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ABSTRACT

Probiotics are described as live microbes that, once consumed in sufficient quantities, provide a health advantage to 
the host. A rising number of research works have verified the health benefits of probiotics. Enterococci are common 
bacteria that may be found almost anywhere. For their opportunistic pathogenicity, Enterococci have been associated 
with numerous nosocomial infections resulting from resistance to antibiotics and the existence of other virulence 
factors, notably the development of vancomycin-resistant Enterococci. However, some Enterococcal strains such 
as E. faecium and E. faecalis strains are being utilized as probiotics and are widely marketed, usually in the form of 
pharmaceutical solutions. Enterococcus spp. based probiotics are used to treat irritable bowel syndrome, infectious 
diarrhea, and antibiotic-associated diarrhea, along with decreasing cholesterol levels and enhancing host immunity. 
To be used as probiotics in the future, Enterococcal strains must be properly defined and thoroughly evaluated in 
terms of safety and can be beneficial. Here, in this work, we have reviewed various aspects of Enterococcus spp. 
pertaining to its possibility of being utilized as a probiotic strain.

1. INTRODUCTION

Probiotics could be used as part of a strategy to accomplish and treat 
infections in an era when new approaches are being looked-for. The 
idea of probiotics emphasizes the usage of competitive elimination for 
enhancing a particular ecosystem. Probiotic treatment or prophylaxis 
purposefully introduces advantageous bacteria to fight off harmful 
microorganisms. In animals and people, probiotics have been utilized. 
Some of the recognized probiotics have been mentioned in Table 1. Lactic 
acid bacteria (LAB) are the most frequent type of microbes that have the 
capability to digest lactose, turning it into lactic acid and consequently 
decreasing the gastrointestinal pH. Bifidobacteria, Enterococcus, 
Lactobacillus, Pediococcus, and Streptococcus are all members of 
the LAB group. Bacillus and the yeast Saccharomyces are examples 
of non-LAB. Each possesses distinct modes of action, metabolism, 
and antibiotic sensitivity. Lactobacillus and Bifidobacterium group of 
strains are the most common genera of probiotic organisms [1]. Milk 
from various sources and milk products is proved to be good probiotic 
sources. Probiotics have been isolated from different sources such as 
raw milk [2], cheese [3], fermented milk [4,5], Koumiss [6], and yogurt 
[7]. Different research studies have indicated that probiotic bacteria 
may lighten lactose intolerance [8,9], have a helpful impact on the 
gut flora of the host [10], stimulate/control mucosal immunity [11], 
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lessen inflammatory or allergic reactions [12], lessen blood cholesterol 
[13,14], possess anti-colon cancer effects [15,16], reduce the clinical 
manifestations of atopic dermatitis [17,18], Crohn’s disease [19-22], 
candidiasis [23], and urinary tract infections [24].

Until recently, Bifidobacterium, Lactobacillus, and Lactococcus species 
were the most commonly accepted probiotic strains. Other bacteria with 
probiotic potential should be investigated for probiotic admissibility to 
find new applications. Enterococcus spp. is a major contender among 
them [25]. Enterococci are a significant bacterial group, and their 
association with humans is well documented. They are Gram-positive 
cocci, which proliferate in short chains or pairs and are facultative 
anaerobes that can withstand high temperatures. They can grow in 
high NaCl concentrations and at pH = 9.6 and temperatures range from 
10°C to 45°C, with optimal growth at 35°C. With 37 species defined 
by phylogenetic evaluation utilizing DNA-DNA hybridization methods 
and 16S rRNA sequencing, this is the third biggest genus in the group of 
LAB, following Lactobacillus and Streptococcus [26-28] and of all E. 
faecalis and E. faecium are the most widely dispersed species in nature.

The current article aims to summarize the recent updates on various 
aspects of Enterococcus spp. including their potential to be used as a 
probiotic candidate.

2. HABITAT AND OCCURRENCE OF ENTEROCOCCUS

Enterococcus species have been discovered in food, water, soil, plants, 
animals (insects, birds and mammals), and people. These organisms 
appear to have their primary natural home in the gut of humans and 
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other animals, where they structure a large percentage of the typical 
gut microbiota. A  few species are host-specific, whereas others are 
widespread. Enterococcus columbae, which is unique for pigeons, 
and Enterococcus asini, which has up to now only been identified in 
donkeys, are two examples of host-specific Enterococci. The most 
common Enterococcal species seen in farm animal intestines are 
E. durans, E. faecium, E. faecalis, E. hirae, and. In chickens, E. faecalis 
is present early in life and is eventually replaced by E. faecium, which 
is ultimately replaced by E. cecorum, E. casseliflavus, E. mundtii, and 
E. gallinarum [29]. In addition to that, Enterococci occur in different 
types of sources such as dairy, meat, and seafood. A  list of various 
Enterococcal strains isolated from different sources is summarized in 
Table 2. Enterococci are one of the first LAB to inhabit the neonatal 
gut [30], and they may be linked to infant health and formation of the 
human microbiome [31]. Enterococci represent approximately 1% of 
human gut flora and are the most prevalent gram-positive organisms in 
feces. E. faecalis may be detected in 90–100% of animals and human 
feces, whereas E. faecium is prevalent in 25%. In the oropharyngeal 
secretions, urogenital tract, and on the skin, specifically in the 
perineum, small quantities of Enterococci may also be detected [32].

3. OPPORTUNISTIC PATHOGENICITY AND VIRULENCE 
OF ENTEROCOCCUS SPECIES

Concerns about the safety of Enterococcus spp. have not been 
incorporated in the Qualified Presumption Safety (QPS) list [33] nor 
have generally been regarded as safe (GRAS) status [34]. Through 
the past two decades, Enterococcus has become a more common 
source of nosocomial infections [35]. According to recent studies, 
the growth of antibiotic-resistant E. faecium isolates has amplified 
the incidence of E. faecium infections [36-39]. Other Enterococcal 
species, for instance E. durans, E. casseliflavus, E. gallinarum, 
E.lactis, and E. raffinosus, are less commonly connected with 
Enterococcal infections. Enterococci are often seen in polymicrobial 
intra-abdominal infections, finding it challenging to define their role 
in the illness [40,41]. Enterococcal infections are frequently linked 
to preliminary colonization of the patient’s gastrointestinal tract and 
translocation of Enterococci across the intestinal epithelial barrier is 
leading to bacteremia [42,43]. The influence of vancomycin resistance 
and high-level gentamicin resistance on mortality has been the subject 
of some debate [44-47]. Enterococcal bacteremia can progress to 
endocarditis, the most serious infection caused by Enterococci to 
treat in the bloodstream and has been linked to a higher mortality 
rate. After Streptococci and S. aureus, the third most common cause 
of endocarditis is known to be caused by Enterococci, predominantly 
E. faecalis which are responsible for 5–20% of endocarditis [48,49]. 
Antibiotic resistance in E. faecalis and E. faecium has been thoroughly 
investigated. Enterococci have an exceptionally exuberant rate of 
inherent tolerance to low doses of various antibiotic classes, including 
aminoglycosides, beta-lactams (third-generation cephalosporins), and 
quinolones, due to their hardness. Clinical isolates of E. faecium are 
particularly resistant to high amounts of penicillin [50]. Enterococci 
have acquired genetic determinants that confer resistance to several 
antibiotics, including glycopeptides (Vancomycin and Teicoplanin), as 
well as the synergistic action of  -lactams and aminoglycosides [51]. 
The Enterococcus genus’s high genetic diversity suggests that specific 
mutations have adapted to various environments. Thus, prolonged 
antibiotic exposure may induce a mutation that imparts resistance to 
a specific antimicrobial agent, allowing bacteria to survive [52,53]. 
In Enterococcus spp., six phenotypes of glycopeptide resistance have 
been identified (vanA, vanB, vanC, vanD, vanE, and vanG). The 
vanA operon in strains presents a high-level resistance to vancomycin 

and teicoplanin. With minimum inhibitory concentrations between 
4 and 1000  mg/mL, the vanB operon incites different levels of 
resistance to vancomycin. Only vanA and vanB have the ability to 
transfer vertically and horizontally as well as impart high resistance 
levels [53]. vanC strains have a phenotype that demonstrates minimal 
vancomycin resistance and intrinsic sensitivity to teicoplanin [69]. 
Vancomycin and teicoplanin resistance is generated by the operon 

Table 2: Different Enterococcus strains isolated from various sources.

Strains Source References

Dairy Products

E. faecalis, E. casseliflavus Raw‑Milk Cheese [54]

E. faecalis Tunisian cheese [55]

E. lactis sp. nov. Italian raw milk cheeses [56]

E. faecium Raw bovine milk [57]

E. bullienssp. nov Camelus dromedaries
(Camel) milk

[58]

E. faecium [59]

Enterococcus
lactis PMD74

Ezine Cheese [60]

Meat and meat products

E. faecalis Refrigerated poultry meat [61]

E. faecalis,
E. faecium,
E. casseliflavu

Fermented meat products [62]

Sea water food

E. faecium Cyprinus carpio
Macrobrachium rosenbergii

[63]

E. faecium
E. mundtii

Psetta maxima [64]

E. feacium Tunisian Fish Viscera [65]

E. faecalis
E. faecium

Retail shrimps [66]

E. faecium Tunisian freshwater fishes [67]

E. lactis Penaeus vannamei
Palaemon serratus

[68]

Table 1: Various microorganisms used as Probiotics. This table summarizes 
the probiotic strains approved by Food Safety and Standards Authority of 
India as well as probiotics used in other countries [41,46].

Lactobacillus strains Bifidobacterium strains Others

L. acidophilus
L. amylovorus
L. brevis
L. bulgaricans
L. casei
L. caucasicus
L. debrueckii
L. fermentis
L. gallinarum
L. helveticus
L. infantis
L. johnsonii
L. lactis
L. plantarum
L. reuteri
L. rhamnosus
L. salivarius
L. sporogenes

B. bifidum
B. infantis
B. lactis
B. breve
B. longum
B. animalis

E. faecalis
E. faecium
E. durans
Streptococcus boulardii
S. thermophilus
Bacillus cereus
B. subtilis
Lactococcus lactis
Propionibacteria
Escherichia coli
Saccharomyces boulardii
S. cerevisiae
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vanD, which is present in the chromosome and varies from other 
resistance genes. Because of its stability in its genome, this trait does 
not appear to be transferrable [84]. Vancomycin resistance is encoded 
by the vanE and vanG operons, which are assumed to be acquired and 
inducible [85,86]. vanG discovered in an E. faecalis showed moderate 
resistance to teicoplanin [53].

Insulin, casein, hemoglobin, fibrinogen, collagen, and gelatin are all 
hydrolyzed by gelatinase, a metalloendopeptidase [83]. Cytolysin is 
a bifunctional bacteriocin/hemolysin protein. Hyaluronidase induces 
the lysis of hyaluronic acid, which is the major component of the 
extracellular matrix’s connective tissue [35]. These virulence factors 
(gelatinase, cytolysine, and hyaluronidase) are found in almost all 
species. β-hemolytic strains of Enterococcus increased the risk of 
death fivefold when compared to those with bacteremia caused by non-
hemolytic strains [44]. The ability to produce this protease has been 
proven by the presence of gelE gene which might not be expressed in E. 
faecium and E. faecalis strains [87]. However, Enterococcal virulence 
factors’ expression may differ depending on the ecological environment, 
resulting in greater pathogenicity potential, particularly in vulnerable 
populations like the elderly and immunocompromised individuals.

4. ENTEROCINS: CLASSIFICATION AND SIGNIFICANCE

Enterococci have been thoroughly studied as a potential probiotic 
candidate. Some desirable qualities in the selection of a probiotic 
strain include molecular identification, safety, potential to survive 
the intestinal passage, targeted application, and bacteriocin 
production [88]. Strains produce a broad range of bacteriocins, which 
are referred to as enterocins and have been studied widely due to their 
antimicrobial activity against Gram-positive food-borne pathogens 
such as L. monocytogenes [89]. E. faecium and E. faecalis are the main 
producers of enterocins and to a lesser extent E. mundtii, E. avium, 
E. hirae, and E. durans [90]. The bacteriocins were divided into four 
groups by Franz et al. (2011): Class  I lantibiotic enterocins, which 
are found only rarely in Enterococci and are represented only by 
cytolysin [91] and enterocin W [92] both from E. faecalis isolates. 
The enterocin of this class is two-component bacteriocin made up of 
two linear peptides that differ structurally from other linear lantibiotics 

such as nisin A and Z, as well as smaller globular peptides lantibiotics. 
It contains lanthionine residues, suggesting that these constitute two-
component lantibiotics.

Class  II, enterocins are of the pediocin family. The Class  II.1 of 
pediocin-like bacteriocins is divided into two subgroups according 
to sequence similarities, which has two sub groups enterocin A [93], 
mundticin [94], and enterocin CRL5 [95] and Subgroup  2 includes 
enterocin P [96] and enterocin M [97] which is a variant of enterocin 
P. Enterocins lacking a leader peptide, such as two peptide bacteriocin 
L50 (A, B), are classified as Class  II.2, enterocin Q [96], and 
enterocin C [80]. Different classifications of enterocins produced by 
Enterococcus species are mentioned in Table 3. Enterocin B falls under 
Class II three liner-non-pediocin-type enterocins [97]. Enterocin AS-
48, produced by E. faecalis S-48, is classified as a cyclic antibacterial 
peptide regroup under class III [98]. The Class IV enterocins include 
enterolysin A majorly produced by E. faecalis [71].

CBT SL-5 bacteriocin lotion generated by E. faecalis SL-5 decreased 
inflammatory lesions due to Propionibacterium acnes substantially 
and suggested a possible function as an alternative to antibiotics during 
acne therapy [79]. In recent times, the E. durans LAB18s strain has 
been validated to be used as a dietary selenium source [99]. Thirty-
eight different spp. strains were isolated from the feces of 34 healthy 
babies and analyzed for virulence genotype and phenotype, biofilm 
formation, and antibiotic resistance. Ten of the strains were determined 
to be harmless due to the lack of virulence factors and their susceptibility 
to conventional antimicrobials. These strains demonstrated good 
resistance to bile salt and the digestion of the gastrointestinal 
tract. These bacteria can thus be seen as possible candidates for 
probiotics [100]. Enterococcal strains, such E. faecium SF-68 and E. 
faecium M74, were used in various probiotic products that proved to 
be efficacious and safe, such as FortiFlora® and Cernivet® (which has 
E. faecium SF68) and Symbioflor® (has E. faecalis) and are included 
as dietary supplements [27]. In a study by Bhardwaj et al. (2010), 
E. faecium KH 24 strain was evaluated for the presence of virulence 
determinants and bacteriocin production, the strain was found to be 
non-virulent and a bacteriocin producing strain, which was confirmed 
by a study conducted on mice group which were fed with E. faecium 
KH 24, the mice showed prominent weight gain and nearly 1 log cfu/g 
decrease in Salmonella enteritidis count in the intestines. Decreased 
coliform counts and an increase in lactobacilli growth were observed 
in the test group [101]. Enterococcus strains can survive, compete 
with, and adhere to host cells in the GIT as natural inhabitants, which 
is a significant trait for their usage as probiotics [102]. Antibiotics have 
raised concerns about antimicrobial resistance, thus bacteriocins are a 
promising alternative [103].

E. lactis, which generates the enterocins A, B, and/or P, was isolated 
from fresh shrimps (Penaeus vannamei and Palaemon serratus) 
and identified as E. lactis [104]. For the reason of the presence of 
enterocins, E. lactis showed antibacterial activity (P < 0.05) against 
Gram-positive and Gram-negative foodborne pathogens (Listeria 
monocytogenes and Pseudomonas aeruginosa) and some filamentous 
fungi (Aspergillus niger A79) [105]. This might be employed as a safe 
natural preservative or as a novel probiotic strain in food and feed.

The genus also comprises a variety of strains that can be used as 
starter cultures and help to create the unique organoleptic qualities of 
many fermented foods, such as meat, dairy, and vegetable products 
[26]. Furthermore, the ability of Enterococcus strains’ bacteriocins to 
kill competitors is regarded as a successful method for maintaining 
population and decreasing competitor numbers [105]. These 

Table 3: Different classes of enterocins produced by various Enterococcus 
species.

Enterocins Class Organism References

Enterocin AS‑48 Class IId E. faecalis [70]

Enterolisin Class III E. faecalis LMG 2333 [71]

Enterocin CRL35 Class IIa E. mundtii [72]

Enterocin 96 Class II E. faecalis WHE96 [73]

ST4SA Class IIa E. mundtii [74]

E 50‑52 Class IIa E. faecium [75]

Hiracin JM79 Class II E. hirae DCH5 [76]

E‑ 760 IIb Enterococcus spp. 
NRRL B‑30745

[77]

Avicin A IIa E. avium [78]

ESL 5 Unknown E. faecalis [79]

Enterocin C Class IIb E. faecalis C901 [80]

Enterocin M Unknown E faecium AL41 [81]

Enterocin R5 Class II E. lactis RS 5 [82]

Enterocins A, B and P E. lactis 4CP3 [83]
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bacteriocins are being considered promising drug candidates for 
replacing antibiotics to treat multiple drugs resistant pathogens and 
maintain human health. Bacteriocins are shown to have synergistic or 
additive effects when used in combination with other antimicrobial 
drugs, opening up new possibilities for more effective pathogen 
control in human and veterinary medicine [103].

By saying that, in the case of feed or novel food, the safety evaluation of 
candidates at the species level is obligatory before commercialization. 
The recent molecular biology progressions have revealed that 
Enterococcal food strains are safe and differentiable by the virulence 
and antibiotic gene resistance from nosocomial strains [106]. This will 
enable the safety evaluation of Enterococci used in food and feed to 
be improved.

5. PROBIOTIC POTENTIAL OF ENTEROCOCCUS

Many studies have been conducted to assess the probiotic qualities of 
Enterococcal strains, with clear evidence of positive and significant 
health effects. Enterococci were employed as probiotic drugs for 
a diversity of applications, including in pharmaceutical, human, 
veterinary, and food industries. The various probiotic applications of 
Enterococcus spp. are reviewed in the following sections.

Administration of E. faecium L3 and B. animalis subsp. lactis BB12 
(iNatalPed®) to atopic children significantly reduced rhinitis, watery 
eyes, and cough/bronchospasm with the use of oral antihistamines, and 
inhaled corticosteroids and oral corticosteroids [107]. In a randomized 
study involving 94 healthy children, probiotic formulations containing 
B. animalis subspecies lactis BB-12 and E. faecium L3 reduced the 
incidence and duration of acute gastroenteritis (AGE) by 82% and 
45%, respectively, and the onset of upper respiratory tract infections 
(URTIs) by 84% and 50%. Salivary IgA levels were shown to be 
higher in a subset of 34 healthy, treated children [108].

5.1. Antibiotic-associated Diarrhea (AAD) and Acute Diarrhea
Borgia et al. (1982) were one of the pioneering groups to accomplish 
a controlled clinical study on the effectiveness of probiotics having 
Enterococcus spp., as one of the constituents. Only 3% of the people 
in the study group reported the development of AAD in contrast to 
18% who reported AAD after receiving a placebo [109]. Wunderlich 
et  al. (1989) did a similar placebo-controlled double-blind clinical 
study on the effectiveness of lactic acid-producing strain E. faecium 
SF 68 in treating AAD and Acute diarrhea. The limitation of this study 
was a lack of a considerably high success rate, with a success rate of 
only 27.2% in the verum group as opposed to the 8.7% in the study 
group receiving the placebo among 78 patients multi-centered across 
10 locations treated thrice a day for 7 days [110].

E. faecium SF68 was also the subject of a meta-analysis study by 
D’Souza et al. (2002) in testing the efficacy of probiotic treatment for 
preventing diarrhea. An odds ratio of 0.37 was reported in this study 
supporting probiotic treatment against placebo administration [111]. 
The “Biothree” probiotic combination contains distinct probiotic 
strains E. faecalis, Clostridium butyricum, and Bacillus mesentericus. 
It was proven to be beneficial in reducing the intensity and length of 
diarrhea in children (n = 304) aged 3 months to 6 years [112].

Recently, a growing number of investigations are being conducted on 
the effect of Enterococcus on piglets. One such double-blind placebo-
controlled study by Zeyner and Boldt concluded that E. faecium DSM 
10663 administered orally reduced the occurrence of diarrhea by 40% 
as opposed to only 14.8% in the placebo group [113].

5.2. Irritable Bowel Syndrome (IBS)
The administration of probiotics is known to change the gastrointestinal 
micro population. Fan et al. (2006) reported that this change could 
potentially lower the symptoms of IBS by competitively excluding the 
causative food pathogens based on the outcomes of a clinical study 
among 85 test subjects [114]. However, a major drawback of this 
study was that it was not being placebo-controlled and double-blinded. 
A  well-known freeze-dried E. faecium containing probiotic called 
“Paraghurt” was clinically checked in a placebo-controlled double-
blind study among 54 patients in a 4-week span and found to be an 
effective therapeutic for IBS [115].

A similar but more extensive study by Enck et al. (2008) tested the 
efficacy of ProSymbioflor® containing E. faecalis DSM 16440 along 
with E. coli DSM 17252 as an autolysate of cells and cell fragments 
in the treatment of IBS among 297 patients in 8 weeks and yielded 
sufficiently positive results [116]. A meta-analysis on the effectiveness 
of Enterococcus over placebo in treating IBS by McFarland and 
Dublin has also featured both of the above-stated clinical studies 
[117]. Medilac DS® containing E. faecium along with Bacillus 
subtilis has also been analyzed in a placebo-controlled and double-
blind study among 40 patients by Kim et al. (2006) and has shown 
encouraging results against IBS [118]. Suvorov et al. (2010) have 
recently studied the efficacy of treating 76 IBS patients with auto-
probiotic Enterococcus strains and examining their stool samples 
with that of the healthy volunteers for the presence of Enterococcal 
strains. The outcomes of the investigation conclusively proved 
that the auto-probiotic Enterococcal strains not only cured IBS but 
also acted on the dysbiotic microbiome of the patients and restored 
autochthonous colonies that were comparable to the samples from the 
healthy volunteers [119]. E. durans strain M4 along with its metabolic 
butyrate was found to have significant anti-inflammatory effects 
mediated by the regulation of the anti-inflammatory cytokine IL-10 
and pro-inflammatory immune factors (IL-8, IL-6, and TNF-α) as 
well as the preservation of intestinal epithelial integrity. This signifies 
that it could be a beneficial prophylactic treatment strategy to alleviate 
inflammatory bowel diseases (IBDs) [120].

5.3. Cholesterol Reduction/Assimilation
In Denmark, fermented milk containing E. faecium SF 68 (Gaio®; 
MD Foods, Aarhus, Denmark) was used for several years due to its 
hypocholesterolemic influence on individuals. Agerbaek et al. (1995) 
conducted a placebo-controlled, 6-week randomized, and double-
blind trial on male volunteers and found a significant reduction in 
cholesterol (−0.37 mmol/l, confidence interval: [−0.51]–[−0.23]) 
in the group given biologically fermented milk (GIAO, Denmark), 
whereas no changes (−0.02 mmol/l) (P < 0.01) were witnessed in 
the placebo group. The drop in cholesterol was attributed to a 10% 
fall in LDL cholesterol. However, HDL-cholesterol and triglyceride 
remained unaffected in both groups [121]. In another 8-week, a 
placebo-controlled, randomized, and double-blind study led by 
Agerholm-Larsen et al. (2000) a yogurt fermented with one strain of 
E. faecium and two strains of Streptococcus thermophilus (CAUSIDO 
culture), Gaio® was administered to one among five groups. The 
CAUSIDO®, the culture showed reduction in LDL-cholesterol and 
increased fibrinogen overnight at a 450 mL of yogurt given daily for 
8 weeks [122]. The long-term effect of a probiotic was studied in a new 
placebo-controlled and double-blind trial after 50 weeks, E. faecium 
M-74 indicated a comprehensive cholesterol-lowering effect, notably 
on LDL cholesterol, while there was no variation in HDL cholesterol, 
triglycerides, or the placebo group [123]. Through its ability to reduce 
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human blood cholesterol levels, E. durans KLDS 6.0930 has been 
proposed as a probiotic candidate [124].

E. lactis BT 16 and E. faecium VC 223 were two of the 58 strains 
isolated from traditional Italian cheeses that reduced cholesterol levels 
in broth, implying that these strains could be potential candidates 
for novel probiotic-containing formulations [125]. Oral treatment of 
E. faecalis ATCC19433 altered the composition of gut microbiota and 
raised the counts of Lactobacillus, Bifidobacterium, and Akkermansia. 
Hypocholesterolemic impact on the hypercholesterolemic mouse was 
also exerted through enhancing ATP-binding ABCG5 and ABCG8 
transport carriers [126]. A strain of E. faecium isolated from rhizospheric 
soils possessed the bsh gene (Bile salt hydrolase), reduced cholesterol 
in vitro, and possessed necessary and desired probiotic properties 
[127]. Similarly, a BSH positive strain of E. lactis (Assigned reference 
number - MTCC 25438) was isolated from goat milk and has shown 
significant cholesterol reduction in vitro (data not published yet).

5.4. Antioxidant, Anti-inflammatory, and Anticancer Properties 
of Enterococcus Species
E. faecium was tested for antioxidant and anti-inflammatory activities 
in a study by Prapulla et al. (2015). In lyophilized cell-free supernatant 
(LPS)-stimulated macrophage cell lines, a combination of E. faecium 
CFR 3003, Lactobacillus rhamnosus GG MTCC 1408, and LPS 
demonstrated anti-inflammatory impact through negative modulation 
of TNF-α and upregulation of IL-10 which confirmed the strain 
possessed anti-inflammatory activity. In both animal models and 
humans, pathogenic microorganisms in the intestine have been shown 
to play a role in the worsening of IBDs, such as Crohn’s disease and 
ulcerative colitis [128]. Live probiotic bacteria and their metabolites, 
such as organic acids, are beneficial in the treatment of IBD [73,74]. 
Probiotic microorganisms have been shown in the past to be effective 
anti-inflammatory agents in chronic inflammatory diseases [129]. 
The LPS of E. faecium CFR 3003 strain exhibited antioxidant activity 
which was evaluated by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) 
radical scavenging activity [130].

LCS exhibited the highest reducing ability which indicates 
that E. faecium has the ability to degrade hydroperoxides into 
hydroxyoctadecadienoic acids [131]. A 6-month, placebo-controlled, 
and double-blind trial was conducted with the probiotic using E. faecalis 
Symbioflor I® which is used for the treatment of chronic recurrent 
bronchitis, and it was found that the probiotic was substantially more 
effective than the placebo in terms of clinical efficacy. In the group 
which has received the probiotic, that is, verum group, the time for 
relapses was much longer and less frequent, relapses took much longer, 
and the frequency and severity of relapses were much lower [132]. 
A  further double-blind, placebo-controlled, and multicenter research 
established that patients provided with E. faecalis Symbioflor I® had a 
statistically noteworthy decline in the incidence of persistent chronic 
and hypertrophic sinusitis [132]. Stockert et al. (2007) researched 
whether therapy with laser acupunction and probiotic (E. faecal 
Symbioflor I®) as a therapeutic routine would enhance therapeutic 
effectiveness compared to traditional asthma medical treatment of 
many school children further by randomized, placebo-controlled, and 
double-blind study. The outcomes demonstrated that combining laser 
acupuncture with probiotics had a beneficial influence on bronchial 
hyperactivity in sporadic or slightly chronic asthma, and hence could 
be useful to treat acute respiratory disorders.

The antioxidant and effectiveness ability of E. lactis Q1 and 4CP3 
against the development of biofilms generated by methicillin-resistant 

Staphylococcus aureus (MRSA) strains were also examined, with 
encouraging findings [134]. The protective impact of probiotic E.lactis 
IITRHR1 toward APAP (an antipyretic/analgesic medication that has 
been associated with toxicity in overdose) induced liver damage in 
male Wistar rats was investigated. The probiotic was shown to affect 
critical apoptotic/anti-apoptotic proteins such as cytochrome-c, Bcl2, 
Bax, caspase production, and DNA damage [135]. The supernatant 
of E.lactis IW5, a probiotic isolated from human feces, substantially 
inhibited the development of numerous pathogenic bacteria and 
lowered the viability of various cancer cells, including HeLa, MCF-7, 
AGS, HT-29, and Caco-2 [136].

6. CONCLUSION AND FUTURE ASPECTS

Due to safety concerns and a lack of safety expertise, and different 
requirements, only a small number of Enterococcal probiotics are 
in the market. The GRAS status for Enterococcus has yet to be 
granted  [26]. However, given its positive characteristics, certain 
Enterococcal strains in the food and/or probiotic industries are 
often used as starter cultures, cocultures, or protective cultures. The 
combined feature of being a good probiotic candidate and opportunistic 
pathogens remains a controversial subject. Pathogenicity, which is 
dependent on virulence factors and AR genes, is the fundamental 
issue with Enterococcus spp. as probiotics. The most interesting and 
significant information is that Enterococci are not considered food-
borne pathogens [136,87]. The rapid evolution of antibiotic resistance 
in Enterococci is likely a factor in their emergence as frequent 
nosocomial infections, raising the question of how to treat food-borne 
Enterococci. Although molecular typing approaches are still unable to 
separate food from clinical isolates, no link has yet been established 
between Enterococci consumption and infection. Furthermore, 
Enterococci in cheeses appear to be resistant to most medicines of 
concern, including gentamycin and vancomycin. There have been 
no instances of illness caused by any of the Enterococci probiotic 
organisms. E. faecium SF68 and E. faecalis Symbioflor I® probiotics 
that are presently available on the market indicate the safety of these 
Enterococcal organisms [138]. A thorough examination of antibiotic 
resistance transferability from food Enterococci to human Enterococci 
and other pathogens should be part of the future safety concerns. In 
addition, research is needed to distinguish between pathogenic and 
non-pathogenic strains, by understanding the mechanisms involved 
in Enterococcal pathogenesis. Industry, health professionals, and 
consumers should accept these strains as potential candidates for 
beneficial applications based on current scientific technology, up-to-
date knowledge about Enterococci and their properties, appropriate 
guidance, and relevant legislation to distinguish between pathogenic 
and safe Enterococcal strains.
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