinomycete gordonia neofelifaecis. World Journal of Microbiology and Biotechnology. 2011; 27: 759-765.

106. Linos, Berekaa MM, Steinbu¨chel A, Kim KK, Sproer C, Kroppenstedt RM. Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. International Journal of Systematic and Evolutionary Microbiology. 2002; 52: 1133-1139.

107. Kim KK, Lee KC, Klen HP, Oh HM, Lee JS. Gordonia kroppenstedtii sp. nov., a phenol-degrading Actinomycete isolated from a polluted stream. International Journal of Systematic and Evolutionary Microbiology. 2009; 59: 1992-1996.

108. Chaudhari PN, Chaudhari BL, Chincholkar SB.Cholesterol biotransformation to androsta-1,4-diene-3,17-dione by growing cells of Chryseobacterium gleum. Biotechnology Letters. 2010; 32: 695-699.

109. Valcarce, Nusblat A, Florin-Christensen J, Nudel BC. Bioconversion of egg cholesterol to pro-vitamin D sterols with Tetrahymena thermophila. Journal of Food Science. 2002; 67: 2405-2409.

110. Naghibi, Yazdi MT, Sahebgharani M, Noori MRD. Microbial transformation of cholesterol by Mycobacterium smegmatis. Journal of Science, Islamic Republic of Iran. 2002; 13: 103-106.

111. Perez, Falero A, Llanes N, Hung BR, Herve ME, Palmer A, Marti E. Resistance to androstanes as an approach for industrial Mycobacteria. Journal of Industrial Microbiology and Biotechnology, 2003(b); 30: 623-626.

112. Andhale MS and Sambrani SA. Cholesterol biotransformation in monophasic systems by solvent tolerant Bacillus subtilis AF 333249. Indian Journal of Biotechnology. 2006; 5: 389-393.

113. Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W. Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World Journal of Microbiology and Biotechnology. 2010; 27: 759-765.

114. Ahire JJ, Bhat AA, Thakare JM, Pawar PB, Zope DG, Jain RM,Chaudhari BL. Cholesterol assimilation and biotransformation by Lactobacillus helveticus. Biotechnology Letters. 2011; 34: 103-107.

115. Sharma P, Parvez SS, Priti S, Pardeep M. Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia sp. Annals of Microbiology. 2012; 62: 1651-1659.

116. Chenfeng L, Tang Y, Wang L, Ji W, Chen Y, Yang S, Wang W. Bioconversion of yolk cholesterol by extracellular cholesterol oxidase from Brevibacterium sp. Food Chemistry, 2002; 77: 457-463.

117. Kumar R, Dahiya JS, Singh D, Nigam P. Biotransformation of cholesterol using Lactobacillus bulgaricus in a glucose-controlled bioreactor. Bioresources technology. 2001;78: 209-211.

118. Dogra N and Qazi G. Steroid biotransformation by different strains of Micrococcus sp. Folia Microbiologica. 2001; 46: 17-20.

119. Ahmad S, Roy PK, Khan AW, Basu SK, Johri BN. Microbial transformation of sterols to C19 steroids by Rhodococcus equi. World Journal of Microbiology and Biotechnology. 1991; 7: 557-561.

120. Kumari Lata and Kanwar S. Shamsher. Cholesterol Oxidase and Its Applications. Advances in Microbiology. 2012; 2: 49-65.

Article Metrics
41 Views 87 Downloads 128 Total



Related Search

By author names