Review Article | Volume 11, Issue 1, January, 2023

Enterococcus species and their probiotic potential: Current status and future prospects

Kondapalli Vamsi Krishna Koushik Koujalagi Rutiwick U. Surya M. P. Namratha Alok Malaviya   

Open Access   

Published:  Nov 22, 2022

DOI: 10.7324/JABB.2023.110105-1

Probiotics are described as live microbes that, once consumed in sufficient quantities, provide a health advantage to the host. A rising number of research works have verified the health benefits of probiotics. Enterococci are common bacteria that may be found almost anywhere. For their opportunistic pathogenicity, Enterococci have been associated with numerous nosocomial infections resulting from resistance to antibiotics and the existence of other virulence factors, notably the development of vancomycin-resistant Enterococci. However, some Enterococcal strains such as E. faecium and E. faecalis strains are being utilized as probiotics and are widely marketed, usually in the form of pharmaceutical solutions. Enterococcus spp. based probiotics are used to treat irritable bowel syndrome, infectious diarrhea, and antibiotic-associated diarrhea, along with decreasing cholesterol levels and enhancing host immunity. To be used as probiotics in the future, Enterococcal strains must be properly defined and thoroughly evaluated in terms of safety and can be beneficial. Here, in this work, we have reviewed various aspects of Enterococcus spp. pertaining to its possibility of being utilized as a probiotic strain.

Keyword:     Anti-oxidant properties Enterocins Enterococcus spp. Pathogenecity Probiotics


Krishna KV, Koujalagi K, Surya RU, Namratha MP, Malaviya A. Enterococcus species and their probiotic potential: Current status and future prospects. J App Biol Biotech. 2023;11(1):36-44.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 2008;111:1-66.

2. Palaniyandi SA, Damodharan K, Suh JW, Yang SH. Probiotic characterization of cholesterol-lowering Lactobacillus fermentum MJM60397. Probiotics Antimicrob Proteins 2020;12:1161-72.

3. Alo?lu HS, Özer ED, Öner Z. Assimilation of cholesterol and probiotic characterisation of yeast strains isolated from raw milk and fermented foods. Int J Dairy Technol 2016;69:63-70.

4. Guan X, Xu Q, Zheng Y, Qian L, Lin B. Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels. Braz J Microbiol 2017;48:730-9.

5. Ahn YT, Kim GB, Lim KS, Baek YJ, Kim HU. Deconjugation of bile salts by Lactobacillus acidophilus isolates. Int Dairy J 2003;13:303-11.

6. Pan DD, Zeng XQ, Yan YT. Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J Sci Food Agric 2011;91:512-8.

7. El-Shafie HA, Yahia NI, Ali HA, Khalil FA, El-Kady EM, Moustafa YA. Hypocholesterolemic action of Lactobacillus plantarum NRRL-B-4524 and Lactobacillus paracasei in mice with hypercholesterolemia induced by diet. Aust J Basic Appl Sci 2009;3:218-28.

8. Kim HS, Gilliland SE. Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. J Dairy Sci 1983;66:959-66.

9. Mustapha A, Jiang T, Savaiano DA. Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: Influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus. J Dairy Sci 1997;80:1537-45.

10. Spanhaak S, Havenaar R, Schaafsma G. The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr 1998;52:899-907.

11. Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: Successful strains and future challenges. Antonie Van Leeuwenhoek 1996;70:347-58.

12. Di Felice G, Barletta B, Butteroni C, Corinti S, Tinghino R, Colombo P, et al. Use of probiotic bacteria for prevention and therapy of allergic diseases: Studies in mouse model of allergic sensitization. J Clin Gastroenterol 2008;42 Suppl 3 Pt 1:S130-2.

13. Park YH, Kim JG, Shin YW, Kim SH, Whang KY. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol 2007;17:655-62.

14. Singh TP, Malik RK, Katkamwar SG, Kaur G. Hypocholesterolemic effects of Lactobacillus reuteri LR6 in rats fed on high-cholesterol diet. Int J Food Sci Nutr 2015;66:71-5.

15. De Preter V, Coopmans T, Rutgeerts P, Verbeke K. Influence of long-term administration of lactulose and Saccharomyces boulardii on the colonic generation of phenolic compounds in healthy human subjects. J Am Coll Nutr 2006;25:541-9.

16. Lee DK, Jang S, Baek EH, Kim MJ, Lee KS, Shin HS, et al. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids Health Dis 2009;8:21.

17. Blanchet-Réthoré S, Bourdès V, Mercenier A, Haddar CH, Verhoeven PO, Andres P. Effect of a lotion containing the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on Staphylococcus aureus colonization in atopic dermatitis. Clin Cosmet Investig Dermatol 2017;10:249-57.

18. Won TJ, Kim B, Lim YT, Song DS, Park SY, Park ES, et al. Oral administration of Lactobacillus strains from Kimchi inhibits atopic dermatitis in NC / Nga mice. J Appl Microbiol 2011;110:1195-202.

19. Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig Dis Sci 2000;45:1462-4.

20. Campieri M, Rizzello F, Venturi A, Poggioli G, Ugolini F. Combination of antibiotic and probiotic treatment is efficacious in prophylaxis of post-operative recurrence of Crohn's disease: A randomized controlled study VS mesalamine. Gastroenterology 2000;118:A781.

21. Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, de Simone C. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am J Physiol Gastrointest Liver Physiol 2011;301:1004-13.

22. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007;104:13780-5.

23. Falagas ME, Betsi GI, Athanasiou S. Probiotics for prevention of recurrent vulvovaginal candidiasis: A review. J Antimicrob Chemother 2006;58:266-72.

24. Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B. Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 2001;30:49-52.

25. Hanchi H, Mottawea W, Sebei K, Hammami R. The genus Enterococcus: Between probiotic potential and safety concerns-an update. Front Microbiol 2018;9:1791.

26. Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 2011;151:125-40.

27. Ben Braïek O, Smaoui S. Enterococci: Between emerging pathogens and potential probiotics. Biomed Res Int 2019;2019:5938210.

28. Oprea SF, Zevros J, Krishna KV, Koujalagi K, Namratha MP, Ulhas RS, et al. Enterococcus and foodborne illness. In: Infectious Disease. Totowa, New Jersey: Humana Press; 2007. p. 157-84.

29. Aarestrup FM, Butaye P, Witte W. Nonhuman Reservoirs of Enterococci. Washington, DC: ASM Press. 2015. p. 55-99.

30. Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: Composition and development. Acta Paediatr 2003;91:48-55.

31. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010;107:11971-5.

32. Gerald W. Tannock GC. Enterococci as members of the intestinal microflora of humans. In: The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. Washington, DC: ASM Press; 2002. p. 101-32.

33. Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, et al.

Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J 2017;15:4664.

34. Ogier JC, Serror P. Safety assessment of dairy microorganisms: The Enterococcus genus. Int J Food Microbiol 2008;126:291-301.

35. Mundy LM, Sahm DF, Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 2000;13:513-22.

36. Bhavnani SM, Drake JA, Forrest A, Deinhart JA, Jones RN, Biedenbach DJ, et al. A nationwide, multicenter, case-control study comparing risk factors, treatment, and outcome for vancomycin-resistant and -susceptible enterococcal bacteremia. Diagn Microbiol Infect Dis 2000;36:145-58.

37. Jones ME, Draghi DC, Thornsberry C, Karlowsky JA, Sahm DF, Wenzel RP. Emerging resistance among bacterial pathogens in the intensive care unit a European and North American surveillance study (2000-2002). Ann Clin Microbiol Antimicrob 2004;3:14.

38. Coque TM, Willems RJ, Fortín J, Top J, Diz S, Loza E, et al. Population structure of Enterococcus faecium causing bacteremia in a Spanish University Hospital: Setting the scene for a future increase in vancomycin resistance? Antimicrob Agents Chemother 2005;49:2693-700.

39. Treitman AN, Yarnold PR, Warren J, Noskin GA. Emerging incidence of Enterococcus faecium among hospital isolates (1993 to 2002). J Clin Microbiol 2005;43:462-3.

40. Bouza E, San Juan R, Muñoz P, Voss A, Kluytmans J, Co-operative Group of the European Study Group on Nosocomial Infections. A European perspective on nosocomial urinary tract infections I. Report on the microbiology workload, etiology and antimicrobial susceptibility (ESGNI-003 study). European Study Group on Nosocomial Infections. Clin Microbiol Infect 2001;7:523-31.

41. Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: The nature of the problem and an agenda for the future. Emerg Infect Dis 1998;4:239-49.

42. Jett BD, Huycke MM, Gilmore MS. Virulence of enterococci. Clin Microbiol Rev 1994;7:462-78.

43. Wells CL, Jechorek RP, Erlandsen SL. Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract. J Infect Dis 1990;162:82-90.

44. Huycke MM, Spiegel CA, Gilmore MS. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 1991;35:1626-34.

45. Edmond MB, Ober JF, Dawson JD, Weinbaum DL, Wenzel RP. Vancomycin-resistant enterococcal bacteremia: Natural history and attributable mortality. Clin Infect Dis 1996;23:1234-9.

46. Pelz RK, Lipsett PA, Swoboda SM, Diener-West M, Powe NR, Brower RG, et al. Vancomycin-sensitive and vancomycin-resistant enterococcal infections in the ICU: Attributable costs and outcomes. Intensive Care Med 2002;28:692-7.

47. Caballero-Granado FJ, Cisneros JM, Luque R, Torres-Tortosa M, Gamboa F, Díez F, et al. Comparative study of bacteremias caused by Enterococcus spp. with and without high-level resistance to gentamicin. The Grupo Andaluz para el estudio de las Enfermedades Infecciosas. Clin Microbiol 1998;36:520-5.

48. Mathews FP. Enterococcal endocarditis. Northwest Med 1948;47:581.

49. McDonald JR, Olaison L, Anderson DJ, Hoen B, Miro JM, Eykyn S, et al. Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database. Am J Med 2005;118:759-66.

50. Kaçmaz B, Aksoy A. Antimicrobial resistance of enterococci in Turkey. Int J Antimicrob Agents 2005;25:535-8.

51. Endtz HP, van den Braak N, Verbrugh HA, van Belkum A. Vancomycin resistance: Status quo and quo vadis. Eur J Clin Microbiol Infect Dis 1999;18:683-90.

52. Shepard BD, Gilmore MS. Antibiotic-resistant enterococci: The mechanisms and dynamics of drug introduction and resistance. Microbes Infect 2002;4:215-24.

53. Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev 2000;13:686-707.

54. Gelsomino R, Vancanneyt M, Cogan TM, Condon S, Swings J. Source of enterococci in a farmhouse raw-milk cheese. Appl Environ Microbiol 2002;68:3560-5.

55. Ghrairi T, Manai M, Berjeaud JM, Frère J. Antilisterial activity of lactic acid bacteria isolated from rigouta, a traditional Tunisian cheese. J Appl Microbiol 2004;97:621-8.

56. Morandi S, Cremonesi P, Povolo M, Brasca M. Enterococcus lactis sp. nov., from Italian raw milk cheeses. Int J Syst Evol Microbiol 2012;62:1992-6.

57. Gaaloul N, ben Braiek O, Hani K, Volski A, Chikindas ML, Ghrairi T. Isolation and characterization of large spectrum and multiple bacteriocin-producing Enterococcus faecium strain from raw bovine milk. J Appl Microbiol 2015;118:343-55.

58. Kadri Z, Spitaels F, Cnockaert M, Praet J, El Farricha O, Swings J, et al. Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 2015;108:1257-65.

59. El Hatmi H, Jrad Z, Oussaief O, Nasri W, Sbissi I, Khorchani T, et al. Fermentation of dromedary camel (Camelus dromedarius) milk by Enterococcus faecium, Streptococcus macedonicus as a potential alternative of fermented cow milk. LWT Food Sci Technol 2018;90:373-80.

60. Tezel BU. Preliminary in vitro Evaluation of the probiotic potential of the bacteriocinogenic strain Enterococcus lactis PMD74 isolated from ezine cheese. J Food Qual 2019;2019:4693513.

61. Barakat RK, Griffiths MW, Harris LJ. Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. Int J Food Microbiol 2000;62:83-94.

62. Barbosa J, Ferreira V, Teixeira P. Antibiotic susceptibility of enterococci isolated from traditional fermented meat products. Food Microbiol 2009;26:527-32.

63. Cai Y, Suyanandana P, Saman P, Benno Y. Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. J Gen Appl Microbiol 1999;45:177-84.

64. Campos CA, Rodríguez Ó, Calo-Mata P, Prado M, Barros-Velázquez J. Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Res Int 2006;39:356-64.

65. Sarra M, Taoufik G, Patrick LC, Benjamin B, Yannick F, Khaled H. Isolation and characterization of enterococci bacteriocinic strains from Tunisian fish viscera. Food Nutr Sci 2013;4:701-8.

66. Chajecka-Wierzchowska W, Zadernowska A, ?aniewska-Trokenheim ?. Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from retail shrimps. LWT 2016;69:117-22.

67. El-Jeni R, El Bour M, Calo-Mata P, Böhme K, Fernández-No IC, Barros-Velázquez J, et al. In vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fishes. Can J Microbiol 2016;62:60-71.

68. Ben Braïek O, Morandi S, Cremonesi P, Smaoui S, Hani K, Ghrairi T. Biotechnological potential, probiotic and safety properties of newly isolated enterocin-producing Enterococcus lactis strains. LWT Food Sci Technol 2018;92:361-70.

69. Navarro F, Courvalin P. Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob Agents Chemother 1994;38:1788-93.

70. Samyn B, Martinez-Bueno M, Devreese B, Maqueda M, Gálvez A,

Valdivia E, et al. The cyclic structure of the enterococcal peptide antibiotic AS-48. FEBS Lett 1994;352:87-90.

71. Nilsen T, Nes IF, Holo H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 2003;69:2975-84.

72. Salvucci E, Saavedra L, Hebert EM, Haro C, Sesma F. Enterocin CRL35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog Dis 2012;9:68-74.

73. Izquierdo E, Wagner C, Marchioni E, Aoude-Werner D, Ennahar S. Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Appl Environ Microbiol 2009;75:4273-6.

74. Knoetze H, Todorov SD, Dicks LM. A class IIa peptide from Enterococcus mundtii inhibits bacteria associated with otitis media. Int J Antimicrob Agents 2008;31:228-34.

75. Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Borzenkov VN, et al. Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. J Agric Food Chem 2008;56:1942-8.

76. Sánchez J, Diep DB, Herranz C, Nes IF, Cintas LM, Hernández PE. Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiol Lett 2007;270:227-36.

77. Line JE, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, et al. Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 2008;52:1094-100.

78. Varankovich NV, Nickerson MT, Korber DR. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol 2015;6:685.

79. Kang BS, Seo JG, Lee GS, Kim JH, Kim SY, Han YW, et al. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol 2009;47:101-9.

80. Maldonado-Barragán A, Caballero-Guerrero B, Jiménez E, Jiménez- Díaz R, Ruiz-Barba JL, Rodríguez JM. Enterocin C, a class IIb bacteriocin produced by E. faecalis C901, a strain isolated from human colostrum. Int J Food Microbiol 2009;133:105-12.

81. Mareková M, Lauková A, Skaugen M, Nes I. Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J Ind Microbiol Biotechnol 2007;34:533-7.

82. Shastry RP, Arunrenganathan RR, Rai VR. Characterization of probiotic Enterococcus lactis RS5 and purification of antibiofilm enterocin. Biocatal Agric Biotechnol 2021;31:3-9.

83. Ben Braïek O, Cremonesi P, Morandi S, Smaoui S, Hani K, Ghrairi T. Safety characterisation and inhibition of fungi and bacteria by a novel multiple enterocin-producing Enterococcus lactis 4CP3 strain. Microb Pathog 2018;118:32-8.

84. Casadewall B, Courvalin P. Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J Bacteriol 1999;181:3644-8.

85. McKessar SJ, Berry AM, Bell JM, Turnidge JD, Paton JC. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob Agents Chemother 2000;44:3224-8.

86. Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 1999;43:2161-4.

87. Kanemitsu K, Nishino T, Kunishima H, Okamura N, Takemura H, Yamamoto H, et al. Quantitative determination of gelatinase activity among enterococci. J Microbiol Methods 2001;47:11-6.

88. Dobson A, Cotter PD, Paul Ross R, Hill C. Bacteriocin production: A probiotic trait? Appl Environ Microbiol 2012;78:1-6.

89. Izquierdo E, Marchioni E, Aoude-Werner D, Hasselmann C, Ennahar S. Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol 2009;26:16-20.

90. Cotter PD, Hill C, Ross RP. Bacteriocins: Developing innate immunity for food. Nat Rev Microbiol 2005;3:777-88.

91. Cox CR, Coburn PS, Gilmore MS. Enterococcal cytolysin: A novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr Protein Pept Sci 2005;6:77-84.

92. Sawa N, Wilaipun P, Kinoshita S, Zendo T, Leelawatcharamas V, Nakayama J, et al. Isolation and characterization of enterocin W, a novel two-peptide lantibiotic produced by Enterococcus faecalis NKR-4-1. Appl Environ Microbiol 2012;78:900-3.

93. Aymerich T, Artigas MG, Garriga M, Monfort JM, Hugas M. Effect of sausage ingredients and additives on the production of enterocins A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J Appl Microbiol 2000;88:686-94.

94. Kawamoto S, Shima J, Sato R, Eguchi T, Ohmomo S, Shibato J, et al. Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7393. Appl Environ Microbiol 2002;68:3830-40.

95. Saavedra L, Minahk C, de Ruiz Holgado AP, Sesma F. Enhancement of the enterocin CRL35 activity by a synthetic peptide derived from the NH2-terminal sequence. Antimicrob Agents Chemother 2004;48:2778-81.

96. Cintas LM, Casaus P, Herranz C, Håvarstein LS, Nes IF, Holo H, et al. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 2000;182:6806-14.

97. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernández PE, Holo H. Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology (Reading) 1997;143 Pt 7:2287-94.

98. Maqueda M, Gálvez A, Bueno MM, Sanchez-Barrena MJ, González C, Albert A, et al. Peptide AS-48: Prototype of a new class of cyclic bacteriocins. Curr Protein Pept Sci 2004;5:399-416.

99. Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 2014;37:251-6.

100. Zhang F, Jiang M, Wan C, Chen X, Chen X, Tao X, et al. Screening probiotic strains for safety: Evaluation of virulence and antimicrobial susceptibility of enterococci from healthy Chinese infants. J Dairy Sci 2016;99:4282-90.

101. Gupta H, Malik RK. Incidence of virulence in bacteriocin-producing enterococcal isolates. Dairy Sci Technol 2007;87:587-601.

102. Lauková A, Kandri?áková A, Bu?ková L, Pleva P, Š?erbová J. Sensitivity to enterocins of biogenic amine-producing faecal enterococci from ostriches and pheasants. Probiotics Antimicrob Proteins 2017;9:483-91.

103. Hammami R, Fernandez B, Lacroix C, Fliss I. Anti-infective properties of bacteriocins: An update. Cell Mol Life Sci 2013;70:2947-67.

104. Ben Braïek O, Ghomrassi H, Cremonesi P, Morandi S, Fleury Y, Le Chevalier P, et al. Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie Van Leeuwenhoek 2017;110:771-86.

105. Yang SC, Lin CH, Sung CT, Fang JY. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front Microbiol 2014;5:1-10.

106. Montealegre MC, Singh KV, Murray BE. Gastrointestinal tract colonization dynamics by different Enterococcus faecium clades.

J Infect Dis 2016;213:1914-22.

107. Di Pierro F, Basile I, Danza ML, Venturelli L, Contini R, Risso P, et al. Use of a probiotic mixture containing Bifidobacterium animalis subsp. lactis BB12 and Enterococcus faecium L3 in atopic children. Minerva Pediatr 2018;70:418-24.

108. DI Pierro F, Lo Russo P, Danza ML, Basile I, Soardo S, Capocasale G, et al. Use of a probiotic mixture containing Bifidobacterium animalis subsp. lactis BB-12 and Enterococcus faecium L3 as prophylaxis to reduce the incidence of acute gastroenteritis and upper respiratory tract infections in children. Minerva Pediatr (Torino) 2021;73:222-9.

109. Borgia M, Sepe N, Brancato V, Borgia R. A controlled clinical study on Streptococcus faecium preparation for the prevention of side reactions during long-term antibiotic treatments. Curr Ther Res 1982;31:265-71.

110. Wunderlich PF, Braun L, Fumagalli I, D'Apuzzo V, Heim F, Karly M, et al. Double-blind report on the efficacy of lactic acid-producing Enterococcus SF68 in the prevention of antibiotic-associated diarrhoea and in the treatment of acute diarrhoea. J Int Med Res 1989;17:333-8.

111. D'Souza AL, Rajkumar C, Cooke J, Bulpitt CJ. Probiotics in prevention of antibiotic associated diarrhoea: Meta-analysis. Br Med J 2002;324:1361-4.

112. Wu P, Wan D, Xu G, Wang G, Ma H, Wang T, et al. An unusual protector-protégé strategy for the biosynthesis of purine nucleoside antibiotics. Cell Chem Biol 2017;24:171-81.

113. Zeyner A, Boldt E. Effects of a probiotic Enterococcus faecium strain supplemented from birth to weaning on diarrhoea patterns and performance of piglets. J Anim Physiol Anim Nutr (Berl) 2006;90:25-31.

114. Fan YJ, Chen SJ, Yu YC, Si JM, Liu B. A probiotic treatment containing Lactobacillus, Bifidobacterium and Enterococcus improves IBS symptoms in an open label trial. J Zhejiang Univ Sci B 2006;7:987-91.

115. Gade J, Thorn P. Paraghurt for patients with irritable bowel syndrome. A controlled clinical investigation from general practice. Scand J Prim Health Care 1989;7:23-6.

116. Enck P, Zimmermann K, Menke G, Müller-Lissner S, Martens U, Klosterhalfen S. A mixture of Escherichia coli (DSM 17252) and Enterococcus faecalis (DSM 16440) for treatment of the irritable bowel syndrome a randomized controlled trial with primary care physicians. Neurogastroenterol Motil 2008;20:1103-9.

117. McFarland LV, Dublin S. Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World J Gastroenterol 2008;14:2650-61.

118. Kim YG, Moon JT, Lee KM, Chon NR, Park H. The effects of probiotics on symptoms of irritable bowel syndrome. Korean J Gastroenterol 2006;47:413-9.

119. Suvorov A, Yermolenko E, Tsapieva A, Sundukova Z, Simanenkov V. Potential of Enterococi Used as Probiotics or Auto-probiotics for the Treatment of Intestinal Disorders. In: GME 2010 Gut Micro-Ecology, Research Gate; 2010. p. 36-7.

120. Avram-Hananel L, Stock J, Parlesak A, Bode C, Schwartz B. E durans strain M4-5 isolated from human colonic flora attenuates intestinal inflammation. Dis Colon Rectum 2010;53:1676-86.

121. Agerbaek M, Gerdes LU, Richelsen B. Hypocholesterolaemic effect of a new fermented milk product in healthy middle-aged men. Eur J Clin Nutr 1995;49:346-52.

122. Agerholm-Larsen L, Raben A, Haulrik N, Hansen AS, Manders M, Astrup A. Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur J Clin Nutr 2000;54:288-97.

123. Hlivak P, Odraska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z. One-year One-year application of probiotic strain Enterococcus faecium M- 74 decreases serum cholesterol levels. Bratisl Lek Listy 2005;106:67-72.

124. Liu F, Li B, Du J, Yu S, Li W, Evivie SE, et al. Complete genome sequence of Enterococcus durans KLDS6.0930, a strain with probiotic properties. J Biotechnol 2016;217:49-50.

125. Albano C, Morandi S, Silvetti T, Casiraghi MC, Manini F, Brasca M. Lactic acid bacteria with cholesterol-lowering properties for dairy applications: In vitro and in situ activity. J Dairy Sci 2018;101:10807-18.

126. Zhu Y, Li T, Din AU, Hassan A, Wang Y, Wang G. Beneficial effects of Enterococcus faecalis in hypercholesterolemic mice on cholesterol transportation and gut microbiota. Appl Microbiol Biotechnol 2019;103:3181-91.

127. Singhal N, Maurya AK, Mohanty S, Kumar M, Virdi JS. Evaluation of bile salt hydrolases, cholesterol-lowering capabilities, and probiotic potential of Enterococcus faecium isolated from rhizosphere. Front Microbiol 2019;10:1567.

128. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol 2002;160:2253-7.

129. Baroja ML, Kirjavainen PV, Hekmat S, Reid G. Anti-inflammatory effects of probiotic yogurt in inflammatory bowel disease patients. Clin Exp Immunol 2007;149:470-9.

130. Divyashri G, Krishna G, Muralidhara, Prapulla SG. Probiotic attributes, antioxidant, anti-inflammatory and neuromodulatory effects of Enterococcus faecium CFR 3003: In vitro and in vivo evidence. J Med Microbiol 2015;64:1527-40.

131. Gardner HW. Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with nonenzymic. J Agric Food Chem 1975;23:129-36.

132. Habermann W, Zimmermann K, Skarabis H, Kunze R, Rusch V. Einfluß eines bakteriellen immunstimulans (humane Enterococcus faecalis-Bakterien) auf die rezidivhäufigkeit bei patienten mit chronischer bronchitis. Arzneimittelforschung 2011;51:931-7.

133. Habermann W, Zimmermann K, Skarabis H, Kunze R, Rusch V. Verminderung der rezidivhäufigkeit bei patienten mit chronisch rezidivierender hypertrophischer sinusitis unter behandlung mit einem bakteriellen immunstimulans (Enterococcus faecalis-Bakterien humaner Herkunft). Arzneimittelforschung 2011;52:622-7.

134. Ben Braïek O, Merghni A, Smaoui S, Mastouri M. Enterococcus lactis Q1 and 4CP3 strains from raw shrimps: Potential of antioxidant capacity and anti-biofilm activity against methicillin-resistant Staphylococcus aureus strains. LWT 2019;102:15-21.

135. Sharma S, Chaturvedi J, Chaudhari BP, Singh RL, Kakkar P. Probiotic Enterococcus lactis IITRHR1 protects against acetaminophen-induced hepatotoxicity. Nutrition 2012;28:173-81.

136. Nami Y, Haghshenas B, Haghshenas M, Abdullah N, Yari Khosroushahi A. The prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells. Front Microbiol 2015;6:1317.

137. Su YA, Sulavik MC, He P, Makinen KK, Makinen PL, Fiedler S, et al. Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 1991;59:415-20.

138. Domann E, Hain T, Ghai R, Billion A, Kuenne C, Zimmermann K, et al. Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol 2007;297:533-9.

Article Metrics

2 Absract views 52 PDF Downloads 54 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Similar Articles