Plant growth-promoting potential of Diaporthe osmanthi COFS1, an endophyte of Coleus forskohlii
Fungal endophytes are beneficial plant counterparts and potent producers of bioactive plant growth-promoting metabolites. This study focuses on the isolation and screening of fungal endophytes with strong plant growth-promoting activities from the ethnomedicinal plant Coleus forskohlii (Willd.), Briq., collected from West Bengal, India, and characterization of the cell-free culture extracts. Out of the 13 major isolates, Diaporthe osmanthi COFS1 is the most effective producer of Indole acetic acid (31.72 ± 0.04 μg ml-1), and also synthesized ammonia, siderophore, and solubilized phosphate (31.40 ± 0.28 μg ml-1). The Indole-3-acetic acid production was confirmed by UV-VIS, TLC, FTIR, gas chromatography-mass spectrometry, HRMS, and H1-nuclear magnetic resonance analyses. Gas chromatography-mass spectrometry analysis revealed putative PGP metabolites, including phenylethyl alcohol, 1-methylene-1H-indene, Indole-3-acetic acid, tryptophol, Indole-6-carboxaldehyde, and 2H-1-Benzopyran-2-one. The maximum IAA production was observed in Czapek Dox Broth (CDB) amended with 0.5 mg ml-1 of L-tryptophan, pH 6.5, 30 g l-1 sucrose, on the seventh day of the incubation period. The plant growth-promoting effects of fungal metabolites on the in vivo growth of Triticum aestivum L was evaluated. The application of 50% fungal extract resulted in a significant increase in the overall growth attributes compared with the uninoculated control plants, indicating its potential as a strong plant growth promoter.
Dutta R, Banerjee D. Plant growth-promoting potential of Diaporthe osmanthi COFS1, an endophyte of Coleus forskohlii. J Appl Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.215296
1. Kumar A, Verma JP. Does plant—microbe interaction confer stress tolerance in plants: a review?.Microbiol Res 2018; 207:41–52; doi: https://doi.org/10.1016/j.micres.2017.11.004
2. Mottaleb KA, Kruseman G, Frija A, Sonder K, Lopez-Ridaura S. Projecting wheat demand in China and India for 2030 and 2050: implications for food security. Front Nutr 2023;26(9):1077443; doi: https://doi.org/10.3389/fnut.2022.1077443
3. Sabra M, Aboulnasr A, Franken P, Perreca E, Wright LP, Camehl I. Beneficial root endophytic fungi increase the growth and quality parameters of sweet basil in heavy metal contaminated soil. Front Plant Sci 2018;9:1726; doi: https://doi.org/10.3389/fpls.2018.01726
4. Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 2019;77:225–35; doi: https://doi.org/10.1007/s13199-018-0583-y
5. Vignale MV, Iannone LJ, Scervino JM, Novas MV. Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant Soil 2018;422:267–81; doi: https://doi.org/10.1007/s11104-017-3173-5
6. Ripa FA, Cao WD, Tong S, Sun JG. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. Biomed Res Int 2019;2019(1):6105865; doi: https://doi.org/10.1155/2019/6105865
7. Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, et al. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 2015;31:1461–6; doi: https://doi.org/10.1007/s11274-015-1888-0
8. Numponsak T, Kumla J, Suwannarach N, Matsui K, Lumyong S. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLOS One 2018;13(10):e0205070; doi: https://doi.org/10.1371/journal.pone.0205070
9. Yashavantha Rao HC, Santosh P, Rakshith D, Satish S. Molecular characterization of an endophytic Phomopsis liquidambaris CBR-15 from Cryptolepisbuchanani Roem. and impact of culture media on biosynthesis of antimicrobial metabolites. 3 Biotech 2015;5:165–73; doi: https://doi.org/10.1007/s13205-014-0204-2
10. Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY. Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 2015;10(8):e1048052; doi: https://doi.org/10.1080/15592324.2015.1048052
11. Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, et al. Current scenario and future prospects of endophytic microbes: promising candidates for abiotic and biotic stress management for agricultural and environmental sustainability. Microbial ecol 2023;86(3):1455–86; doi: https://doi.org/10.1007/s00248-023-02190-1
12. Baron NC, de Souza Pollo A, Rigobelo EC. Purpureocilliumlilacinum and Metarhizium marquandii as plant growth-promoting fungi. PeerJ. 2020;8:e9005; doi: https://doi.org/10.7717/peerj.9005
13. Ismail MA, Amin MA, Eid AM, Hassan SE, Mahgoub HA, Lashin I, et al. Comparative study between exogenously applied plant growth hormones versus metabolites of microbial endophytes as plant growth-promoting for Phaseolus vulgaris L. Cells. 2021;10(5):1059; doi: https://doi.org/10.3390/cells10051059
14. Vinayarani G, Madhusudhan KN, Prakash HS. Induction of systemic resistance in turmeric by rhizospheric isolate Trichoderma asperellum against rhizome rot disease. J Plant Pathol 2019;101:965–80; doi: https://doi.org/10.1007/s42161-019-00303-9
15. Patil M, Patil R, Mohammad S, Maheshwari V. Bioactivities of phenolics-rich fraction from Diaporthearengae TATW2, an endophytic fungus from Terminalia arjuna (Roxb.). Biocatal Agric Biotechnol 2017;10:396–402; doi: https://doi.org/10.1016/j.bcab.2017.05.002
16. Zimowska B, Bielecka M, Abramczyk B, Nicoletti R. Bioactive products from endophytic fungi of sages (Salvia spp.). Agriculture 2020;10(11):543; doi: https://doi.org/10.3390/agriculture10110543
17. Huang S, Xia J, Zhang X, Sun W. Morphological and phylogenetic analyses reveal three new species of Diaporthe from Yunnan, China. MycoKeys 2021;78:49; doi: https://doi.org/10.3897%2Fmycokeys.78.60878
18. Aravind R, Kumar A, Eapen SJ, Ramana KV. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett applied microbiol 2009;48(1):58–64; doi: https://doi.org/10.1111/j.1472-765X.2008.02486.x
19. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Res 2002;106(9):996–1004; doi: https://doi.org/10.1017/S0953756202006342
20. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24(8):1596–9; doi: https://doi.org/10.1093/molbev/msm092
21. Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 2002;68(8):3795–801; doi: https://doi.org/10.1128/AEM.68.8.3795-3801.2002
22. Kavamura VN, Santos SN, da Silva JL, Parma MM, Ávila LA, Visconti A, et al. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 2013;168(4):183–91; doi: https://doi.org/10.1016/j.micres.2012.12.002
23. Lorck H. Production of hydrocyanic acid by bacteria. Physiol Plant 1948;1(2):142–6.
24. Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ. O-CAS, a fast and universal method for siderophore detection J Microbiol Methods 2007;70(1):127–31; doi: https://doi.org/10.1016/j.mimet.2007.03.023
25. Sunitha VH, Devi DN, Srinivas C. Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agric Sci 2013;9(1):01–9; doi: https://doi.org/10.5829/idosi.wjas.2013.9.1.72148
26. Amirita A, Sindhu P, Swetha J, Vasanthi NS, Kannan KP. Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World J Sci Technol 2012;2(2):13–9.
27. Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 2014;4:197–204; doi: https://doi.org/10.1007/s13205-013-0143-3
28. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 1999;170(1):265–70; doi: https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
29. Box GE, Behnken DW. Some new three level designs for the study of quantitative variables. Technometrics 1960;2(4):455–75.
30. Goswami D, Pithwa S, Dhandhukia P, Thakker JN. Delineating Kocuriaturfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. J Plant Interact 2014;9(1):566–76; doi: https://doi.org/10.1080/17429145.2013.871650
31. Shahzad R, Waqas M, Khan AL, Al-Hosni K, Kang SM, Seo CW, et al. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol Hung 2017;68(2):175–86; doi: https://doi.org/10.1556/018.68.2017.2.5
32. Bhanja SK, Rout D. Structural analysis of two bioactive components of an Edible Mushroom, Termitomyces microcarpus. Nat Prod Commun 2017;12(12):1934578X1701201226.
33. Lugtenberg BJ, Caradus JR, Johnson LJ. Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 2016;92(12):fiw194; doi: https://doi.org/10.1093/femsec/fiw194
34. Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, et al. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 2020;113:1075–107; doi: https://doi.org/10.1007/s10482-020-01429-y
35. Qiang X, Ding J, Lin W, Li Q, Xu C, Zheng Q, et al. Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus. Plant Soil 2019;439:373–91; doi: https://doi.org/10.1007/s11104- 019-04028-7
36. Crasta GL, Raveesha KA. Molecular identification of endophytic fungi associated with Coleus forskohlii (Willd.) Briq. J Appl Biol Biotech 2021;9(06):162–72.
37. Kumar VV. Plant growth-promoting microorganisms: interaction with plants and soil. In: Hakeem K, Akhtar M, Abdullah S (eds.). Plant, soil and microbes. Springer, Cham, Switzerland, vol. 1, pp 1–6, 2016; doi: https://doi.org/10.1007/978-3-319-27455-3_1
38. Pérez-Torres CA, Lopez-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 2008;20(12):3258–72; doi: https://doi.org/10.1105/tpc.108.058719
39. Toghueo RM, Vázquez de Aldana BR, Zabalgogeazcoa I. Diaporthe species associated with the maritime grass Festuca rubra subsp. pruinosa. Front Microbiol 2023;14:1105299; doi: https://doi.org/10.3389/fmicb.2023.1105299
40. Galeano RM, Franco DG, Chaves PO, Giannesi GC, Masui DC, Ruller R, et al. Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere 2021;18:100332; doi: https://doi.org/10.1016/j.rhisph.2021.100332
41. Jagannath S, Konappa NM, Alurappa R, Chowdappa S. Production, characterization of indole acetic acid and its bioactive potential from endophytic fungi of Cymbidium aloifolium L. J Biol Active Prod Nat 2019;9(5):387–409; doi: https://doi.org/10.1080/22311866.2019.168 8684
42. Bar T, Okon Y. Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillumbrasilense Sp7. Canadian J Microbiol 1993;39(1):81–6; doi: https://doi.org/10.1139/m93-011
43. Kaneshiro T, Slodki ME, Plattner RD. Tryptophan catabolism to indole pyruvic and indole acetic acids by Rhizobium japonicum L-259 mutants. Curr Microbiol 1983;8:301–6; doi: https://doi.org/10.1007/BF01577732
44. Harikrishnan H, Shanmugaiah V, Balasubramanian N, Sharma MP, Kotchoni SO. Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease. World J Microbiol Technol 2014;30:3149–61; doi: https://doi.org/10.1007/s11274-014-1742-9
45. Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S. Indole-3- acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidiumpaludigenum. Arch Microbiol 2016;198:429–37; doi: https://doi.org/10.1007/s00203-016-1202-z
46. Bunsangiam S, Sakpuntoon V, Srisuk N, Ohashi T, Fujiyama K, Limtong S. Biosynthetic pathway of indole-3-acetic acid in basidiomycetous yeast Rhodosporidiobolusfluvialis. Mycobiol 2019;47(3):292–300; doi: https://doi.org/10.1080/12298093.2019.1 638672
47. Revelou PK, Kokotou MG, Constantinou-Kokotou V. Identification of auxin metabolites in Brassicaceae by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry. Molecules 2019;24(14):2615; doi: https://doi.org/10.3390/ molecules24142615
48. Zhang BX, Li PS, Wang YY, Wang JJ, Liu XL, Wang XY, et al. Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Adv 2021;11(50):31601–7; doi: https://doi.org/10.1039/D1RA05659J
49. Wang Y, Thorup-Kristensen K, Jensen LS, Magid J. Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility. Front Plant Sci 2016;7:865; doi: https://doi.org/10.3389/fpls.2016.00865
50. Khan MS, Gao J, Munir I, Zhang M, Liu Y, Moe TS, et al. Characterization of endophytic fungi, Acremonium sp., from Lilium davidii and analysis of its antifungal and plant growth-promoting effects. BioMed Res Int 2021;2021(1):9930210; doi: https://doi.org/10.1155/2021/9930210
51. Mohamed AH, Abd El-Megeed FH, Hassanein NM, Youseif SH, Farag PF, Saleh SA, et al. Native rhizospheric and endophytic fungi as sustainable sources of plant growth promoting traits to improve wheat growth under low nitrogen input. J Fungi 2022;8(2):94; doi: https://doi.org/10.3390/jof8020094
52. Harman GE, Uphoff N. Symbiotic root- endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019;2019(1):9106395; doi: https://doi.org/10.1155/2019/9106395
53. Lubna, Asaf S, Khan AL, Waqas M, Kang SM, Hamayun M, et al. Growth-promoting bioactivities of Bipolaris sp. CSL-1 isolated from Cannabis sativa suggest a distinctive role in modifying host plant phenotypic plasticity and functions. Acta Physiol Plant 2019;41:1–6; doi: https://doi.org/10.1007/s11738-019-2852-7
54. Arora P, Tabssum R, Gupta AP, Kumar S, Gupta S. Optimization of indole acetic acid produced by plant growth promoting fungus, aided by response surface methodology. Heliyon 2024;10(14):e34356; doi: https://doi.org/10.1016/j.heliyon.2024.e34356
55. Silva Santos SD, Silva AAD, Polonio JC, Polli AD, Orlandelli RC, Oliveira JADS, et al. Influence of plant growth-promoting endophytes Colletotrichum siamense and Diaporthe masirevici on tomato plants (Lycopersicon esculentum Mill.). Mycology 2022;13(4):257–27; doi: https://doi.org/10.1080/21501203.2022.20 50825
56. Myo EM, Ge B, Ma J, Cui H, Liu B, Shi L, et al. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiol 2019;19:1–14; doi: https://doi.org/10.1186/s12866-019-1528-1
Year
Month
Bioactivity assessment of endophytic fungi associated with Centella asiatica and Murraya koengii
Archana Nath, Jyoti Pathak and SR JoshiEnzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. Leaves
Mbouobda Hermann Desire , Fotso Bernard , Muyang Rosaline Forsah , Chiatoh Thaddeus Assang, Omokolo Ndoumou DenisScreening, Selection and Optimization of the Culture Conditions for Tannase Production by Endophytic Fungi Isolated from Caatinga
Rayza Morganna Farias Cavalcanti, Pedro Henrique de Oliveira Ornela, João Atílio Jorge, Luís Henrique Souza GuimarãesIn vitro antagonistic activity of a root endophytic fungus towards plant pathogenic fungi
K. Talapatra, A. Roy Das, A. K. Saha, P. DasA study of endophytic fungi Neofusicoccum ribis from Gandaria (Bouea macrophylla Griffith) as enzyme inhibitor, antibacterial, and antioxidant
Trisanti Anindyawati, PraptiwiDistribution and diversity of endophytic fungi associated with three medicinal tree species from Eturnagaram Wildlife Sanctuary, TS, India
Bhavani Vemireddy, Abhinesh Madasi, Aruna Ajmeera, Krishna Reddy VanteruDiversity and antimicrobial potential of endophytic fungi from aromatic plants of Bhadra Wildlife Sanctuary, Western Ghats, Karnataka
Rajeshwari Jagadish, Srinivas ChowdappaMolecular identification of endophytic fungi associated with Coleus forskohlii (Willd.) Briq.
Grace Leena Crasta,, Koteshwar Anandrao Raveesha,Endophytic Fungi as Emerging Bioresources for Bioactive Compounds for Sustainable Development
Divjot Kour, Neelam Yadav, Ajar Nath YadavIsolation of yeast endophytes from healthy seeds of Capsicum annuum L. and assessment of their antimicrobial activity
Barbi Bhuyan, Purthimi Kungri Hansepi, Suraiya Akhtar, Raja Ahmed, Rafiul Amin Laskar, Kumanand TayungGenome mining and AntiSMASH analysis of an Endophytic Talaromyces sp. reveal biosynthetic pathway gene clusters for novel bioactive compounds
Priyanka N. Shenoy, Sneha Bhaskar, M. Manu, M. P. Likitha, N. Geetha, Shailasree Sekhar, K Ramachandra KiniPlant Metabolomics: Missing Link in Next Generation Functional Genomics era
Tapan Kumar MohantaBiodegradation and detoxification of low-density polyethylene by an indigenous strain Bacillus licheniformis SARR1
Ritu Rani, Jitender Rathee, Poonam Kumari, Nater Pal Singh, Anita Rani SantalCharacterization and metabolomic analysis of Plant-derived Extracellular Vesicles (PdEVs) isolated from indigenous medicinal plants
Harris Ravitchandirane, Varsha Singh, Archana Rajavel, Raja Natesan SellaIdentification, antimicrobial activity, and mycochemicals of Lentinus spp. cultivated in papaya peel medium
Alivia Nur Maysaroh, Lucia Dhiantika Witasari, Sari DarmasiwiEffects of abiotic and biotic stresses on antagonistic activities of symbiotic bacterial strains isolated from Adenosma bracteosum
Thanh-Dung Nguyen, Huu-Nghia Duong, Phu-Tho Nguyen,, Thuy-Trang Pham, Huu-Hiep Nguyen, Thi-Pha Nguyen, Huu-Thanh Nguyen,