Antifungal potential of entomopathogenic bacteria, Photorhabdus, and Xenorhabdus (Morganellaceae) against pathogenic fungi

Mary Lalramchuani Lal Ramliana Hrang Chal Lalramnghaki Albana L. Chawngthu Van Ramliana Esther Lalhmingliani   

Open Access   

Published:  Apr 11, 2025

DOI: 10.7324/JABB.2025.203366
Abstract

Entomopathogenic bacteria (EPB) are natural pathogens of insects being utilized as biological control agents for insect pests worldwide. In addition to their pathogenicity against insects, they are known to inhibit the growth of several microbes. In this study, EPB of the genus, Photorhabdus and Xenorhabdus, were investigated for their pathogenicity against Fusarium solani (CCK3A1), Fusarium keratoplasticum (ATCC 36031), Candida albicans (ATCC 2091), and Aspergillus fumigatus (ATCC 204305). The antagonistic effect of cell suspension was analyzed by calculating percent inhibition from the co-cultured plate of bacteria and fungus within 192 hours of incubation at 25°C where the highest percent inhibition was observed with X. vietnamensis (RF) against A. fumigatus (ATCC 204305). Moreover, the activity of ethyl acetate extract of bacterial metabolites against pathogenic fungi was analyzed using the disk diffusion method where Photorhabdus hindustanensis (TS) isolates exhibited the highest inhibition against A. fumigatus (ATCC 204305). The components of ethyl acetate extract were analyzed using gas chromatography–mass spectrometry in which Pyrrolo [1,2-a] pyrazine-1,4-dione hexahydro-3-(phenylmethyl), benzeneacetic acid, and n-Hexadecanoic acid were found to be the most abundant compounds. This study provides information regarding the potential of Photorhabdus and Xenorhabdus, including their secondary metabolites against several pathogenic fungi. It further provides insights to overcome the current global drug resistance crisis among several pathogenic fungi, as well as new reference data for the future development and application of antifungal agents.


Keyword:     Drug-resistant pathogen GCMS secondary metabolites


Citation:

Lalramchuani M, Ramliana L, Lalramnghaki HC, Chawngthu AL, Ramliana V, Lalhmingliani E. Antifungal potential of entomopathogenic bacteria, Photorhabdus, and Xenorhabdus (Morganellaceae) against pathogenic fungi. J Appl Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.203366

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 2017;3(4):57; doi: https://doi.org/10.3390/jof3040057

2. Houš? J, Spížek J, Havlí?ek V. Antifungal drugs. Metabolites 2020;10(3):106; doi: https://doi.org/10.3390/metabo10030106

3. Kainz K, Bauer MA, Madeo F, Carmona-Gutierrez D. Fungal infections in humans: the silent crisis. Microb Cell 2020;7(6):143–5; doi: https://doi.org/10.15698%2Fmic2020.06.718

4. Jain A, Sarsaiya S, Wu Q, Lu Y, Shi J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 2019;10(1):409–24; doi: https://doi.org/10.1080%2F21655979.2019.1649520

5. Kuruvilla TS, Dias M. Fusarium solani: a causative agent of skin and nail infections. Indian J Dermatol 2012;57(4):308; doi: https://doi.org/10.4103/0019-5154.97680

6. Wrather JA, Stienstra WC, Koenning SR. Soybean disease loss estimates for the United States from 1996 to 1998. Can J Plant Pathol 2001;23(2):122–31; doi: https://doi.org/10.1080/07060660109506919

7. Al-Hatmi AM, Meletiadis J, Curfs-Breuker I, Bonifaz A, Meis JF, De Hoog GS. In vitro combinations of natamycin with voriconazole, itraconazole and micafungin against clinical Fusarium strains causing keratitis. J Antimicrob Chemother 2016;71(4):953–5; doi: https://doi.org/10.1093/jac/dkv421

8. Macias-Paz IU, Pérez-Hernández S, Tavera-Tapia A, Luna-Arias JP, Guerra-Cárdenas JE, Reyna-Beltrán E. Candida albicans the main opportunistic pathogenic fungus in humans. Rev Argent Microbiol 2023;55(2):189–98; doi: https://doi.org/10.1016/j.ram.2022.08.003

9. Lewis MAO, Williams DW. Diagnosis and management of oral candidosis. Br Dent J 2017;223(9):675–81; doi: https://doi.org/10.1038/sj.bdj.2017.886

10. Sobel JD. Vulvovaginal candidosis. Lancet 2007;369(9577):1961– 71; doi: https://doi.org/10.1016/S0140-6736(07)60917-9

11. Talapko J, Juzbaši? M, Matijevi? T, Pustijanac E, Beki? S, Kotris I, et al. Candida albicans-the virulence factors and clinical manifestations of infection. J Fungi 2021;7(2):79; doi: https://doi.org/10.3390/jof7020079

12. Cottier F, Hall RA. Face/Off: the interchangeable side of Candida albicans. Front Cell Infect Microbiol 2020;9:471; doi: https://doi.org/10.3389/fcimb.2019.00471

13. Costa-de-Oliveira S, Rodrigues AG. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms 2020;8(2):154; doi: https://doi.org/10.3390/microorganisms8020154

14. Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics 2020;9(6):312; doi: https://doi.org/10.3390/antibiotics9060312

15. Lestrade PP, Bentvelsen RG, Schauwvlieghe AFAD, Schalekamp S, van der Velden W JFM, Kuiper EJ, et al. Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study. Clin Infect Dis 2019;68(9):1463–71; doi: https://doi.org/10.1093/cid/ciy859

16. Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clin Infect Dis 2019;50(8):1101–11; doi: https://doi.org/10.1086/651262

17. Anjorin AT, Inje T. Effect of total aflatoxin on the growth characteristics and chlorophyll level of sesame (Sesamum indicum L.). New York Sci J 2014;7(4):8–13; doi: http://www.sciencepub.net/newyork/ny0704/002_23713ny070414_8_13.pdf

18. Reiss J. Effects of mycotoxins on higher plants, algae, fungi and bacteria. In: Wyllie TD, Morehouse LG (eds). Mycotoxic fungi, mycotoxins, mycotoxicosis. An encyclopaedic handbook, Vol. 3. Mycotoxicoses of man and plants: mycotoxin control and regulatory practices, Marcel Dekker Inc., New York, NY, pp. 119–43, 1978.

19. Rivero-Menendez O, Alastruey-Izquierdo A, Mellado E, Cuenca- Estrella M. Triazole resistance in Aspergillus spp.: a worldwide problem? J Fungi 2016;2(3):21; doi: https://doi.org/10.3390/jof203002

20. Burger J, Mol F, Gerowitt B. The ‘necessary extent’ of pesticide use?thoughts about a key term in German pesticide policy. Crop Protection 2008;27:343–51; doi: https://doi:10.1016/j.cropro.2007.06.006

21. Fernando WD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 2005;37(5):955–64; doi: https://doi.org/10.1016/j.soilbio.2004.10.021

22. Koppenhöfer HS, Gaugler R. Entomopathogenic nematode and bacteria mutualism. In: White JF, Torres MS (eds). Defensive mutualism in microbial symbiosis, CRC Press, Boca Raton, FL, pp. 117–34, 2009.

23. Thomas GM, Poinar JRGO. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Evol Microbiol 1979;29(4):352–60; doi: https://doi.org/10.1099/00207713-29-4-352

24. Adeolu M, Alnajar S, Naushad S, Gupta RS. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016;66(12):5575–99; doi: https://doi.org/10.1099/ijsem.0.001485

25. Webster JM, Chen G, Hu K, Li K. Bacterial metabolites. In: Gaugler R (ed.). Entomopathogenic nematology. CABI International, London, pp. 99–114, 2002.

26. Hominick WM. Biogeography. In: Gangler R (ed.). Entomopathogenic nematology, CABI Publishing, Wallingford, pp. 115–43, 2002.

27. Aiswarya D, Karthik Raja R, Gowthaman G, Deepak P, Balasubramani G, Perumal P. Antibacterial activities of extracellular metabolites of symbiotic bacteria, Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes. Int Biol Biomed J 2017;3(2):80–8; doi: http://ibbj.org/article-1-110-en.html

28. Muangpat P, Yooyangket T, Fukruksa C, Suwannaroj M, Yimthin T, Sitthisak S, et al. Screening of the antimicrobial activity against drug resistant bacteria of Photorhabdus and Xenorhabdus associated with entomopathogenic nematodes from Mae Wong National Park, Thailand. Front Microbiol 2017;8:1142; doi: https://doi.org/10.3389/fmicb.2017.01142

29. Muangpat P, Suwannaroj M, Yimthin T, Fukruksa C, Sitthisak S, Chantratita N. Antibacterial activity of Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria. PLoS One 2020;15(6):e0234129; doi: https://doi.org/10.1371/journal.pone.0234129

30. Chen G, Dunphy GB, Webster JM. Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biol Control 1994;4(2):157–62; doi: https://doi.org/10.1006/bcon.1994.1025

31. Orozco JGC, Leite LG, Custódio BC, Silva RSAD, Casteliani AGB, Travaglini RV. Inhibition of symbiote fungus of the leaf cutter ant Atta sexdens by secondary metabolites from the bacterium Xenorhabdus szentirmaii associated with entomopathogenic nematodes. Arq Inst Biol 2018;85:e0172018; doi: https://doi.org/10.1590/1808-1657000172018

32. Chacon-Orozco JG, Bueno CJ, Shapiro-Ilan DI, Hazir S, Leite LG, Harakava R. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum. Sci Rep 2020;10(1):20649; doi: https://doi.org/10.1038/s41598-020-77472-6

33. Lalramchuani M, Lalramliana, Lalramnghaki HC, Vanramliana, Lalhmingliani E. Molecular characterization and antibacterial activities of Photorhabdus and Xenorhabdus from Mizoram, North- East India. J Pure Appl Microbiol 2023;17(3):1560–77; doi: https://doi.org/10.22207/JPAM.17.3.18

34. Akhurst RJ. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Microbiology 1980;121(2):303–9; doi: https://doi.org/10.1099/00221287-121-2-303

35. Emelianoff V, Le Brun N, Pages S, Stock SP, Tailliez P, Moulia C, et al. Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Hérault and Gard (Southern France). J Invertebr Pathol 2008;98(2):211–7; doi: https://doi.org/10.1016/j.jip.2008.01.006

36. Witasari LD, Wahyu KW, Anugrahani BJ, Kurniawan DC, Haryanto A, Nandika D, et al. Antimicrobial activities of fungus comb extracts isolated from Indo malayan termite (Macrotermes gilvus Hagen) mound. AMB Express 2022;12(1):14; doi: https://doi.org/10.1186/s13568-022-01359-0

37. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 2016;6(2):71–9; doi: https://doi.org/10.1016/j.jpha.2015.11.005

38. Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021;20(3):200– 16; doi: https://doi.org/10.1038/s41573-020-00114-z

39. Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 2009;13(2):224–30; doi: https://doi.org/10.1016/j.cbpa.2009.02.037

40. Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 2007;64(2):260–8; doi: https://doi.org/10.1111/j.1365-2958.2007.05671.x

41. Grundmann F, Kaiser M, Schiell M, Batzer A, Kurz M, Thanwisai A, et al. Antiparasitic chaiyaphumines from entomopathogenic Xenorhabdus sp. PB61.4. J Nat Prod 2014;77(4):779–83; doi: https://doi.org/10.1021/np4007525

42. Dowling AJ, Daborn PJ, Waterfield NR, Wang P, Streuli CH, Ffrench-Constant RH. The insecticidal toxin Makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol 2004;6(4):345–53; doi: https://doi.org/10.1021/np4007525

https://doi.org/10.1046/j.1462-5822.2003.00357.x

43. Tu PW, Chiu JS, Lin C, Chien CC, Hsieh FC, Shih MC, et al. Evaluation of the antifungal activities of Photorhabdus akhurstii and its secondary metabolites against phytopathogenic Colletotrichum gloeosporioides. J Fungi 2022;8(4):403; doi: https://doi.org/10.3390/jof8040403

44. Vicente-Díez I, Moreira X, Pastor V, Vilanova M, Pou A, Campos- Herrera R. Control of post-harvest graymold (Botrytis cinerea) on grape (Vitis vinifera) and tomato (Solanum lycopersicum) using volatile organic compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii subsp. laumondii. BioControl 2023;68(5):549–63; doi: https://doi.org/10.1007/s10526-023-10212- 7

45. Cimen H, Touray M, Gulsen SH, Erincik O, Wenski SL, Bode HB, et al. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii. Appl Microbiol Biotechnol 2021;105(13):5517–28; doi: https://doi.org/10.1007/s00253-021-11435-3

46. Fang XL, Li ZZ, Wang YH, Zhang X. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J Appl Microbiol 2011;111(1):145–54; doi: https://doi.org/10.1111/j.1365-2672.2011.05033.x

47. Böszörményi E, Ersek T, Fodor A, Fodor AM, Földes LS, Hevesi M, et al. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol 2009;107(3):746–59; doi: https://doi.org/10.1111/j.1365-2672.2009.04249.x

48. Ulu? D. Bacterial allies in agricultural defense: evaluating Xenorhabdus and Photorhabdus supernatants against Phytophthora infestans and Monilinia laxa. Dubited 2024;12:2131–8; doi: https://doi.org/10.29130/dubited.1463746

49. Lalramchuani M, Lalramnghaki HC, Vanlalsangi R, Lalhmingliani E, Vanramliana, Lalramliana. Characterization and screening of antifungal activity of bacteria associated with entomopathogenic nematodes from Mizoram, North-Eastern India. J Environ Biol 2020;41:942–50; doi: https://doi.org/10.22438/jeb/4(si)/ms_1913

50. Zhang S, Han Y, Wang L, Han J, Yan Z, Wang Y, et al. Antifungal activity and mechanism of xenocoumacin 1, a natural product from Xenorhabdus nematophila against Sclerotinia sclerotiorum. J Fungi 2024;10:175; doi: https://doi.org/10.3390/jof10030175

51. Hazir S, Shapiro-Ilan DI, Bock CH, Leite LG. Trans-cinnamic acid and Xenorhabdus szentirmaii metabolites synergize the potency of some commercial fungicides. J Invertebr Pathol 2017;145:1–8; doi: https://doi.org/10.1016/j.jip.2017.03.007

52. Bock CH, Shapiro-Ilan DI, Wedge DE, Cantrell CL. Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against Pecan Scab. J Pest Sci 2014;87:155–62; doi: http://dx.doi.org/10.1007/s10340-013-0519-5

53. Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, et al. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J Appl Microbiol 2014;116(4):955–66; doi: https://doi.org/10.1111/jam.12417

54. Sa-Uth C, Rattanasena P, Chandrapatya A, Bussaman P. Modification of medium composition for enhancing the production of antifungal activity from Xenorhabdusstockiae PB09 by using response surface methodology. Int J Microbiol 2018;2018:3965851; doi: https://doi.org/10.1155/2018/3965851

55. Pan H, Xiao Y, Xie A, Li Z, Ding H, Yuan X, et al. The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. Peer J 2022;10:e14304; doi: https://doi.org/10.7717/peerj.14304

56. Wang H, Yan Y, Wang J, Zhang H, Qi W. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS One 2012;7(1):e29452; doi: https://doi.org/10.1371/journal.pone.0029452

https://doi.org/10.1371/journal.pone.0029452

57. Guzman JD. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014;19(12):19292– 349; doi: https://doi.org/10.3390/molecules191219292

58. Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules 2014;19(7):9655– 74; doi: https://doi.org/10.3390/molecules19079655

59. Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Biomed Res Int 2014;2014:497606; doi: https://doi.org/10.1155/2014/497606

60. Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera: Culicidae). Asian Pac J Trop Med 2011;4(9):706–10; doi: https://doi.org/10.1016/S1995-7645(11)60178-8

61. Galdiero E, Ricciardelli A, D’Angelo C, de Alteriis E, Maione A, Albarano L, et al. Pentadecanoic acid against Candida albicans- Klebsiella pneumoniae biofilm: towards the development of an anti-biofilm coating to prevent polymicrobial infections. Res Microbiol 2021;172(7–8):103880; doi: https://doi.org/10.1016/j.resmic.2021.103880

62. Ricciardelli A, Casillo A, Corsaro MM, Tutino ML, Parrilli E, van der Mei HC. Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of Staphylococcus epidermidis on PDMS. Pathog Dis 2020;78(3):ftaa012; doi: https://doi.org/10.1093/femspd/ftaa012

63. Charlet R, Le Danvic C, Sendid B, Nagnan-Le Meillour P, Jawhara S. Oleic acid and palmitic acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii exhibit anti-inflammatory and antifungal properties. Microorganisms 2022;10(9):1803; doi: https://doi.org/10.3390/microorganisms10091803

64. Ghavam M, Afzali A, Manca ML. Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci Rep 2021;11(1):8027; doi: https://doi.org/10.1038/s41598-021-87604-1

65. Jumina J, Lavendi W, Singgih T, Triono S, Steven Kurniawan Y, Koketsu M. Preparation of monoacylglycerol derivatives from Indonesian edible oil and their antimicrobial assay against Staphylococcus aureus and Escherichia coli. Sci Rep 2019;9(1):10941; doi: https://doi.org/10.1038/s41598-019-47373-4

66. Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, et al. Antibacterial fatty acids: an update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res 2021;82:101093; doi: https://doi.org/10.1016/j.plipres.2021.101093

67. Guimarães A, Venâncio A. The potential of fatty acids and their derivatives as antifungal agents: a review. Toxins 2022;14(3):188; doi: https://doi.org/10.3390/toxins14030188

68. Hanene G, Aouadhi C, Hamrouni S, Mnif W. Antibacterial, antifungal and antioxidant activities of tunisian Olea europaea Ssp. oleaster fruit pulp and its essential fatty acids. Int J Pharm Pharm Sci 2015;7(1):52–5.

69. Kannabiran DK. Bioactivity of pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)- Extracted from Streptomyces sp. VITPK9 isolated from the salt spring habitat of Manipur, India. Asian J Pharm 2016;10(04):265–70; doi: https://doi.org/10.22377/ajp.v10i04.865

70. Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-ddrug-resistant Staphylococcus aureus. RSC Adv 2018;8(32):17837–46; doi: https://doi.org/10.1039/C8RA00820E

71. Yang EJ, Chang HC. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol 2010;139(1–2):56–63; doi: https://doi.org/10.1016/j.ijfoodmicro.2010.02.012

72. Raut LS, Rakh RR, Hamde VS. In vitro biocontrol scenarios of Bacillus amyloliquefaciens subsp. amyloliquefaciens strain RLS19 in response to Alternaria macrospora, an Alternaria leaf spot phytopathogen of Bt cotton. J App Biol Biotech 2021;9(1):75–82; doi: https://doi.org/10.7324/JABB.2021.9110

73. Lalitha S, Parthipan B, Mohan VR. Determination of bioactive components of Psychotria nilgiriensis Deb & Gang (Rubiaceae) by GC-MS analysis. Int J Pharm Phytochem Res 2015;7(4):802–9.

74. Rajamanikyam M, Vadlapudi V, Parvathaneni SP, Koude D, Sripadi P, Misra S, et al. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. EXCLI J 2017;16:375–87; doi: http://dx.doi.org/10.17179/excli2017-145

75. Xu H, He XQ. Natural products-based insecticidal agents 6. Design, semi synthesis, and insecticidal activity of novel monomethyl phthalate derivatives of podophyllotoxin against Mythimna separata walker in vivo. Bioorg Med Chem Lett 2010;20(15):4503–06; doi: https://doi.org/10.1016/j.bmcl.2010.06.032

76. Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, et al. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Front Microbiol 2021;12:645484; doi: https://doi.org/10.3389/fmicb.2021.645484

77. Qi D, Zou L, Zhou D, Chen Y, Gao Z, Feng R, et al. Taxonomy and broad-spectrum antifungal activity of Streptomyces sp. SCA3-4 isolated from rhizosphere soil of Opuntia stricta. Front Microbiol 2019;10:1390; doi: https://doi.org/10.3389/fmicb.2019.01390

78. Yan PS, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K. Cyclo(L-leucyl-L-prolyl) produced by Achomobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl Environ Microbiol 2004;70(12):7466–73; doi: https://doi.org/10.1128/AEM.70.12.7466-7473.2004

79. Pérez-Picaso L, Olivo HF, Argotte-Ramos R, Rodríguez-Gutiérrez M, Rios MY. Linear and cyclic dipeptides with antimalarial activity. Bioorg Med Chem Lett 2012;22(23):7048–51; doi: https://doi.org/10.1016/j.bmcl.2012.09.094

80. Casadey R, Challier C, Altamirano M, Spesia MB, Criado S. Antioxidant and antimicrobial properties of tyrosol and derivative-compounds in the presence of vitamin B2. Assays of synergistic antioxidant effect with commercial food additives. Food Chem 2021;335:127576; doi: https://doi.org/10.1016/j.foodchem.2020.127576

81. Antoci V, Oniciuc L, Amariucai-Mantu D, Moldoveanu C, Mangalagiu V, Amarandei, AM, et al. Derivatives: a straightforward and efficient route to antibacterial and antifungal agents. Pharmaceuticals 2021;14(4):335; doi: https://doi.org/10.3390/ph14040335

Article Metrics
39 Views 26 Downloads 65 Total

Year

Month

Related Search

By author names

Similar Articles

Isolation and identification of pathogenic microbes from tomato puree and their delineation of distinctness by molecular techniques

R.K. Garg, N. Batav, N. Silawat, R.K. Singh

Repetitive PCR based detection of Genetic Diversity in Xanthomonas axonopodis pv citri Strains

Minhaj Arshiya, Alka Suryawanshi, Digamber More, Mirza Mushtaq Vaseem Baig

Transcriptional expression of three putative pathogenesis-related proteins in leaves of rubber tree (Hevea brasiliensis) inoculated with Neofusicoccum ribis

A. I. C. Nyaka Ngobisa , Godswill Ntsomboh-Ntsefong , Wong Mui Yun , M. Z. Dzarifah, P. A. Owona Ndongo

In vitro antagonistic activity of a root endophytic fungus towards plant pathogenic fungi

K. Talapatra, A. Roy Das, A. K. Saha, P. Das

Histopathological response of resistance induced by salicylic acid during brinjal (Solanum melongena L.) - Verticillium dahliae interaction

H M Mahesh, M S Sharada

Genome complexity of begomovirus disease and a concern in agro-economic loss

Hanjabam Joykishan Sharma, Susheel Kumar Sharma, Nongthombam Bidyananda Singh

Identification and characterization of causative agents of brown leaf spot disease of cassava in Kenya

Perpetuar Wangari Ng’ang’a, Douglas Watuku Miano, John Maina Wagacha, Paul Kuria

Interactive potential of Pseudomonas species with plants

Suhana Shaikh,, Nutan Yadav, Anoop R. Markande,

An effective and eco-friendly technique for control of post-harvest fungal pathogens of orange (Citrus sinensis) isolated from the distribution chain of Delhi NCR

Gayatri Krishna, Geethu Gopinath, Anupama Sharma Avasthi

Production of bioactive compounds by Streptomyces sp. and their antimicrobial potential against selected MDR uropathogens

Archana Singh, Padma Singh

Study of pathogenic traits of bacterial wilt-causing phytopathogens around Kanpur and Fatehpur regions, Uttar Pradesh, India

Pramila Devi Umrao, Vineet Kumar, Shilpa Deshpande Kaistha

Rice crop loss due to major pathogens and the potential of endophytic microbes for their control and management

Shubhransu Nayak, Soma Samanta, Chandan Sengupta, Soumya Sephalika Swain

Efflux pump and its inhibitors: Cause and cure for multidrug resistance

Fatema Saabir, Ayesha Hussain, Mansura Mulani, Snehal Kulkarni, Shilpa Tambe

Molecular characterization and antibacterial properties of endophytic fungi Lasidiplodia theobromae in Lobelia nicotianifolia Roth ex Schult. of central Western Ghats of Karnataka, India

Krishnappa Vinu, Maddappa Krishnappa, Venkatarangaiah Krishna

Enterococcus species and their probiotic potential: Current status and future prospects

Kondapalli Vamsi Krishna, Koushik Koujalagi, Rutiwick U. Surya, M. P. Namratha, Alok Malaviya

Isolation and characterization of robust plant growth-promoting rhizobacteria from lignite mines, Gujarat

Ravi Patel, Dilip N. Borada, Amisha Patel, Neil J. Shah

Pseudomonas aeruginosa biofilm and their molecular escape strategies

M. G. Avinash, S. Aishwarya, Farhan Zameer, Shubha Gopal

Isolation of yeast endophytes from healthy seeds of Capsicum annuum L. and assessment of their antimicrobial activity

Barbi Bhuyan, Purthimi Kungri Hansepi, Suraiya Akhtar, Raja Ahmed, Rafiul Amin Laskar, Kumanand Tayung

Toxins in plant pathogenesis: Understanding the role of toxins in host-pathogen interaction

Seweta Srivastava, Akhilesh Chandrapati, Aakash Gupta, Meenakshi Rana, Arun Karnwal, Kanuri Komala Siva Katyayani, Raghavendra Reddy Manda, Dipshikha Kaushik, Shaptadvipa Bhattacharjee, Ravindra Kumar

Antimicrobial peptides as new antibiotics: A comprehensive review

Amanpreet Thakur, Puja Gupta

Quorum quenching of virulence traits expression in human and plant pathogens by Isoxazolone and its molecular docking studies

Komal S. Salkar, Lakshangy S. Charya, Milind M. Naik, Hari K. Kadam, Vishnu Chari