Microbes mediated plastic degradation: A sustainable approach for environmental sustainability

Harpreet Kour Sofia Shareif Khan Divjot Kour Shafaq Rasool Yash Pal Sharma Pankaj Kumar Rai Sangram Singh Kundan Kumar Chaubey Ashutosh Kumar Rai Ajar Nath Yadav   

Open Access   

Published:  Nov 29, 2022

DOI: 10.7324/JABB.2023.110515
Abstract

In a little over a century, plastic has gone from being addressed as a scientific marvel to being reviled as an ecological scourge. Development and modernization have brought about a colossal swell in global plastic fabrication and consumption, due to its immense applications, versatility, and relatively paltry cost. The main bottleneck lies in its disposal. They tend to endure in the environment for an implausibly long time and thus traverse from one habitat to another and then get incorporated into the food chain, posing ignoramus risks for communities, ecosystems, and the planet. Indiscriminate disposal of plastic waste at startling rates has driven a search for an all-inclusive, proficient, and sustainable remediation research work looking for a practical alternative to manage, process, and dispose of plastic debris. Albeit, there are several processes such as incineration, landfilling, and recycling available but are unsustainable, costly, and have serious repercussions on the environment, wildlife, marine, and human health. Thus, the contemporary focus has been highlighted on the need for substitutes such as biodegradable plastics and surrogate disposal approaches, namely, the potential of microbes to degrade synthetic plastics with no inimical impact. In this regard, bacteria and fungi have been shown to ingurgitate these polymers and metamorphose them into environmentally friendly carbon compounds. The present review covers the types of plastics, their applications, and plastic degradation with more weight on the multifaceted roles played by microorganisms, their modus operandi, and probable enzymatic mechanisms.


Keyword:     Biodegradation Environment Enzymes Factors Microbes Plastics


Citation:

Kour H, Khan SS, Kour D, Rasool S, Sharma YP, Rai PK, Singh S, Chaubey KK, Rai AK, Yadav AN. Microbes mediated plastic degradation: A sustainable approach for environmental sustainability. J App Biol Biotech. 2022. https://doi.org/10.7324/JABB.2023.110515

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Muthukumar A, Veerappapillai S. Biodegradation of plastics-a brief review. Int J Pharm Sci Rev Res 2015;31:204-9.

2. Andrady AL, Neal MA. Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci 2009;364:1977-84. https://doi.org/10.1098/rstb.2008.0304

3. Geyer R. Production, use, and fate of synthetic polymers. In: Plastic Waste and Recycling. London: Elsevier Inc.; 2020. p. 13-32. https://doi.org/10.1016/B978-0-12-817880-5.00002-5

4. Miller L, Soulliere K, Sawyer-Beaulieu S, Tseng S, Tam E. Challenges and alternatives to plastics recycling in the automotive sector. In: Waste Management and Valorization. United States: Academic Press; 2017. p. 237-66. https://doi.org/10.1201/b19941-15

5. Kale SK, Deshmukh AG, Dudhare MS, Patil VB. Microbial degradation of plastic: A review. J BiochemTechnol 2015;6:952-61.

6. Geyer R. Production, use, and fate of synthetic polymers. In: Letcher TM, editor. Plastic Waste and Recycling. United States: Academic Press; 2020. p. 13-32. https://doi.org/10.1016/B978-0-12-817880-5.00002-5

7. Lewis J, Hayes M. Reduce, Reuse, Recycle, Rejected: Why Canada's Recycling Industry is in Crisis Mode. Toronto, Ontario: The Globe and Mail; 2019. p. 22.

8. de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol 2019;53:6044-52. https://doi.org/10.1021/acs.est.9b01339

9. Rutkowska M, Heimowska A, Krasowska K, Janik HZ. Biodegradability of polyethylene starch blends in sea water. Pol J Environ Stud 2002;11:267-72.

10. Kiessling T, Gutow L, Thiel M. Marine litter as habitat and dispersal vector. In: Marine Anthropogenic Litter. Cham: Springer; 2015. p. 141-81. https://doi.org/10.1007/978-3-319-16510-3_6

11. Wright SL, Kelly FJ. Plastic and human health: A micro issue? Environ Sci Technol 2017;51:6634-47. https://doi.org/10.1021/acs.est.7b00423

12. Wong JK, Lee KK, Tang KH, Yap PS. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci Total Environ 2020;719:137512. https://doi.org/10.1016/j.scitotenv.2020.137512

13. Farrell P, Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 2013;177:1-3. https://doi.org/10.1016/j.envpol.2013.01.046

14. Nelson B. What can 28,000 Rubber Duckies Lost at Sea Teach Us about Our Oceans. Vol. 3. Atlanta: Mother Nature Network; 2011. p. 1.

15. Lavers JL, Bond AL. Exceptional and rapid accumulation of anthropogenic debris on one of the world's most remote and pristine islands. Proc Natl Acad Sci 2017;114:6052-5. https://doi.org/10.1073/pnas.1619818114

16. Jamieson AJ, Malkocs T, Piertney SB, Fujii T, Zhang Z. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol 2017;1:51. https://doi.org/10.1038/s41559-016-0051

17. Bender M. An Earth Law Solution to Ocean Plastic Pollution. New York City: Earth Law Center; 2018. p. 9.

18. Boucher J, Friot D. Primary Microplastics in the Oceans: A Global Evaluation of Sources. Vol. 10. Switzerland: IUCN Gland; 2017. https://doi.org/10.2305/IUCN.CH.2017.01.en

19. Li J, Wang Y, Wang X, Wu D. Crystalline characteristics, mechanical properties, thermal degradation kinetics and hydration behaviorof biodegradable fibers melt-spun from polyoxymethylene/poly (l-lactic acid) blends. Polymers 2019;11:1753. https://doi.org/10.3390/polym11111753

20. Ali SS, Elsamahy T, Koutra E, Kornaros M, El-Sheekh M, Abdelkarim E, et al. Degradation of conventional plastic wastes in the environment. A review on current status of knowledge and future perspectives of disposal. Sci Total Environ 2021;771:144719. https://doi.org/10.1016/j.scitotenv.2020.144719

21. Zheng Y, Yanful EK, Bassi AS. A review of plastic waste biodegradation. Crit Rev Biotechnol 2005;25:243-50. https://doi.org/10.1080/07388550500346359

22. Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol Adv 2008;26:246-65. https://doi.org/10.1016/j.biotechadv.2007.12.005

23. Urbanek AK, Rymowicz W, Miro?czuk AM. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 2018;102):7669-78. https://doi.org/10.1007/s00253-018-9195-y

24. Atanasova N, Stoitsova S, Paunova-Krasteva T, Kambourova M. Plastic degradation by extremophilic bacteria. Int J Mol Sci 2021;22:5610. https://doi.org/10.3390/ijms22115610

25. Dussud C, Ghiglione JF. Bacterial degradation of synthetic plastics. CIESM Workshop Monogr 2014;46:49-54.

26. Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea. Nat Rev Microbiol 2005;3:479-88. https://doi.org/10.1038/nrmicro1159

27. Schiraldi C, Giuliano M, de Rosa M. Perspectives on biotechnological applications of archaea. Archaea 2002;1:75-86. https://doi.org/10.1155/2002/436561

28. Jin Y, Cai F, Song C, Liu G, Chen C. Degradation of biodegradable plastics by anaerobic digestion: Morphological, micro-structural changes and microbial community dynamics. Sci Total Environ 2022;834:155167. https://doi.org/10.1016/j.scitotenv.2022.155167

29. Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 2014;9:e111913. https://doi.org/10.1371/journal.pone.0111913

30. Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep 2018;8:4666. https://doi.org/10.1038/s41598-018-22939-w

31. Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull 2011;62:2588-97. https://doi.org/10.1016/j.marpolbul.2011.09.025

32. De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol 2015;49:9629-38. https://doi.org/10.1021/acs.est.5b01093

33. Pauli NC, Petermann JS, Lott C, Weber M. Macrofouling communities and the degradation of plastic bags in the sea: An in situ experiment. Royal Soc Open Sci 2017;4:170549. https://doi.org/10.1098/rsos.170549

34. Rummel CD, Jahnke A, Gorokhova E, Ku?hnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 2017;4:258-67. https://doi.org/10.1021/acs.estlett.7b00164

35. Harrison JP, Sapp M, Schratzberger M, Osborn AM. Interactions between microorganisms and marine microplastics: A call for research. Mar Technol Soc J 2011;45:12-20. https://doi.org/10.4031/MTSJ.45.2.2

36. Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep Res Develop 2011;11:33-41. https://doi.org/10.5918/jamstecr.11.33

37. Raghul S, Bhat S, Chandrasekaran M, Francis V, Thachil E. Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. Int J Environ Scia Technol 2014;11:1827-34. https://doi.org/10.1007/s13762-013-0335-8

38. Singh G, Singh AK, Bhatt K. Biodegradation of polythenes by bacteria isolated from soil. Int J Res Dev Pharm Life Sci 2016;5:2056-62.

39. Urbanek AK, Rymowicz W, Strzelecki MC, Kociuba W, Franczak ?, Miro?czuk AM. Isolation and characterization of Arctic microorganisms decomposing bioplastics. AMB Express 2017;7:148. https://doi.org/10.1186/s13568-017-0448-4

40. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, et al. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ Sci Pollut Res 2018;25:7287-98. https://doi.org/10.1007/s11356-018-1234-9

41. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017;3:e1700782. https://doi.org/10.1126/sciadv.1700782

42. Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes. Front Microbiol 2020;11:442. https://doi.org/10.3389/fmicb.2020.00442

43. Hu X, Thumarat U, Zhang X, Tang M, Kawai F. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Appl Microbiol Biotechnol 2010;87:771-9. https://doi.org/10.1007/s00253-010-2555-x

44. Ribitsch D, Acero EH, Greimel K, Dellacher A, Zitzenbacher S, Marold A, et al. A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers 2012;4:617-29. https://doi.org/10.3390/polym4010617

45. Wei R, Oeser T, Then J, Kühn N, Barth M, Schmidt J, et al. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express 2014;4:44. https://doi.org/10.1186/s13568-014-0044-9

46. Usman L, Yerima R, Haruna M, Adamu S, Nafiu M, Lawal N, et al. Assessment of some potential plastic degrading microbes in Katsina, North Western Nigeria. UJMR 2019;4:96-104.

47. Cosgrove L, McGeechan PL, Robson GD, Handley PS. Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol 2007;73:5817-24. https://doi.org/10.1128/AEM.01083-07

48. da Luz JM, Paes SA, Nunes MD, da Silva MD, Kasuya MC. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One 2013;8:e69386. https://doi.org/10.1371/journal.pone.0069386

49. Hock OG, De Qin D, Lum HW, Hee CW, Shing WL. Evaluation of the plastic degradation ability of edible mushroom species based on their growth and manganese peroxidase activity. Curr Top Toxicol 2020;16:65-72.

50. Artham T, Doble M. Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 2008;8:14-24. https://doi.org/10.1002/mabi.200700106

51. Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud Y, Koutra E, et al. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Sci Total Environ 2021;780:146590. https://doi.org/10.1016/j.scitotenv.2021.146590

52. de Dicastillo CL, Velásquez E, Rojas A, Guarda A, Galotto MJ. The use of nanoadditives within recycled polymers for food packaging: Properties, recyclability, and safety. Compr Rev Food Sci Food Saf 2020;19:1760-76. https://doi.org/10.1111/1541-4337.12575

53. Booth AM, Kubowicz S, Beegle-Krause CJ, Skancke J, Nordam T, Landsem E, et al. Microplastic in Global and Norwegian Marine Environments: Distributions, Degradation Mechanisms and Transport. Vol. 918. Norway: Miljødirektoratet; 2017. p. 1-147.

54. Fotopoulou KN, Karapanagioti HK. Degradation of various plastics in the environment. In: Hazardous Chemicals Associated with Plastics in the Marine Environment. Germany: Springer; 2017. p. 71-92. https://doi.org/10.1007/698_2017_11

55. Pitt CG. Non-microbial degradation of polyesters. In: Mechanisms and Modifications. Vol. 180. Cambridge: Royal Society of Chemistry; 1992. p. 7-12.

56. Price D, Horrocks A. Combustion processes of textile fibres. In: Handbook of Fire Resistant Textiles. United Kingdom: Woodhead Publishing; 2013. p. 3-25. https://doi.org/10.1533/9780857098931.1.3

57. Mir S, Asghar B, Khan AK, Rashid R, Shaikh AJ, Khan RA, et al. The effects of nanoclay on thermal, mechanical and rheological properties of LLDPE/chitosan blend. J Pol Eng 2017;37:143-9. https://doi.org/10.1515/polyeng-2015-0350

58. Bhardwaj H, Gupta R, Tiwari A. Communities of microbial enzymes associated with biodegradation of plastics. J Pol Environ 2013;21:575-9. https://doi.org/10.1007/s10924-012-0456-z

59. Carrott PJ, Carrott MR. Lignin-from natural adsorbent to activated carbon: A review. Bioresour Technol 2007;98:2301-2. https://doi.org/10.1016/j.biortech.2006.08.008

60. Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb Biotechnol 2017;10:1308-22. https://doi.org/10.1111/1751-7915.12710

61. Restrepo-Flórez JM, Bassi A, Thompson MR. Microbial degradationand deterioration of polyethylene-a review. Int Biodeterior Biodegrad 2014;88:83-90. https://doi.org/10.1016/j.ibiod.2013.12.014

62. Krueger MC, Harms H, Schlosser D. Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 2015;99:8857-74. https://doi.org/10.1007/s00253-015-6879-4

63. Iiyoshi Y, Tsutsumi Y, Nishida T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 1998;44:222-9. https://doi.org/10.1007/BF00521967

64. Allen AB, Hilliard NP, Howard GT. Purification and characterization of a solublepolyurethane degrading enzyme from Comamonas acidovorans. Int Biodeterior Biodegrad 1999;43:37-41. https://doi.org/10.1016/S0964-8305(98)00066-3

65. Howard GT, Ruiz C, Hilliard NP. Growth of Pseudomonas chlororaphis on apolyester-polyurethane and the purification andcharacterization of a polyurethanase-esterase enzyme. Int Biodeterior Biodegrad 1999;43:7-12. https://doi.org/10.1016/S0964-8305(98)00057-2

66. Rowe L, Howard GT. Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int Biodeterior Biodegrad 2002;50:33-40. https://doi.org/10.1016/S0964-8305(02)00047-1

67. Ruiz C, Howard GT. Nucleotide sequencing of a polyurethanase gene (pulA) from Pseudomonas fluorescens. Int Biodeterior Biodegrad 1999;44:127-31. https://doi.org/10.1016/S0964-8305(99)00074-8

68. Vega RE, Main T, Howard GT. Cloning and expression in Escherichia coli of apolyurethane-degrading enzyme from Pseudomonas.fluorescens. Int Biodeterior Biodegrad 1999;43:49-55. https://doi.org/10.1016/S0964-8305(98)00068-7

69. Masaki K, Kamini NR, Ikeda H, Iefuji H. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 2005;71:7548-50. https://doi.org/10.1128/AEM.71.11.7548-7550.2005

70. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, et al. Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 2011;77:6076-84. https://doi.org/10.1128/AEM.00521-11

71. Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme-laccase-in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 2013;84:204-10. https://doi.org/10.1016/j.ibiod.2012.03.001

72. Billig S, Oeser T, Birkemeyer C, Zimmermann W. Hydrolysis of cyclic poly (ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl Microbiol Biotechnol 2010;87:1753-64. https://doi.org/10.1007/s00253-010-2635-y

73 Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, et al. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 2016;11:1082-7. https://doi.org/10.1002/biot.201600008

74. Lülsdorf N, Vojcic L, Hellmuth H, Weber TT, Mußmann N, Martinez R, et al. A first continuous 4-aminoantipyrine (4-AAP)-based screening system for directed esterase evolution. Appl Microbiol Biotechnol 2015;99:5237-46. https://doi.org/10.1007/s00253-015-6612-3

75. Oeser T, Wei R, Baumgarten T, Billig S, Föllner C, Zimmermann W. High level expression of a hydrophobic poly (ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21 (DE3). J Biotechnol 2010;146:100-4. https://doi.org/10.1016/j.jbiotec.2010.02.006

76. Ribitsch D, Heumann S, Trotscha E, Acero EH, Greimel K, Leber R, et al. Hydrolysis of polyethyleneterephthalate by p?nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog 2011;27:951-60. https://doi.org/10.1002/btpr.610

77. Gricajeva A, Nadda AK, Gudiukaite R. Insights into polyester plastic biodegradation by carboxyl ester hydrolases. J Chem Technol Biotechnol 2022;97:359-80. https://doi.org/10.1002/jctb.6745

78. León-Zayas R, Roberts C, Vague M, Mellies JL. Draft genome sequences of five environmental bacterial isolates that degrade polyethylene terephthalate plastic. Microbiol Resour Announc 2019;8:e00237-19. https://doi.org/10.1128/MRA.00237-19

79. Satti SM, Shah AA, Auras R, Marsh TL. Genome annotation of Poly (lactic acid) degrading Pseudomonas aeruginosa and Sphingobacterium sp. bioRxiv 2019;2019:609883. https://doi.org/10.1101/609883

80. Frederico TD, Peixoto J, de Sousa JF, Vizzotto CS, Steindorff AS, Pinto OH, et al. Draft genome sequence of Stenotrophomonas maltophilia strain PE591, a polyethylene-degrading bacterium isolated from Savanna Soil. Microbiol Resour Announc 2021;10:e00490-21. https://doi.org/10.1128/MRA.00490-21

81. Dey AS, Bose H, Mohapatra B, Sar P. Biodegradation of unpretreated low-density polyethylene (LDPE) by Stenotrophomonas sp. and Achromobacter sp., isolated from waste dumpsite and drilling fluid. Front Microbiol 2020;11:3095. https://doi.org/10.3389/fmicb.2020.603210

82. Hussein AA, Al-Mayaly IK, Khudeir SH. Isolation, Screening and Identification of Low Density Polyethylene (LDPE) degrading bacteria from contaminated soil with plastic wastes. Mesopotamia Environ J 2015;1:1-14.

83. Deepika S, Jaya M. Biodegradation of low density polyethylene by microorganisms from garbage soil. J Exp Biol Agric Sci 2015;3:1-5.

84. Oliya P, Singh S, Goel N, Singh UP, Srivastava AK. Polypropylene degradation potential of microbes isolated from solid waste dumping site. Pollut Res Pap 2020;39:268-77.

85. Ogunbayo A, Olanipekun O, Adamu I. Preliminary studies on the microbial degradation of plastic waste using Aspergillus niger and Pseudomonas sp. J Environ Protect 2019;10:625-31. https://doi.org/10.4236/jep.2019.105037

86. Mohamad NN. Biodegradation of Low-Density Polyethylene (LDPE) Mixed with Corn Strach by Aspergillus niger, Rhizopus oryzae and Their Biofilm. Cawangan Perlis: Universiti Teknologi MARA; 2019.

87. Munir E, Harefa R, Priyani N, Suryanto D. Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan. IOP Conf Ser Earth Environ Sci 2018;126:012145. https://doi.org/10.1088/1755-1315/126/1/012145

88. Ibrahim S, Gupta RK, War AR, Hussain B, Kumar A, Sofi T, et al. Degradation of chlorpyriphos and polyethylene by endosymbiotic bacteria from citrus mealybug. Saudi J Biol Sci 2021;28:3214-24. https://doi.org/10.1016/j.sjbs.2021.03.058

89. Gupta KK, Devi D, Rana D. Isolation and screening of Low Density Polyethylene (Ldpe) degrading bacterial strains from waste disposal sites. World J Pharma Res 2016;5:1633-43.

90. Joshi G, Goswami P, Verma P, Prakash G, Simon P, Vinithkumar NV, et al. Unraveling the plastic degradation potentials of the plastisphere-associated marine bacterial consortium as a key player for the low-density polyethylene degradation. J Hazard Mater 2022;425:128005. https://doi.org/10.1016/j.jhazmat.2021.128005

91. Biki SP, Mahmud S, Akhter S, Rahman MJ, Rix JJ, Al Bachchu MA, et al. Polyethylene degradation by Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1 isolated from land fill soil site. Environ Technol Innov 2021;22:101495. https://doi.org/10.1016/j.eti.2021.101495

92. Widyananto PA, Muchlissin S, Radjasa O, Sabdono A. Aliphatic polyester biodegradation by coral-associated bacteria from Karimunjawa Marine National Park, Java Sea. IOP Conf Ser Earth Environ Sci 2022;967:012045. https://doi.org/10.1088/1755-1315/967/1/012045

93. Tadimeti A. The effects of different aquatic environments on the rate of HDPE and LDPE degradation by Bacillus subtilis. Columbia Jun Sci J 2020;5:19-20.

94. Kuswytasari ND, Kurniawati AR, Alami NH, Zulaika E, Shovitri M, et al. Plastic degradation by Coriolopsis byrsina, an identified white-rot, soil-borne mangrove fungal isolate from Surabaya, East Java, Indonesia. Biodiversitas J Biol Divers 2019;20:867-71. https://doi.org/10.13057/biodiv/d200334

95. Ren L, Men L, Zhang Z, Guan F, Tian J, Wang B, et al. Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of wax moth Galleria mellonella. Int J Env Res Public Health 2019;16:1941. https://doi.org/10.3390/ijerph16111941

96. Juliana S, Parhusip M, Simanullang A, Tita E, Irawati W. Potential of Ideonella sakaiensis bacteria in degrading plastic waste type polyethylene terephthalate. J Biol Tropis 2022;22:381-9. https://doi.org/10.29303/jbt.v22i2.3321

97. Bardají DK, Furlan JP, Stehling EG. Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 2019;201:699-704. https://doi.org/10.1007/s00203-019-01637-9

98. Khan S, Ali SA, Ali AS. Biodegradation of Low Density Polyethylene (LDPE) by Mesophilic fungus "Penicillium citrinum" isolated from soils of plastic waste dump yard, Bhopal, India. Environ Technol 2022:1-15. https://doi.org/10.1080/09593330.2022.2027025 https://doi.org/10.1080/09593330.2022.2027025

99. Hou L, Xi J, Liu J, Wang P, Xu T, Liu T, et al. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their

potential degradation mechanism. Chemosphere 2022;286:131758. https://doi.org/10.1016/j.chemosphere.2021.131758

100. Shahreza H, Sepahy AA, Hosseini F, Nejad RK. Molecular identification of pseudomonas strains with polyethylene degradation ability from soil and cloning of alkB gene. Arch Pharm Pract 2019;10:3-48.

101. Yue W, Yin CF, Sun L, Zhang J, Xu Y, Zhou NY. Biodegradation of bisphenol-A polycarbonate plastic by Pseudoxanthomonas sp. strain NyZ600. J Hazard Mater 2021;416:125775. https://doi.org/10.1016/j.jhazmat.2021.125775

102. Huang QS, Yan ZF, Chen XQ, Du YY, Li J, Liu ZZ, et al. Accelerated biodegradation of polyethylene terephthalate by Thermobifida fusca cutinase mediated by Stenotrophomonas pavanii. Sci Total Environ 2022;808:152107. https://doi.org/10.1016/j.scitotenv.2021.152107

103. Soud SA. Biodegradation of polyethylene LDPE plastic waste using locally isolated Streptomyces sp. J Pharm Sci Res 2019;11:1333-9.

104. Hikmah M, Setyaningsih R, Pangastuti A. The potential of lignolytic trichoderma isolates in LDPE (Low Density Polyethylene) plastic biodegradation. IOP Conf Ser Mater Sci Eng 2018;333:012076. https://doi.org/10.1088/1757-899X/333/1/012076

105. Uchida H, Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Tokiwa Y, Nakahara T. Properties of a bacterium which degrades solid poly (tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiol Lett 2000;189:25-9. https://doi.org/10.1111/j.1574-6968.2000.tb09201.x

106. Howard GT, Norton WN, Burks T. Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation 2012;23:561-73. https://doi.org/10.1007/s10532-011-9533-6

107. Sharma PK, Mohanan N, Sidhu R, Levin DB. Colonization and degradation of polyhydroxyalkanoates by lipase-producing bacteria. Can J Microbiol 2019;65:461-75. https://doi.org/10.1139/cjm-2019-0042

108. Sriyapai P, Chansiri K, Sriyapai T. Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology 2018;87:290-300. https://doi.org/10.1134/S0026261718020157

109. Nag M, Lahiri D, Dutta B, Jadav G, Ray RR. Biodegradation of used polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environ Sci Pollut Res 2021;28:41365-79. https://doi.org/10.1007/s11356-021-13704-0

110. Tan Y, Henehan GT, Kinsella GK, Ryan BJ. An extracellular lipase from Amycolatopsis mediterannei is a cutinase with plastic degrading activity. Comput Struct Biotechnol J 2021;19:869-79. https://doi.org/10.1016/j.csbj.2021.01.019

111. Amin M, Bhatti HN, Bilal M. Kinetic and thermodynamic characterization of lipase from Aspergillus melleus and its biocatalytic performance for degradation of poly (?-caprolactone). J ChemTechnol Biotechnol 2022;97:446-54. https://doi.org/10.1002/jctb.6649

112. Nakajima-Kambe T, Edwinoliver N, Maeda H, Thirunavukarasu K, Gowthaman M, Masaki K, et al. Purification, cloning and expression of an Aspergillus niger lipase for degradation of poly (lactic acid) and poly (ε-caprolactone). Polym Degrad Stab 2012;97:139-44. https://doi.org/10.1016/j.polymdegradstab.2011.11.009

113. Anbalagan S, Venkatakrishnan HR, Ravindran J, Sathyamoorthy J, Rangabashyam KA, Ragini YP, et al. Hydrolytic degradation of polyethylene terephthalate by cutinase enzyme derived from fungal biomass-molecular characterization. BioInterface Res Appl Chem 2021;12:653-67. https://doi.org/10.33263/BRIAC121.653667

114. Nair S, Kumar P. Molecular characterization of a lipase-producing Bacillus pumilus strain (NMSN-1d) utilizing colloidal water-dispersible polyurethane. World J Microbiol Biotechnol 2007;23:1441-9. https://doi.org/10.1007/s11274-007-9388-5

115. Zhang M, Sharaf F, Chengtao L. Screening and characterization of novel lipase producing Bacillus species from agricultural soil with high hydrolytic activity against PBAT poly (butylene adipate co terephthalate) co-polyesters. Polym Bull 2022; 79:10053-76. https://doi.org/10.1007/s00289-021-03992-4

116. Ishigaki T, Sugano W, Ike M, Fujita M. Enzymatic degradation of cellulose acetate plastic by novel degrading bacterium Bacillus sp. S2055. J Biosci Bioeng 2000;90:400-5. https://doi.org/10.1016/S1389-1723(01)80008-6

117. Shi K, Su T, Wang Z. Comparison of poly (butylene succinate) biodegradation by Fusarium solani cutinase and Candida antarctica lipase. Polym Degrad Stab 2019;164:55-60. https://doi.org/10.1016/j.polymdegradstab.2019.04.005

118. Alfieri B, Alfieri M, Kelly M, Kilcoyne S, Poprik L, Sanyal A, et al. The role of Ideonella sakaiensis PETase in the degradation of PET plastics: A structural comparison of the wild type and S238F/W159H double mutant. FASEB J 2022;36:1-21. https://doi.org/10.1096/fasebj.2022.36.S1.L8070

119. Khan I, Dutta JR, Ganesan R. Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation. Int J Biol Macromol 2017;95:126-31. https://doi.org/10.1016/j.ijbiomac.2016.11.040

120. Nikolaivits E, Taxeidis G, Gkountela C, Vouyiouka S, Maslak V, Nikodinovic-Runic J, et al. A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. J Hazard Mater 2022;434:128900. https://doi.org/10.1016/j.jhazmat.2022.128900

121. Mohanan N, Wong CH, Budisa N, Levin DB. Characterization of polymer degrading lipases, LIP1 and LIP2 from Pseudomonas chlororaphis PA23. Front Bioeng Biotechnol 2022;10:854298. https://doi.org/10.3389/fbioe.2022.854298

122. Sriyapai P, Sriyapai T, Sukrakanchana L. Optimization of polybutylene succinate (PBS)-degrading enzyme production from Saccharothrix sp. APL5. Burapha Sci J 2019;24:1160-76.

123. Jia H, Zhang M, Weng Y, Zhao Y, Li C, Kanwal A. Degradation of poly (butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J Environ Sci 2021;103:50-8. https://doi.org/10.1016/j.jes.2020.10.001

124. Junghare M, Patil Y, Schink B. Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01 T. Stand Genom Sci 2015;10:90. https://doi.org/10.1186/s40793-015-0079-9

125. Kumari A, Bano N, Chaudhary DR, Jha B. Draft genome sequence of plastic degrading Bacillus sp. AIIW2 isolated from the Arabian ocean. J Basic Microbiol 2021;61:37-44. https://doi.org/10.1002/jobm.202000416

126. Wang X, Qu C, Wang W, Zheng Z, Liu F, An M, et al. Complete genome sequence of marine Bacillus sp. Y-01, isolated from the plastics contamination in the Yellow Sea. Mar Genom 2019;43:72-4. https://doi.org/10.1016/j.margen.2018.05.002

127. Furlan JP, Lopes R, Stehling EG. Whole-genome sequence-based analysis of the Paenibacillus aquistagni strain DK1, a polyethylene-degrading bacterium isolated from landfill. World J Microbiol Biotechnol 2021;37:80. https://doi.org/10.1007/s11274-021-03045-y

128. Almeida EL, Margassery LM, O'Leary N, Dobson AD. Draft genome sequence of pseudomonas putida CA-3, a bacterium capable of styrene degradation and medium-chain-length polyhydroxyalkanoate synthesis. Gen Announc 2018;6:e01534-17. https://doi.org/10.1128/genomeA.01534-17

Article Metrics

4 Absract views 11 PDF Downloads 15 Total views

Related Search

By author names

Citiaion Alert By Google Scholar


Similar Articles

Poultry Environment and farm Practices Influencing the Isolation rate of Multi-Drug Resistant Salmonella from water and Poultry feed in Zaria, Nigeria

MUSA, I.W., MANSUR, M.S., SA’IDU, L., MOHAMMED B, ALIYU, H.B

Genotype x environment interaction and kernel yield-stability of groundnut (Arachis hypogaea L.) in Northern Cameroon

Souina Dolinassou,Jean Baptiste Noubissie Tchiagam,Alain Djiranta Kemoral and Nicolas Njintang Yanou

Enzymatic responses of Clarias gariepinus (Burchell, 1822) exposed to sub-lethal concentrations of an oilfield wastewater

Nedie Patience Akani, Ugwemorubon Ujagwung Gabriel

Rational Design of Duplex Specific Nuclease for One-Step Isothermal Viral RNA Detection

Elizabeth M. Wurtzler, Ranjani Ravi, Vikram Kapoor, David Wendell

Environmental risk assessment of pesticide use in Algerian agriculture

Nafissa Soudani, Mohammed Belhamra, Adamu Y. Ugya, Nageshvar Patel, Laura Carretta, Alessandra Cardinali, Khaoula Toumi

Green technology to limit the effects of hexavalent chromium contaminated water bodies on public health and vegetation at industrial sites

Bikash Kumar Das, Pratyush Kumar Das, Bidyut Prava Das, Patitapaban Dash

Nanotechnology for agro-environmental sustainability

Ajar Nath Yadav

Bacterial degradation of sericin for degumming of silk fibers–A green approach

Bhavna Pandya, Soniya Shetty

Phytomicrobiomes for agro-environmental sustainability

Ajar Nath Yadav

Microbes-mediated alleviation of heavy metal stress in crops: Current research and future challenges

Rubee Devi, Tanvir Kaur, Divjot Kour, Macie Hricovec, Rajinikanth Mohan, Neelam Yadav, Pankaj Kumar Rai, Ashutosh Kumar Rai, Ashok Yadav, Manish Kumar, Ajar Nath Yadav

Microbes for Agricultural and Environmental Sustainability

Ajar Nath Yadav, Divjot Kour, Ahmed M. Abdel-Azeem, Murat Dikilitas, Abd El-Latif Hesham, Amrik Singh Ahluwalia

Nanotechnology for the bioremediation of heavy metals and metalloids

Urja Sharma, Jai Gopal Sharma

Emerging microplastic contamination in ecosystem: An urge for environmental sustainability

Akanksha Saini, Jai Gopal Sharma

Bioremediation and Waste Management for Environmental Sustainability

Ajar Nath Yadav, Deep Chandra Suyal, Divjot Kour, Vishnu D. Rajput, Ali Asghar Rastegari, Joginder Singh

Microbe-mediated remediation of dyes: Current status and future challenges

Kriti Akansha, Tanvir Kaur, Ashok Yadav, Divjot Kour, Ashutosh Kumar Rai, Sangram Singh, Shashank Mishra, Lalit Kumar, Kanika Miglani, Karan Singh, Ajar Nath Yadav

Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. Leaves

Mbouobda Hermann Desire , Fotso Bernard , Muyang Rosaline Forsah , Chiatoh Thaddeus Assang, Omokolo Ndoumou Denis

Impact of Phyllanthus amarus extract on antioxidant enzymes in Drosophila melanogaster

N. Manasa, J. S. Ashadevi

Production and Characterization of Collagenase by Penicillium sp. UCP 1286 Isolated From Caatinga Soil

Maria Carolina de Albuquerque Wanderley , Jose Manoel Wanderley Duarte Neto, Carolina de Albuquerque Lima, Sara Isabel da Cruz Silverio, Jose Luiz de Lima Filho, Jose Antonio Couto Teixeira, Ana Lucia Figueiredo Porto

Physiological and biochemical characterization of Sesamum germplasms tolerant to NaCl

Tapaswini Hota, C. Pradhan, G. R. Rout

Effect of various dietary fats supplementation on the liver glycogen, protein and digestive enzymes activities in striped murrel, Channa striatus

Rajesh Dayal, Prem Prakash Srivastava , Joykrushna Jena, Sudhir Raizada, Akhilesh Kumar Yadav, Anita Bhatnagar, Shipra Chowdhary

Trichoderma oligosaccharides priming mediates resistance responses in pearl millet against downy mildew pathogen

Boregowda Nandini, Puttaswamy Hariprasad, Harischandra Sripathy Prakash, Nagaraja Geetha

Morphological, enzymatic screening, and phylogenetic analysis of thermophilic bacilli isolated from five hot springs of Myagdi, Nepal

Punam Yadav , Suresh Korpole, Gandham S Prasad, Girish Sahni , Jyoti Maharjan, Lakshmaiah Sreerama, Tribikram Bhattarai

Cold-active enzymes in food biotechnology: An updated mini review

Mohammed Kuddus

Aroclor 1254 induced oxidative stress and histopathological changes in mice liver

Jalpa Raja, Shweta Pathak, Rahul Kundu

The effects of diet and temperature on enzymes, hormones, and fecundity of the African Catfish Clarias gariepinus (Burchell 1822)

Waleed Abdul-Aziz A. Al-Deghayem, El Amin Mohamed Suliman

A study on the salinity stress effects on the biochemical traits of seedlings and its relationship with resistance toward sensitive and tolerant flax genotypes

Yousef Alaei, Seyed Kamal Kazemitabar, Mohammad Zaefi Zadeh, Hamid Najafi Zarini, Gaffar Kiani

Role of glutathione reductase and catalase enzyme in antioxidant defense mechanism in controlling fluoride-induced oxidative stress

Komal Sharma, Mamta Choudhary, Khushbu Verma

Dye degradation potential and its degradative enzymes synthesis of Bacillus cereus SKB12 isolated from a textile industrial effluent

Thangaraj Sheela, Senthil Kumar Sadasivam

Qualitative and quantitative analysis of Precocene II, estimation of enzymatic, nonenzymatic antioxidant, and cytotoxic potentials of methyl jasmonate-elicited shoot culture of Ageratum conyzoides Linn.

Selvaraj Vasantharani, Ramaraj Thirugnanasampandan, Gunasekaran Bhuvaneswari

Isolation and characterization of starch degrading bacteria from disparate soil samples

Vidhyutha Srivathsan, Mahima Bhandari, Priya Swaminathan

In silico modeling, docking of ThPON1-like protein, and in vitro validation of pesticide tolerance in Trichoderma harzianum

Archana Kumari, Krishna Sundari Sattiraju

Endophytic Fungi as Emerging Bioresources for Bioactive Compounds for Sustainable Development

Divjot Kour, Neelam Yadav, Ajar Nath Yadav

Correlation between plant distribution and edaphic factors in coastal plains of Jazan region, Saudi Arabia

A. A. Salman

Genome-wide identification and expression analysis along the leaf developmental gradient of the sigma factor gene family in foxtail millet (Setaria italica)

Hongyun Liu, Jinjin Cheng, Siyuan Cheng, Hui Fan , Bo Wen , Zheng Liu

Identification and profiling of high temperature responsive miRNAs in French bean (Phaseolus vulgaris L)

M. N. Jyothi,, S. Usha,, B. Suchithra,, N. Sharadamma , D. V. Rai, V. R. Devaraj, R. Nagesh Babu

Computational identification of miRNAs and their targets from Niger (Guizotia abyssinica)

K. Y. Prathiba, S. Usha , B. Suchithra , M. N. Jyothi , V. R. Devaraj, R. Nageshbabu

Knowledge and Risk Factors Prevalence of Non Communicable Diseases (NCDs) in Nigeria: a case study of Adult population in Delta State

Ossai Ochonogor Samuel

Boron toxicity induces altered expression of miRNAs in French bean (Phaseolus vulgaris L.)

M. N. Jyothi, S. Usha, B. Suchithra , T.K. Syeda Ulfath, V.R. Devaraj, R. Nagesh Babu

Exploring factors affecting anther culture in rice (Oryza sativa L.)

Swapan Kumar Tripathy, D. Swain, P. M. Mohapatra, Arjun M. Prusti, Bandita Sahoo, Sucharita Panda, Monalisha Dash, Bhaskar Chakma, Suraj K. Behera

Assessment of impact of varied preconditioning factors, used in isolation and combination, for enhancement of cytokine secretions in stem cell conditioned medium

Rajashri Mokashi, Debjani Dasgupta

Optimization of physical parameters for the growth and lipid production in Nannochloropsis gaditana (Lubian, 1982)

Shyni MarKose, Ajan Chellappan, Praba Thangamani, Subilal George, Selvaraj Thangaswamy, Citarasu Thavasimuthu, Michaelbabu Mariavincent

A novel strategy for disarming quorum sensing in Pseudomonas aeruginosa-Chlorella emersonii KJ725233

Sneha Sawant Desai, Reema Devi Singh, Sukhendu B Ghosh, Varsha Kelkar

Effects of culture media and physical factors on the mycelial growth of the three wild strains of Volvariella volvacea from Ecuador

Marcelino D. Abon, Rich Milton R. Dulay, Sofronio P. Kalaw, Maria Eugenia Romero-Roman, Lenin Pedro Arana-Vera, Walter Oswaldo Reyes-Borja, Renato G. Reyes

African plum (Dacryodes edulis [G. Don] H.J. Lam) fruit development indexes clearly defined and phenophases correlated with temperature in the tropics

Salamatou Mpemboura Nsangou, Libert Brice Tonfack, Didier Mbeguie-A-Mbeguie, Carine Temegne Nono, Godswill Ntsomboh-Ntsefong, Emmanuel Youmbi

Role of lacto-fermentation in reduction of antinutrients in plant-based foods

Mehak Manzoor, Deepti Singh, Gajender Kumar Aseri, Jagdip Singh Sohal, Shilpa Vij, Deepansh Sharma

The effect of Staphylococcus epidermidis cells on Pseudomonas aeruginosa-associated virulence factors

Suhaga Dohare, Devendra Singh, Deepmala Sharma, Vishnu Agarwal

Isolation and identification of pathogenic microbes from tomato puree and their delineation of distinctness by molecular techniques

R.K. Garg, N. Batav, N. Silawat, R.K. Singh

Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment

Livleen Shukla, Archna Suman, Priyanka Verma, Ajar Nath Yadav , Anil Kumar Saxena

Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture

Ajar Nath Yadav, Anil Kumar Saxena

Biodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability

Ajar Nath Yadav

Microbe-mediated bioremediation: Current research and future challenges

Divjot Kour, Sofia Shareif Khan, Harpreet Kour, Tanvir Kaur, Rubee Devi, Pankaj Kumar Rai, Christina Judy, Chloe McQuestion, Ava Bianchi, Sara Spells, Rajinikanth Mohan, Ashutosh Kumar Rai, Ajar Nath Yadav

Bioremediation— sustainable tool for diverse contaminants management: Current scenario and future aspects

Manali Singh, Kuldeep Jayant, Shivani Bhutani, Anshi Mehra, Tanvir Kaur, Divjot Kour, Deep Chandra Suyal, Sangram Singh, Ashutosh Kumar Rai, Ajar Nath Yadav