Biodiversity, mechanisms, and potential biotechnological applications of minerals solubilizing extremophilic microbes: A review

Rubee Devi Tanvir Kaur Rajeshwari Negi Babita Sharma Sohini Chowdhury Monit Kapoor Sangram Singh Sarvesh Rustagi Sheikh Shreaz Pankaj Kumar Rai Ashutosh Kumar Rai Ashok Yadav Divjot Kour Ajar Nath Yadav   

Open Access   

Published:  Apr 25, 2024

DOI: 10.7324/JABB.2024.159821
Abstract

The earth’s surface consists of arid, semi-arid, and hyper-arid lands, where life is profoundly challenged by harsh conditions such as temperature fluctuations, water scarcity, high levels of solar radiations, and soil salinity. The harsh environmental conditions pose serious consequences on plant survival, growth, and productivity accessibility of nutrients reduces. To cope with the harsh environments and increase plant productivity, an extremophilic microbe has attracted agriculturists and environmentalists. The extremophilic microbes, adapted to extreme environmental conditions, offer an unexploited reservoir for biofertilizers, which could provide various forms of nutrients and alleviate the stress caused by the abiotic factors in an environment-friendly manner. Worldwide, minerals solubilizing extremophilic microbes are distributed in various hotspots and belong to three domains of life including, archaea, bacteria, and eukarya. The minerals solubilizing extremophilic microbes belong to diverse phyla, namely, Ascomycota, Actinobacteria, Basidiomycota, Bacteroidetes, Crenarchaeota, Deinococcus-Thermus, Euryarchaeota, Firmicutes, and Proteobacteria. Mineral solubilizing extremophilic microbes achieve the mineral solubilization of phosphorus, potassium, zinc, and selenium by secreting special compounds such as organic acid, exopolysaccharides, and different enzymes. Consequently, extremophilic microbes are becoming increasingly important in agriculture, industries and environmental biotechnology as well, paving the way for novel sequencing technologies and “metaomics” methods, including metagenomics, metatranscriptomics, and metaproteomics. The extremophilic microbial diversity and their biotechnological application in agriculture and industrial applications will be a milestone for future needs. The present review deals with biodiversity, mechanisms and potential biotechnological applications of minerals solubilizing extremophilic microbes.


Keyword:     Agricultural sustainability Biodiversity Biotechnological applications Extremophiles Mineral solubilization


Citation:

Devi R, Kaur T, Negi R, Sharma B, Chowdhury S, Kapoor M, Singh S, Rustagi S, Shreaz S, Rai PK, Rai AK, Yadav A, Kour D, Yadav AN. Biodiversity, mechanisms, and potential biotechnological applications of minerals solubilizing extremophilic microbes: A review. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.159821

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Onaga G, Wydra K. Advances in plant tolerance to abiotic stresses. Plant Genom 2016;10:229-72. https://doi.org/10.5772/64350

2. Bui E. Soil salinity: A neglected factor in plant ecology and biogeography. J Arid Environ 2013;92:14-25. https://doi.org/10.1016/j.jaridenv.2012.12.014

3. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol 2011;11:163. https://doi.org/10.1186/1471-2229-11-163

4. Kumar V, Yadav A, Saxena A, Sangwan P, Dhaliwal H. Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2016;2:1009.

5. Mehnaz D, Abdulla K, Mukhtar S. Isolation and characterization of haloalkaliphilic bacteria from the rhizosphere of Dichanthium annulatum. J Adv Res Biotechnol 2018;3:1-9. https://doi.org/10.15226/2475-4714/3/1/00133

6. Verma P, Yadav A, Shukla L, Saxena A, Suman A. Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 2015;12:105-10.

7. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 2016;56:44-58. https://doi.org/10.1002/jobm.201500459

8. Yadav AN, Sachan SG, Verma P, Saxena AK. Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J Exp Biol 2016;54:142-50.

9. Dong X, Chen Z. Psychrotolerant methanogenic archaea: Diversity and cold adaptation mechanisms. Sci China Life Sci 2012;55:415-21. https://doi.org/10.1007/s11427-012-4320-0

10. Bowen De León K, Gerlach R, Peyton BM, Fields MW. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park. Front Microbiol 2013;4:330. https://doi.org/10.3389/fmicb.2013.00330

11. Oren A. Molecular ecology of extremely halophilic Archaea and bacteria. FEMS Microbiol Ecol 2002;39:1-7. https://doi.org/10.1111/j.1574-6941.2002.tb00900.x

12. Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, et al. Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 2015;5:12293. https://doi.org/10.1038/srep12293

13. Selim S, Akhtar N, Hagagy N, Alanazi A, Warrad M, El Azab E, et al. Selection of newly identified growth-promoting archaea haloferax species with a potential action on cobalt resistance in maize plants. Front Plant Sci 2022;13:872654. https://doi.org/10.3389/fpls.2022.872654

14. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK. Extreme cold environments: A suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2017;2:1-4. https://doi.org/10.19080/AIBM.2017.02.555584

15. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Kumari Sugitha TC, et al. Actinobacteria from rhizosphere: Molecular diversity, distributions, and potential biotechnological applications. In: Singh BP, Gupta VK, Passari AK, editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Ch. 2. Netherlands: Elsevier; 2018. p. 13-41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

16. Singh S. A review on possible elicitor molecules of Cyanobacteria: Their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 2014;117:1221-44. https://doi.org/10.1111/jam.12612

17. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK. Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 2015;31:95-108. https://doi.org/10.1007/s11274-014-1768-z

18. Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK. Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 2016;180:872-82. https://doi.org/10.1007/s12010-016-2139-z

19. Patel KS, Naik JH, Chaudhari S, Amaresan N. Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling. C R Biol 2017;340:244-9. https://doi.org/10.1016/j.crvi.2017.02.005

20. Niu X, Song L, Xiao Y, Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 2018;8:2580. https://doi.org/10.3389/fmicb.2017.02580

21. Yañez-Yazlle MF, Romano-Armada N, Acreche MM, Rajal VB, Irazusta VP. Halotolerant bacteria isolated from extreme environments induce seed germination and growth of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa Willd.) under saline stress. Ecotoxicol Environ Saf 2021;218:112273. https://doi.org/10.1016/j.ecoenv.2021.112273

22. Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosyst 2020;5:21-47. https://doi.org/10.21608/mb.2020.32802.1016

23. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, et al. Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 2017;5:45-57.

24. Ali AH, Abdelrahman M, Radwan U, El-Zayat S, El-Sayed MA. Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Appl Soil Ecol 2018;124:155-62. https://doi.org/10.1016/j.apsoil.2017.11.004

25. Calvillo-Medina RP, Gunde-Cimerman N, Escudero-Leyva E, Barba- Escoto L, Fernández-Tellez EI, Medina-Tellez AA, et al. Richness and metallo-tolerance of cultivable fungi recovered from three high altitude glaciers from Citlaltépetl and Iztaccíhuatl volcanoes (Mexico). Extremophiles 2020;24:625-36. https://doi.org/10.1007/s00792-020-01182-0

26. Badawy AA, Alotaibi MO, Abdelaziz AM, Osman MS, Khalil AM, Saleh AM, et al. Enhancement of seawater stress tolerance in barley by the endophytic fungus Aspergillus ochraceus. Metabolites 2021;11:428. https://doi.org/10.3390/metabo11070428

27. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 2011;27:1231-40. https://doi.org/10.1007/s11274-010-0572-7

28. Yadav AN, Kour D, Yadav N. Microbes as a gift from God. J App Biol Biotechnol 2023;11:1-4. https://doi.org/10.7324/JABB.2023.157095

29. Chattopadhyay MK. Mechanism of bacterial adaptation to low temperature. J Biosci 2006;31:157-65. https://doi.org/10.1007/BF02705244

30. Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C. A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 2002;277:35133-9. https://doi.org/10.1074/jbc.M204517200

31. Okuda M, Sumitomo N, Takimura Y, Ogawa A, Saeki K, Kawai S, et al. A new subtilisin family: Nucleotide and deduced amino acid sequences of new high-molecular-mass alkaline proteases from Bacillus spp. Extremophiles 2004;8:229-35. https://doi.org/10.1007/s00792-004-0381-8

32. Zhang DC, Busse HJ, Liu HC, Zhou YG, Schinner F, Margesin R. Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2011;61:587-91. https://doi.org/10.1099/ijs.0.023135-0

33. Zhou Z, Jiang F, Wang S, Peng F, Dai J, Li W, et al. Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 2012;62:1963-9. https://doi.org/10.1099/ijs.0.031104-0

34. Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L, Rosselló-Móra R, et al. Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2013;63:952-8. https://doi.org/10.1099/ijs.0.043844-0

35. Lee YM, Hwang CY, Lee I, Jung YJ, Cho Y, Baek K, et al. Lacinutrix jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment and emended description of the genus Lacinutrix. Antonie Van Leeuwenhoek 2014;106:527-33. https://doi.org/10.1007/s10482-014-0221-5

36. Shen L, Liu Y, Gu Z, Xu B, Wang N, Jiao N, et al. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015;65:2124-9. https://doi.org/10.1099/ijs.0.000229

37. Zachariah S, Kumari P, Das SK. Psychrobacter pocilloporae sp. nov., isolated from a coral, Pocillopora eydouxi. Int J Syst Evol Microbiol 2016;66:5091-8. https://doi.org/10.1099/ijsem.0.001476

38. Yadav AN, Sachan SG, Verma P, Saxena AK. Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 2015;119:683-93. https://doi.org/10.1016/j.jbiosc.2014.11.006

39. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS. Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 2015;4:806-11. https://doi.org/10.1016/j.bcab.2015.08.006

40. Yarzábal LA, Monserrate L, Buela L, Chica E. Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biol 2018;41:2343-54. https://doi.org/10.1007/s00300-018-2374-6

41. Rondón JJ, Ball MM, Castro LT, Yarzábal LA. Eurypsychrophilic Pseudomonas spp. isolated from Venezuelan tropical glaciers as promoters of wheat growth and biocontrol agents of plant pathogens at low temperatures. Environ Sustain 2019;2:265-75. https://doi.org/10.1007/s42398-019-00072-2

42. Tapia-Vázquez I, Sánchez-Cruz R, Arroyo-Domínguez M, Lira-Ruan V, Sánchez-Reyes A, Del Rayo Sánchez-Carbente M, et al. Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico. Microbiol Res 2020;232:126394. https://doi.org/10.1016/j.micres.2019.126394

43. Adhikari P, Jain R, Sharma A, Pandey A. Plant growth promotion at low temperature by phosphate-solubilizing Pseudomonas spp. Isolated from high-altitude himalayan soil. Microb Ecol 2021;82:677-87. https://doi.org/10.1007/s00248-021-01702-1

44. Busk PK, Lange L. Cellulolytic potential of thermophilic species from four fungal orders. AMB Express 2013;3:47. https://doi.org/10.1186/2191-0855-3-47

45. Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: A review. Bioresour Technol 2003;89:17-34. https://doi.org/10.1016/S0960-8524(03)00033-6

46. Kumar L, Awasthi G, Singh B. Extremophiles: A novel source of industrially important enzymes. Biotechnology 2011;10:121-35. https://doi.org/10.3923/biotech.2011.121.135

47. Chang CH, Yang SS. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 2009;100:1648-58. https://doi.org/10.1016/j.biortech.2008.09.009

48. Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G, Egan A, et al. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 1995;45:308-14. https://doi.org/10.1099/00207713-45-2-308

49. Fardeau ML, Ollivier B, Patel BK, Magot M, Thomas P, Rimbault A, et al. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 1997;47:1013-9. https://doi.org/10.1099/00207713-47-4-1013

50. Wagner ID, Zhao W, Zhang CL, Romanek CS, Rohde M, Wiegel J. Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia. Int J Syst Evol Microbiol 2008;58:2565-73. https://doi.org/10.1099/ijs.0.65343-0

51. Mori K, Yamazoe A, Hosoyama A, Ohji S, Fujita N, Ishibashi JI, et al. Thermotoga profunda sp. nov. and Thermotoga caldifontis sp. nov., anaerobic thermophilic bacteria isolated from terrestrial hot springs. Int J Syst Evol Microbiol 2014;64:2128-36. https://doi.org/10.1099/ijs.0.060137-0

52. Koeck DE, Hahnke S, Zverlov VV. Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 2016;66:4132-7. https://doi.org/10.1099/ijsem.0.001324

53. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, et al. Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 2019;26:1882-95. https://doi.org/10.1016/j.sjbs.2016.01.042

54. Allahgholi L, Sardari RR, Hakvåg S, Ara KZ, Kristjansdottir T, Aasen IM, et al. Composition analysis and minimal treatments to solubilize polysaccharides from the brown seaweed Laminaria digitata for microbial growth of thermophiles. J Appl Phycol 2020;32:1933-47. https://doi.org/10.1007/s10811-020-02103-6

55. Mukherjee T, Banik A, Mukhopadhyay SK. Plant growth-promoting traits of a thermophilic strain of the Klebsiella group with its effect on rice plant growth. Curr Microbiol 2020;77:2613-22. https://doi.org/10.1007/s00284-020-02032-0

56. Ali Sk Z, Vardharajula S. Isolation and identification of a thermotolerant plant growth promoting Pseudomonas putida producing trehalose synthase. J Microbiol Biotechnol Food Sci 2021;2021:63-8.

57. Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature 2001;409:1092-101. https://doi.org/10.1038/35059215

58. Dang P, Yu X, Le H, Liu J, Shen Z, Zhao Z. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS One 2017;12:e0186501. https://doi.org/10.1371/journal.pone.0186501

59. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, et al. Diversity and phylogenetic profiling of niche-specific bacilli from extreme environments of India. Ann Microbiol 2015;65:611-29. https://doi.org/10.1007/s13213-014-0897-9

60. Verma P, Yadav A, Kazy S, Saxena A, Suman A. Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 2013;10:219-26.

61. Chen Y, Fan JB, Du L, Xu H, Zhang QH, He YQ. The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Appl Soil Ecol 2014;84:235-44. https://doi.org/10.1016/j.apsoil.2014.05.014

62. Wang T, Liu MQ, Li HX. Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil. Acta Agric Scand B Soil Plant Sci 2014;64:252-9. https://doi.org/10.1080/09064710.2014.905624

63. Liu Z, Li YC, Zhang S, Fu Y, Fan X, Patel JS, et al. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Appl Soil Ecol 2015;96:217-24. https://doi.org/10.1016/j.apsoil.2015.08.003

64. Sanket A, Ghosh S, Sahoo R, Nayak S, Das A. Molecular identification of acidophilic manganese (Mn)-solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiol J 2017;34:71-80. https://doi.org/10.1080/01490451.2016.1141340

65. Khanghahi MY, Pirdashti H, Rahimian H, Nematzadeh G, Sepanlou MG. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: From isolation, identification to K use efficiency. Symbiosis 2018;76:13-23. https://doi.org/10.1007/s13199-017-0533-0

66. Lee KE, Adhikari A, Kang SM, You YH, Joo GJ, Kim JH, et al. Isolation and characterization of the high silicate and phosphate solubilizing novel strain Enterobacter ludwigii GAK2 that promotes growth in rice plants. Agronomy 2019;9:144. https://doi.org/10.3390/agronomy9030144

67. Chawngthu L, Hnamte R, Lalfakzuala R. Isolation and characterization of rhizospheric phosphate solubilizing bacteria from wetland paddy field of Mizoram, India. Geomicrobiol J 2020;37:366-75. https://doi.org/10.1080/01490451.2019.1709108

68. Satyanarayana T, Raghukumar C, Shivaji S. Extremophilic microbes: Diversity and perspectives. Curr Sci 2005;89:78-90.

69. Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. Biomed Res Int 2015;2015:473050. https://doi.org/10.1155/2015/473050

70. Zhang C, Kong F. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 2014;82:18-25. https://doi.org/10.1016/j.apsoil.2014.05.002

71. Bagyalakshmi B, Ponmurugan P, Marimuthu S. Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 2012;7:4250-9. https://doi.org/10.5897/AJAR11.2459

72. Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato-Antonini SR. Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 2012;55:577-82. https://doi.org/10.1590/S1516-89132012000400013

73. Ramanathan T, Ting YP. Selective copper bioleaching by pure and mixed cultures of alkaliphilic bacteria isolated from a fly ash landfill site. Water Air Soil Pollut 2015;226:1-14. https://doi.org/10.1007/s11270-015-2641-x

74. Prabhu N, Borkar S, Garg S. Alkaliphilic and haloalkaliphilic phosphate solubilizing bacteria from coastal ecosystems of Goa. Int J Adv Biotechnol Res 2016;7:2015-27.

75. Seker M, Sah I, K?rdök E, Ekinci H, Çiftçi Y, Akkaya O. A hidden plant growth promoting bacterium isolated from in vitro cultures of fraser photinia (Photinia× fraseri). Int J Agric Biol. 2017; 19:1511- 1519.

76. Prabhu N, Borkar S, Garg S. Phosphate solubilization mechanisms in alkaliphilic bacterium Bacillus marisflavi FA7. Curr Sci 2018;114:845-53. https://doi.org/10.18520/cs/v114/i04/845-853

77. Samreen T, Zahir ZA, Naveed M, Asghar M. Boron tolerant phosphorus solubilizing Bacillus spp. MN-54 improved canola growth in alkaline calcareous soils. Int J Agric Biol 2019;21:538-46.

78. Mohamed AE, Nessim MG, Ibrahim Abou-el-seoud I, Darwish KM, Shamseldin A. Isolation and selection of highly effective phosphate solubilizing bacterial strains to promote wheat growth in Egyptian calcareous soils. Bull Natl Res Cent 2019;43:1-13. https://doi.org/10.1186/s42269-019-0212-9

79. Cumpa-Velásquez LM, Moriconi JI, Dip DP, Castagno LN, Puig ML, Maiale SJ, et al. Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis. Appl Soil Ecol 2021;168:104125. https://doi.org/10.1016/j.apsoil.2021.104125

80. DasSarma S, DasSarma P. Halophiles and their enzymes: Negativity put to good use. Curr Opin Microbiol 2015;25:120-6. https://doi.org/10.1016/j.mib.2015.05.009

81. Rueda-Puente EO, Castellanos-Cervantes T, Díaz de León-Álvarez JL, Preciado-Rangel P, Almaguer-Vargas G. Bacterial community of rhizosphere associated to the annual halophyte Salicornia bigelovii (Torr.). Terra Latinoam 2010;28:345-53.

82. Zhao S, Zhou N, Zhao ZY, Zhang K, Wu GH, Tian CY. Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr Microbiol 2016;73:574-81. https://doi.org/10.1007/s00284-016-1096-7

83. Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 2009;14:1-4. https://doi.org/10.1016/j.tplants.2008.10.004

84. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 2016;56:294-307. https://doi.org/10.1002/jobm.201500230

85. Omer A, Abd-Elnaby A. Effect of phosphate dissolving Bacteria on physiological behavior of some sesame cultivars under saline conditions at Sahle Eltina-North Sinai. Alex Sci Exch J 2017;38:687-98. https://doi.org/10.21608/asejaiqjsae.2017.4115

86. Wang W, Wu Z, He Y, Huang Y, Li X, Ye BC. Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicol Environ Saf 2018;164:520-9. https://doi.org/10.1016/j.ecoenv.2018.08.070

87. Gupta S, Pandey S. ACC Deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 2019;10:1506. https://doi.org/10.3389/fmicb.2019.01506

88. Jiang H, Wang T, Chi X, Wang M, Chen N, Chen M, et al. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil. Geomicrobiol J 2020;37:110-8. https://doi.org/10.1080/01490451.2019.1666195

89. Pati B, Padhi S. Isolation and characterization of phosphate solubilizing bacteria in saline soil from costal region of Odisha. GSC Biol Pharm Sci 2021;16:109-19. https://doi.org/10.30574/gscbps.2021.16.3.0273

90. Xiafang S, Weiyi H. Mechanism of potassium release from feldspar affected by the sprain Nbt of silicate bacterium. Acta Pedol Sin 2002;39:863-71.

91. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 2014;3:432-47.

92. Shirinbayan S, Khosravi H, Malakouti MJ. Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Appl Soil Ecol 2019;133:138-45. https://doi.org/10.1016/j.apsoil.2018.09.015

93. Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, et al. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 2020;23:101501. https://doi.org/10.1016/j.bcab.2020.101501

94. Kang SM, Khan MA, Hamayun M, Kim LR, Kwon EH, Kang YS, et al. Phosphate-solubilizing Enterobacter ludwigii AFFR02 and Bacillus megaterium Mj1212 rescues alfalfa's growth under post-drought stress. Agriculture 2021;11:485. https://doi.org/10.3390/agriculture11060485

95. Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012;2012:963401. https://doi.org/10.6064/2012/963401

96. Wang X, Wang Y, Tian J, Lim BL, Yan X, Liao H. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 2009;151:233-40. https://doi.org/10.1104/pp.109.138891

97. Ehrlich HL, Newman DK, Kappler A. Ehrlich's Geomicrobiology. United States: CRC Press; 2015. https://doi.org/10.1201/b19121

98. Divjot K, Rana KL, Tanvir K, Yadav N, Yadav AN, Kumar M, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: A review. Pedosphere 2021;31:43-75. https://doi.org/10.1016/S1002-0160(20)60057-1

99. John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 2011;31:211-26. https://doi.org/10.3109/07388551.2010.513327

100. Harris W. Phosphate minerals. In: Dixon JB, Schulze DG, editor. Soil Mineralogy with Environmental Applications. Madison: Soil Science Society of America; 2002. p. 637-65. https://doi.org/10.2136/sssabookser7.c21

101. Khan AA, Jilani G, Akhtar MS, Naqvi SM, Rasheed M. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J Agric Biol Sci 2009;1:48-58.

102. Gowami S, Maurya B, Dubey AN. Role of phosphorus solubilizing microorganisms and dissolution of insoluble phosphorus in soil. Int J Chem Stud 2019;7:3905-13.

103. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2013;2:587. https://doi.org/10.1186/2193-1801-2-587

104. Hassen AI, Bopape FL, Sanger LK. Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: Singh DP, Singh HB, Prabha R, editors. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer, India; 2016. p. 23-36. https://doi.org/10.1007/978-81-322-2647-5_2

105. Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, et al. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 2010;192:975-83. https://doi.org/10.1007/s00203-010-0615-3

106. Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, et al. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 2011;193:497-513. https://doi.org/10.1007/s00203-011-0693-x

107. Taurian T, Anzuay MS, Ludueña LM, Angelini JG, Muñoz V, Valetti L, et al. Effects of single and co-inoculation with native phosphate solubilising strain Pantoea sp. J49 and the symbiotic nitrogen fixing bacterium Bradyrhizobium sp. SEMIA 6144 on peanut (Arachis hypogaea L.) growth. Symbiosis 2013;59:77-85. https://doi.org/10.1007/s13199-012-0193-z

108. Walpola BC, Arunakumara K, Yoon MH. Isolation and characterization of phosphate solubilizing bacteria (Klebsiella oxytoca) with enhanced tolerant to environmental stress. Afr J Microbiol Res 2014;8:2970-8. https://doi.org/10.5897/AJMR2013.5771

109. Rfaki A, Nassiri L, Ibijbijen J. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of faba bean (Vicia faba L.) in Meknes Region, Morocco. Microbiol Res J Int 2015;6:247-54. https://doi.org/10.9734/BMRJ/2015/14379

110. Kumar A, Singh M, Singh PP, Singh SK, Singh PK, Pandey KD. Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol. 2016; 8:1-7. https://doi.org/10.1016/j.bcab.2016.07.002

111. Shahid M, Khan MS. Glyphosate induced toxicity to chickpea plants and stress alleviation by herbicide tolerant phosphate solubilizing Burkholderia cepacia PSBB1 carrying multifarious plant growth promoting activities. 3 Biotech 2018;8:131. https://doi.org/10.1007/s13205-018-1145-y

112. Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, et al. Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 2020;3:23-34. https://doi.org/10.1007/s42398-020-00094-1

113. Valmorbida J, Boaro CS. Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium. Braz Arch Biol Technol 2007;50:379-84. https://doi.org/10.1590/S1516-89132007000300003

114. Sharma A, Shankhdhar D, Shankhdhar S. Potassium-solubilizing microorganisms: Mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS, editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi: Springer India; 2016. p. 203-19. https://doi.org/10.1007/978-81-322-2776-2_15

115. Li F, Li S, Yang Y, Cheng L. Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol Mineral 2006;25:440-8.

116. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, et al. Potassium-solubilizing microorganism in evergreen agriculture: An overview. Meena V, Maurya B, Verma J, Meena R, editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi: Springer; 2016. https://doi.org/10.1007/978-81-322-2776-2

117. Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A. Potassium-solubilizing microbes: Diversity, distribution, and role in plant growth promotion. In: Panpatte D, Jhala Y, Vyas R, Shelat H, editors. Microorganisms for Green Revolution. Microorganisms for Sustainability. Vol. 6. Singapore: Springer; 2017. https://doi.org/10.1007/978-981-10-6241-4_7

118. Song SK, Huang P. Dynamics of potassium release from potassium?bearing minerals as influenced by oxalic and citric acids. Soil Sci Soc Am J 1988;52:383-90. https://doi.org/10.2136/sssaj1988.03615995005200020015x

119. Rajawat MV, Singh S, Tyagi SP, Saxena AK. A modified plate assay for rapid screening of potassium-solubilizing bacteria. Pedosphere 2016;26:768-73. https://doi.org/10.1016/S1002-0160(15)60080-7

120. Goldstein A. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagiland E, Silver S, editors. Phosphate in Microorganisms: Cellular and Molecular Biology. Washington, DC: ASM Press; 1994. p. 197-203.

121. Kaur T, Devi R, Kour D, Yadav A, Yadav AN. Plant growth promotion of barley (Hordeum vulgare L.) by potassium solubilizing bacteria with multifarious plant growth promoting attributes. Plant Sci Today 2021;8:17-24. https://doi.org/10.14719/pst.1377

122. Welch S, Taunton A, Banfield J. Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 2002;19:343-67. https://doi.org/10.1080/01490450290098414

123. Lian B, Fu P, Mo D, Liu C. A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 2002;22:179-83.

124. Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 2010;50:50-6. https://doi.org/10.1007/s12088-009-0024-y

125. Ahmad MS, Zargar M. Characterization of potassium solubilizing bacteria (KSB) in rhizospheric soils of apple (Malus domestica Borkh.) in temperate Kashmir. J Appl Life Sci Int. 2017; 1-7. https://doi.org/10.9734/JALSI/2017/36848

126. Maity A, Sharma J, Pal R. Novel potassium solubilizing bio-formulation improves nutrient availability, fruit yield and quality of pomegranate (Punica granatum L.) in semi-arid ecosystem. Sci Hortic 2019;255:14-20. https://doi.org/10.1016/j.scienta.2019.05.009

127. Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK. Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosyst 2020;154:503-14. https://doi.org/10.1080/11263504.2019.1651773

128. Ashfaq M, Hassan HM, Ghazali AHA, Ahmad M. Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess 2020;192:697. https://doi.org/10.1007/s10661-020-08655-x

129. Muthuraja R, Muthukumar T. Isolation and characterization of potassium solubilizing Aspergillus species isolated from saxum habitats and their effect on maize growth in different soil types. Geomicrobiol J 2021;38:672-85. https://doi.org/10.1080/01490451.2021.1928800

130. Raji M, Thangavelu M. Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Arch Microbiol 2021;203:3147-61. https://doi.org/10.1007/s00203-021-02284-9

131. Hirschi K. Nutritional improvements in plants: Time to bite on biofortified foods. Trends Plant Sci 2008;13:459-63. https://doi.org/10.1016/j.tplants.2008.05.009

132. Dhaliwal S, Naresh R, Mandal A, Singh R, Dhaliwal M. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ Sustain Indic 2019;1:100007. https://doi.org/10.1016/j.indic.2019.100007

133. Hussain A, Zahir ZA, Asghar HN, Ahmad M, Jamil M, Naveed M, et al. Zinc solubilizing bacteria for zinc biofortification in cereals: A step toward sustainable nutritional security. In: Meena VS, editor. Role of Rhizospheric Microbes in Soil. Nutrient Management and Crop Improvement. Vol. 2. Singapore: Springer Singapore; 2018. p. 203-27. https://doi.org/10.1007/978-981-13-0044-8_7

134. Obrador A, Novillo J, Alvarez J. Mobility and availability to plants of two zinc sources applied to a calcareous soil. Soil Sci Soc Am J 2003;67:564-72. https://doi.org/10.2136/sssaj2003.5640

135. Tarkalson DD, Jolley VD, Robbins CW, Terry RE. Mycorrhizal colonization and nutrient uptake of dry bean in manure and compost manure treated subsoil and untreated topsoil and subsoil. J Plant Nutr 1998;21:1867-78. https://doi.org/10.1080/01904169809365529

136. Fasim F, Ahmed N, Parsons R, Gadd GM. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 2002;213:1-6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x

137. Zaheer A, Malik A, Sher A, Mansoor Qaisrani M, Mehmood A, Ullah Khan S, et al. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J Biol Sci 2019;26:1061-7. https://doi.org/10.1016/j.sjbs.2019.04.004

138. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, et al. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 2015;65:1885-99. https://doi.org/10.1007/s13213-014-1027-4

139. Othman NM, Othman R, Saud HM, Wahab PE. Effects of root colonization by zinc-solubilizing bacteria on rice plant (Oryza sativa MR219) growth. Agric Nat Res 2017;51:532-7. https://doi.org/10.1016/j.anres.2018.05.004

140. Galeano RM, de Russo Godoy FM, Duré LM, Fernandes-Júnior PI, Baldani JI, Paggi GM, et al. Potential of bacterial strains isolated from ironstone outcrops bromeliads to promote plant growth under drought conditions. Curr Microbiol 2021;78:2741-52. https://doi.org/10.1007/s00284-021-02540-7

141. Patel P, Gajjar H, Joshi B, Krishnamurthy R, Amaresan N. Inoculation of salt-tolerant Acinetobacter sp (RSC9) improves the sugarcane (Saccharum sp. Hybrids) growth under salinity stress condition. Sugar Tech 2021;24:1-8. https://doi.org/10.1007/s12355-021-01043-w

142. Batool S, Asghar HN, Shehzad MA, Yasin S, Sohaib M, Nawaz F, et al. Zinc-solubilizing bacteria-mediated enzymatic and physiological regulations confer zinc biofortification in chickpea (Cicer arietinum L.). J Soil Sci Plant Nutr 2021;21:2456-71. https://doi.org/10.1007/s42729-021-00537-6

143. Rayman MP. Selenium and human health. Lancet 2012;379:1256-68. https://doi.org/10.1016/S0140-6736(11)61452-9

144. Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 2015;1850:1642-60. https://doi.org/10.1016/j.bbagen.2014.10.008

145. Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, et al. Analysis

of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 2005;42:785-97. https://doi.org/10.1111/j.1365-313X.2005.02413.x

146. Feng R, Wei C, Tu S. The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 2013;87:58-68. https://doi.org/10.1016/j.envexpbot.2012.09.002

147. Ros G, Van Rotterdam A, Bussink D, Bindraban P. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil 2016;404:99-112. https://doi.org/10.1007/s11104-016-2830-4

148. Kabata-Pendias A, Mukherjee AB. Trace elements of group 12 (previously group IIb). In: Kabata-Pendias A, Mukherjee AB. Trace Elements from Soil to Human. Berlin, Heidelberg: Springer; 2007. p. 283-319. https://doi.org/10.1007/978-3-540-32714-1_19

149. Rayman MP. Selenium in cancer prevention: A review of the evidence and mechanism of action. Proc Nutr Soc 2005;64:527-42. https://doi.org/10.1079/PNS2005467

150. Eiche E, Bardelli F, Nothstein AK, Charlet L, Göttlicher J, Steininger R, et al. Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Sci Total Environ 2015;505:952-61. https://doi.org/10.1016/j.scitotenv.2014.10.080

151. Van Hoewyk D. A tale of two toxicities: Malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 2013;112:965-72. https://doi.org/10.1093/aob/mct163

152. Pilon-Smits E, El Mehdawi A, Cappa J, Wang J, Cochran A, Reynolds R, et al. New insights into the multifaceted ecological and evolutionary aspects of plant selenium hyperaccumulation. In: Bañuelos GS, Lin ZQ, de Moraes MF, Guilherme LR, Reis AR, editors. Global Advances in Selenium Research from Theory to Application. London: CRC/Taylor & Francis Group; 2015. p. 125-6. https://doi.org/10.1201/b19240-64

153. Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, et al. Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 2016;61:291-302. https://doi.org/10.1111/jpi.12346

154. Lazo?Vélez MA, Chávez?Santoscoy A, Serna?Saldivar SO. Selenium?enriched breads and their benefits in human nutrition and health as affected by agronomic, milling, and baking factors. Cereal Chem 2015;92:134-44. https://doi.org/10.1094/CCHEM-05-14-0110-RW

155. Bachiega P, Salgado JM, de Carvalho JE, Ruiz AL, Schwarz K, Tezotto T, et al. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 2016;190:771-6. https://doi.org/10.1016/j.foodchem.2015.06.024

156. Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EA, Faisal M. Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)--applications in phytoremediation and biofortification. Int J Phytoremediation 2015;17:341-7. https://doi.org/10.1080/15226514.2014.922920

157. Acuña JJ, Jorquera MA, Barra PJ, Crowley DE, de la Luz Mora M. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol Fertil Soils 2013;49:175-85. https://doi.org/10.1007/s00374-012-0705-2

158. Durán P, Acuña JJ, Jorquera MA, Azcón R, Paredes C, Rengel Z, et al. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils 2014;50:983-90. https://doi.org/10.1007/s00374-014-0920-0

159. Durán P, Acuña J, Jorquera M, Azcón R, Borie F, Cornejo P, et al. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J Cereal Sci 2013;57:275-80. https://doi.org/10.1016/j.jcs.2012.11.012

160. Wang Y, Qin Y, Kot W, Zhang F, Zheng S, Wang G, et al. Genome sequence of selenium-solubilizing bacterium Caulobacter vibrioides T5M6. Genome Announc 2016;4:e01721-15. https://doi.org/10.1128/genomeA.01721-15

161. Larsen EH, Lobinski R, Burger-Meÿer K, Hansen M, Ruzik R, Mazurowska L, et al. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal Bioanal Chem 2006;385:1098-108. https://doi.org/10.1007/s00216-006-0535-x

162. Yu Y, Zhang S, Wen B, Huang H, Luo L. Accumulation and speciation of selenium in plants as affected by arbuscular mycorrhizal fungus Glomus mosseae. Biol Trace Elem Res 2011;143:1789-98. https://doi.org/10.1007/s12011-011-8973-5

163. Patharajan S, Raaman N. Influence of arbuscular mycorrhizal fungi on growth and selenium uptake by garlic plants. Arch Phytopathol Plant Prot 2012;45:138-51. https://doi.org/10.1080/03235408.2010.501166

164. Luo W, Li J, Ma X, Niu H, Hou S, Wu F. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil 2019;438:71-83. https://doi.org/10.1007/s11104-019-04001-4

165. Conversa G, Lazzizera C, Chiaravalle AE, Miedico O, Bonasia A, La Rotonda P, et al. Selenium fern application and arbuscular mycorrhizal fungi soil inoculation enhance Se content and antioxidant properties of green asparagus (Asparagus officinalis L.) spears. Sci Hortic 2019;252:176-91. https://doi.org/10.1016/j.scienta.2019.03.056

166. Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. Selenium biofortification of crop food by beneficial microorganisms. J Fungi (Basel) 2020;6:59. https://doi.org/10.3390/jof6020059

167. Mishra P, Dash D. Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience 2014;11:41-61.

168. Singh D, Thapa S, Geat N, Mehriya ML, Rajawat MV. Biofertilizers: Mechanisms and application. In: Rakshit A, Meena VS, Parihar M, Singh HB, Singh AK, editors. Biofertilizers. Ch. 12. United Kingdom: Woodhead Publishing; 2021. p. 151-66. https://doi.org/10.1016/B978-0-12-821667-5.00024-5

169. Garg N, Pandey R. High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecol 2016;21:57-67. https://doi.org/10.1016/j.funeco.2016.04.001

170. Abdelaziz S, Hemeda N, Belal E, Serag A. Isolation, characterization and genetic studies on isolates of phosphate solubilizing bacteria in Egyptian calcareous soils. J Plant Biol Soil Health 2019;6:10. https://doi.org/10.13188/2331-8996.1000024

171. Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK. Psychrotrophic microbiomes: Molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV, editors. Microorganisms for Green Revolution. Microbes for Sustainable Agro-Ecosystem. Vol. 2. Singapore: Springer Singapore; 2018. p. 197-240. https://doi.org/10.1007/978-981-10-7146-1_11

172. Pathak DV, Kumar M. Microbial inoculants as biofertilizers and biopesticides. In: Singh DP, Singh HB, Prabha R, editors. Microbial Inoculants in Sustainable Agricultural Productivity. Research Perspectives. Vol. 1. New Delhi: Springer India; 2016. p. 197-209. https://doi.org/10.1007/978-81-322-2647-5_11

173. Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 2012;28:1327-50. https://doi.org/10.1007/s11274-011-0979-9

174. Joseph B, Patra RR, Lawrence R. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2007;1:141-52.

175. Yuan M, Chen M, Zhang W, Lu W, Wang J, Yang M, et al. Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: Insights into the extreme environmental adaptations. PLoS One 2012;7:e34458. https://doi.org/10.1371/journal.pone.0034458

176. de Castro AP, Sartori da Silva MR, Quirino BF, Kruger RH. Combining "omics" strategies to analyze the biotechnological potential of complex microbial environments. Curr Protein Pept Sci 2013;14:447-58. https://doi.org/10.2174/13892037113149990062

177. Mukhtar S, Mehnaz S, Malik KA. Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crop improvement. Environ Sustain 2019;2:329-38. https://doi.org/10.1007/s42398-019-00061-5

178. Bramhachari PV, Nagaraju GP, Kariali E. Metagenomic Approaches in Understanding the Mechanism and Function of PGPRs: Perspectives for Sustainable Agriculture. In: Meena VS, Mishra PK, Bisht JK, Pattanayak A, editors. Agriculturally Important Microbes for Sustainable Agriculture. Plant-soil-microbe Nexus. Vol. 1. Singapore: Springer Singapore; 2017. p. 163-82. https://doi.org/10.1007/978-981-10-5589-8_8

179. Zeyaullah M, Kamli MR, Islam B, Atif M, Benkhayal FA, Nehal M, et al. Metagenomics-an advanced approach for noncultivable micro-organisms. Biotechnol Mol Biol Rev 2009;4:49-54.

180. Broaders E, O'Brien C, Gahan CG, Marchesi JR. Evidence for plasmid-mediated salt tolerance in the human gut microbiome and

potential mechanisms. FEMS Microbiol Ecol 2016;92:fiw019. https://doi.org/10.1093/femsec/fiw019

181. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, et al. Nucleotide sequence of bacteriophage φX174 DNA. Nature 1977;265:687-95. https://doi.org/10.1038/265687a0

182. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013;41:e1. https://doi.org/10.1093/nar/gks808

183. Kircher M, Kelso J. High-throughput DNA sequencing--concepts and limitations. Bioessays 2010;32:524-36. https://doi.org/10.1002/bies.200900181

184. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012;488:91-5. https://doi.org/10.1038/nature11336

185. Mukhtar S, Mehnaz S, Mirza MS, Mirza BS, Malik KA. Diversity of Bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola), and characterization of osmoregulatory genes in halophilic Bacilli. Can J Microbiol 2018;64:567-79. https://doi.org/10.1139/cjm-2017-0544

186. Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, et al. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 2015;91:fiv011. https://doi.org/10.1093/femsec/fiv011

187. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 2012;25:28-36. https://doi.org/10.1094/MPMI-08-11-0204

188. Nikolic B, Schwab H, Sessitsch A. Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 2011;193:665-76. https://doi.org/10.1007/s00203-011-0703-z

189. Orhan F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 2016;47:621-7. https://doi.org/10.1016/j.bjm.2016.04.001

190. Parro V, Moreno-Paz M, González-Toril E. Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 2007;9:453-64. https://doi.org/10.1111/j.1462-2920.2006.01162.x

191. Defez R, Esposito R, Angelini C, Bianco C. Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol Plant Microbe Interact 2016;29:484-95. https://doi.org/10.1094/MPMI-01-16-0010-R

192. Trindade I, Capitão C, Dalmay T, Fevereiro MP, Santos DM. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 2010;231:705-16. https://doi.org/10.1007/s00425-009-1078-0

193. Zhao MG, Chen L, Zhang LL, Zhang WH. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 2009;151:755-67. https://doi.org/10.1104/pp.109.140996

194. Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 2011;33:403-9. https://doi.org/10.1007/s10529-010-0436-0

195. Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R. Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 2011;10:2817-32. https://doi.org/10.4238/2011.November.10.4

196. Sham A, Al-Ashram H, Whitley K, Iratni R, El-Tarabily KA, AbuQamar SF. Metatranscriptomic analysis of multiple environmental stresses identifies RAP2.4 gene associated with Arabidopsis immunity to Botrytis cinerea. Sci Rep 2019;9:17010. https://doi.org/10.1038/s41598-019-53694-1

197. Wilmes P, Bond PL. Metaproteomics: Studying functional gene expression in microbial ecosystems. Trends Microbiol 2006;14:92-7. https://doi.org/10.1016/j.tim.2005.12.006

198. Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT. Biological networks underlying abiotic stress tolerance in temperate crops--a proteomic perspective. Int J Mol Sci 2015;16:20913-42. https://doi.org/10.3390/ijms160920913

199. Wang Y, Hu B, Du S, Gao S, Chen X, Chen D. Proteomic analyses reveal the mechanism of Dunaliella salina Ds-26-16 gene enhancing salt tolerance in Escherichia coli. PLoS One 2016;11:e0153640. https://doi.org/10.1371/journal.pone.0153640

200. Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS, et al. Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sect B Biol Sci 2019;90:1-11. https://doi.org/10.1007/s40011-019-01151-4

201. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 2008;21:737-44. https://doi.org/10.1094/MPMI-21-6-0737

202. Aarab S, Ollero J, Megías M, Laglaoui A, Bakkali M, Arakrak A. Isolation and screening of inorganic phosphate solubilizing Pseudomonas strains from rice rhizosphere soil from Northwestern Morocco. Am J Res Commun 2015;3:29-39.

203. Abbaspoor A, Zabihi HR, Movafegh S, Asl MA. The efficiency of plant growth promoting rhizobacteria (PGPR) on yield and yield components of two varieties of wheat in salinity condition. Am Eurasian J Sustain Agric 2009;3:824-8.

204. Ali SZ, Sandhya V, Rao LV. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 2014;64:493-502. https://doi.org/10.1007/s13213-013-0680-3

205. Aroca R, Porcel R, Ruiz-Lozano JM. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 2007;173:808-16. https://doi.org/10.1111/j.1469-8137.2006.01961.x

206. Arzanesh MH, Alikhani H, Khavazi K, Rahimian H, Miransari M. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 2011;27:197-205. https://doi.org/10.1007/s11274-010-0444-1

207. Ashraf M, Hasnain S, Berge O, Mahmood T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertili Soils 2004;40:157-62. https://doi.org/10.1007/s00374-004-0766-y

208. Bal HB, Das S, Dangar TK, Adhya TK. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 2013;53:972-84. https://doi.org/10.1002/jobm.201200445

209. Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 2017;161:502-14. https://doi.org/10.1111/ppl.12614

210. Barra PJ, Inostroza NG, Acuña JJ, Mora ML, Crowley DE, Jorquera MA. Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 2016;102:80-91. https://doi.org/10.1016/j.apsoil.2016.02.014

211. Barriuso J, Solano BR, Gutiérrez Mañero FJ. Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 2008;98:666-72. https://doi.org/10.1094/PHYTO-98-6-0666

212. Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 2013;29:789-803. https://doi.org/10.1007/s11274-012-1234-8

213. Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 2017;7:1-14. https://doi.org/10.1038/srep41564

214. Chukwuneme CF, Babalola OO, Kutu FR, Ojuederie OB. Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. J Plant Interact 2020;15:93-105. https://doi.org/10.1080/17429145.2020.1752833

215. El-Azeem A, Mehana T, Shabayek A. Effect of seed inoculation with plant growth-promoting rhizobacteria on the growth and yield of wheat (Triticum aestivum L.) cultivated in a sandy soil. Catrina: Int J Environ Sci 2008;3:69-74.

216. Ben Farhat M, Farhat A, Bejar W, Kammoun R, Bouchaala K, Fourati A, et al. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol 2009;191:815-24. https://doi.org/10.1007/s00203-009-0513-8

217. Hidayat I. Dark Septate Endophytes and their role in enhancing plant resistance to abiotic and biotic stresses. In: Sayyed RZ, Arora NK, Reddy MS, editors. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Rhizobacteria in Abiotic Stress Management. Vol. 1. Singapore: Springer; 2019. p. 35-63. https://doi.org/10.1007/978-981-13-6536-2_3

218. Jha A, Saxena J, Sharma V. Investigation on phosphate solubilization potential of agricultural soil bacteria as affected by different phosphorus sources, temperature, salt, and pH. Commun Soil Sci Plant Anal 2013;44:2443-58. https://doi.org/10.1080/00103624.2013.803557

219. Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J. Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul 2013;32:122-30. https://doi.org/10.1007/s00344-012-9283-7

220. Kasotia A, Varma A, Choudhary DK. Pseudomonas mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res 2015;4:31-41. https://doi.org/10.1007/s40003-014-0139-1

221. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 2014;73:121-31. https://doi.org/10.1007/s10725-013-9874-8

222. Qi W, Zhao L. Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol 2013;53:355-64. https://doi.org/10.1002/jobm.201200031

223. Radhakrishnan R, Khan AL, Kang SM, Lee IJ. A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress. Ann Microbiol 2015;65:585-93. https://doi.org/10.1007/s13213-014-0894-z

224. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2013;2:6. https://doi.org/10.1186/2193-1801-2-6

225. Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 2011;61:893-900. https://doi.org/10.1007/s13213-011-0211-z

226. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 2015;17:316-31. https://doi.org/10.1111/1462-2920.12439

227. Sarma RK, Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 2014;377:111-26. https://doi.org/10.1007/s11104-013-1981-9

228. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, et al. Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 2011;27:1129-35. https://doi.org/10.1007/s11274-010-0559-4

229. Sharan A, Darmwal NS, Gaur R. Xanthomonas campestris, a novel stress tolerant, phosphate-solubilizing bacterial strain from saline-alkali soils. World J Microbiol Biotechnol 2008;24:753-9. https://doi.org/10.1007/s11274-007-9535-z

230. Singh RP, Jha PN. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 2016;7:1890. https://doi.org/10.3389/fpls.2016.01890

231. Singh RK, Masurkar P, Pandey SK, Kumar S. Rhizobacteria-plant interaction, alleviation of abiotic stresses. In: Sayyed RZ, Arora NK, Reddy MS, editors. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Rhizobacteria in Abiotic Stress Management. Vol. 1. Berlin: Springer Singapore; 2019. p. 345-53. https://doi.org/10.1007/978-981-13-6536-2_16

232. Toribio-Jiménez J, Rodríguez-Barrera MÁ, Hernández-Flores G, Ruvacaba-Ledezma JC, Castellanos-Escamilla M, Romero- Ramírez Y. Isolation and screening of bacteria from Zea mays plant growth promoters. Rev Int Contam Ambient 2017;33:143-50. https://doi.org/10.20937/RICA.2017.33.esp01.13

233. Yaghoubian Y, Goltapeh EM, Pirdashti H, Esfandiari E, Feiziasl V, Dolatabadi HK, et al. Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress. Agric Res 2014;3:239-45. https://doi.org/10.1007/s40003-014-0114-x

234. Zabihi H, Savaghebi G, Khavazi K, Ganjali A, Miransari M. Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 2011;33:145-52. https://doi.org/10.1007/s11738-010-0531-9

235. Zhang M, Yang L, Hao R, Bai X, Wang Y, Yu X. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil 2020;452:423-40. https://doi.org/10.1007/s11104-020-04582-5

236. Jiang H, Qi P, Wang T, Wang M, Chen M, Chen N, et al. Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils. 3 Biotech 2018;8:461. https://doi.org/10.1007/s13205-018-1485-7

237. Pahari A, Mishra B. Characterization of siderophore producing rhizobacteria and its effect on growth performance of different vegetables. Int J Curr Microbiol Appl Sci 2017;6:1398-405. https://doi.org/10.20546/ijcmas.2017.605.152

238. Zhang J, Wang PC, Fang L, Zhang QA, Yan CS, Chen JY. Isolation and characterization of phosphate-solubilizing bacteria from mushroom residues and their effect on tomato plant growth promotion. Pol J Microbiol 2017;66:57-65. https://doi.org/10.5604/17331331.1234994

239. Zhu F, Qu L, Hong X, Sun X. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from daqiao saltern on the coast of yellow sea of China. Evid Based Complement Alternat Med 2011;2011:615032. https://doi.org/10.1155/2011/615032

240. Devi R, Kaur T, Kour D, Yadav A, Yadav AN, Suman A, et al. Minerals solubilizing and mobilizing microbiomes: A sustainable approach for managing minerals' deficiency in agricultural soil. J Appl Microbiol 2022;133:1245-72. https://doi.org/10.1111/jam.15627

Article Metrics
21 Views 12 Downloads 33 Total

Year

Month

Related Search

By author names

Similar Articles

Biodiversity of arbuscular mycorrhizal fungi of pumpkins (Cucurbita spp.) under the influence of fertilizers in ferralitic soils of Cameroon and Benin

Judith Taboula Mbogne , Carine Nono Temegne , Pascal Hougnandan, Emmanuel Youmbi , Libert Brice Tonfack , Godswill Ntsomboh-Ntsefong

Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health

Ajar Nath Yadav, Rajesh Kumar, Sunil Kumar, Vinod Kumar, TCK Sugitha, Bhanumati Singh, Vinay Singh Chauahan, Harcharan Singh Dhaliwal, Anil Kumar Saxena

Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture

Ajar Nath Yadav, Anil Kumar Saxena

Biodiversity of psychrotrophic microbes and their biotechnological applications

Ajar Nath Yadav, Neelam Yadav, Shashwati Ghosh Sachan, Anil Kumar Saxena

Biodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability

Ajar Nath Yadav

Biodiversity of cyanobacteria in fresh water ponds of Pudukkottai district, Tamil Nadu, India

Dhanalakshmi Jayakumar, Jeevan Pandiyan

Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability

Kumar Anand, Gaurav Kumar Pandey, Tanvir Kaur, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Kriti Akansha, Ashok Yadav, Rubee Devi, Divjot Kour, Ashutosh Kumar Rai, Manish Kumar, Ajar Nath Yadav

Microbes for Agricultural and Environmental Sustainability

Ajar Nath Yadav, Divjot Kour, Ahmed M. Abdel-Azeem, Murat Dikilitas, Abd El-Latif Hesham, Amrik Singh Ahluwalia

Structural and functional diversity of plant growth promoting microbiomes for agricultural sustainability

Tanvir Kaur, Divjot Kour, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Ashok Yadav, Shashank Mishra, Manish Kumar, Ashutosh Kumar Rai, Ajar Nath Yadav

Review on selected essential oils from America as applied resources to control Bemisia tabaci, an important agronomical pest

Ricardo Diego Duarte Galhardo De Albuquerque, Edmundo Arturo Venegas-Casanova, José Gilberto Gavídia-Valencia, Felipe Rúben Rubio-López, Roger A. Rengifo-Penadillos, Judith Enit Roldán-Rodriguez, Aníbal Quintana-Díaz

Rhizospheric microbiomes for agricultural sustainability

Ajar Nath Yadav,, Divjot Kour, Neelam Yadav

Environment and climate change: Influence on biodiversity, present scenario, and future prospect

Divjot Kour, Kanwaljit Kaur Ahluwalia, Seema Ramniwas, Sanjeev Kumar, Sarvesh Rustagi, Sangram Singh, Ashutosh Kumar Rai, Ajar Nath Yadav,, Amrik Singh Ahluwalia

Essential oils as green controllers of the cotton pest Dysdercus

Ricardo Diego Duarte Galhardo De Albuquerque, Edmundo Arturo Venegas-Casanova, Felipe Rúben Rubio-López, Miriam E. Gutiérrez-Ramos, Iris Melina Alfaro-Beltrán, Rafael Jara-Aguilar, Francisco Tito Cerna-Reyes

Microbe-mediated bioremediation: Current research and future challenges

Divjot Kour, Sofia Shareif Khan, Harpreet Kour, Tanvir Kaur, Rubee Devi, Pankaj Kumar Rai, Christina Judy, Chloe McQuestion, Ava Bianchi, Sara Spells, Rajinikanth Mohan, Ashutosh Kumar Rai, Ajar Nath Yadav

Microbial biotechnology for bio-prospecting of microbial bioactive compounds and secondary metabolites

Ajar Nath Yadav