Research Article | Volume: 5, Issue: 1, Jan-Feb, 2017

Screening, Selection and Optimization of the Culture Conditions for Tannase Production by Endophytic Fungi Isolated from Caatinga

Rayza Morganna Farias Cavalcanti Pedro Henrique de Oliveira Ornela João Atílio Jorge Luís Henrique Souza Guimarães   

Open Access   

Published:  Jan 20, 2017

DOI: 10.7324/JABB.2017.50101
Abstract

Tannin acyl hydrolase (EC 3.1.1.20), called tannase, is an enzyme of great biotechnological interest for applications in food, chemical, beverage and pharmaceutical industries. Therefore, the objective of this study was to isolate, select and identify strains of endophytic fungi from rich tannin plants collected in the Caatinga, as well as, the optimization of culture conditions for the best producers. Sixteen endophyte fungi were isolated from the barks of mastic (Myracrodruon urundeuva Allemão), angico (Anadenanthera colubrina Vell.), barauna (Schinopsis brasiliensis Engl.), cajueiro (Anacardium occidentale L.) and catingueira (Caesalpinia pyramidalis Tul). All strains showed ability of using tannic acid as carbon source. The species A. niger and A. fumigatus isolated from angico and cajueiro, respectively, presented the highest enzyme production. The optimum conditions for the production of tannase by A. niger were 24 h cultivation in Khanna medium containing 2% tannic acid, in the absence of nitrogen source, at 37 °C. A. fumigatus showed increased production of tannase when cultured in mineral medium for 24 h using 2% tannic acid as carbon source and peptone as additional nitrogen source, at 37 ºC. The optimum apparent temperature and pH of activity for the enzymes produced by both fungal species were 30 ºC and 4.0, respectively.


Keyword:     Aspergillus Submerged Fermentation Tannase Caatinga Endophytic fungi.


Citation:

Cavalcanti RMF, Ornela PHO, Jorge JA, Guimarães LHS. Screening, Selection and Optimization of the Culture Conditions for Tannase Production by Endophytic Fungi Isolated from Caatinga. J App Biol Biotech. 2017; 5 (01): 001-009. DOI: 10.7324/JABB.2017.50101

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Aguilar CN, Gutierrez-Sanche G. Review: Sources, Properties, Applications and Potential uses of Tannin Acyl Hydrolase. Food Sci Technol Int 2001;7(5): 373-82.

2. Lekha PK, Lonsane BK. Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 1997; 44: 215-60.

3. Kar B, Banerjee R, Bhattacharyya BC. Effect of additives on the behavioural properties of tannin acyl hydrolase. Process Biochem 2003; 38(9):1285-93.

4. Aguilar CN, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan LA, Ramírez-Coronel A, Contreras-Esquivel JC. Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 2007;76(1):47-59.

5. Riul AJ, Gonçalves HB, Jorge JA, Guimarães LHS. Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus ochraceus. J Mol Cat B: Enzymatic 2013; 85-86:126-33.

6. Gonçalves HB, Riul AJ, Quiapin AC, Jorge JA, Guimarães LHS. Characterization of a thermostable extracellular tannase produced under submerged fermentation by Aspergillus ochraceus. Electr J Biotechnol 2012; 15(5).

7. Sena AR, Santos ACB, Gouveia MJ, Mello MRFM, Leite TCC, Moreira KA, Assis SA. Production of Tannase by Pestalotiopsis guepinii. Food Technol Biotechnol 2014; 52(4): 459-67.

8. Azevedo JL. Botânica: uma ciência básica ou aplicada? Revista Brasileira de Botânica 1999; 22(2):225-29.

9. Silva IL, Coelho LCBB, Silva LA. O. Biotechnological potential of the Brazilian Caatinga biome. Adv Res 2015; 5(1):1-17.

10. Araújo TAS. Taninos e Flavonóides em plantas medicinais da Caatinga: Um estudo de etnobotânica quantitativa. 2008. 68 f. Dissertação (Mestrado em Ciências Farmacêuticas) – Universidade Federal de Pernambuco, Recife, 2008.

11. Araújo WL, Lima AOS, Azevedo JL, Marcon J. Manual de isolamento de microrganismos endofíticos. Piracicaba, 2002; 86 p.

12. Castellani AA. Maintenance and cultivation of the common pathogenic fungi of man in sterile distilled water. J Tropical Med Hygiene 1967; 70: 181-84.

13. Bradoo S, Gupta R, Saxena RK. Screening of extracellular tannase-producing fungi: development of a rapid and simple plate assay. J General Appl Microbiol 1996; 42: 325-29.

14. Sharma S, Bhat TK, Dawra RK. A spectrophotometric method for assay of tannase using rhodanine. Anal Biochem 2000; 279:85-9.

15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72(2): 248-54.

16. Wiseman A. Handbook of enzyme biotechnology. New York: John Wiley & Sons, 1975; p. 148.

17. Khanna P, Sundaril SS, Kumar NJ. Production, isolation and partial purification of xylanases from Aspergillus sp. World J Microbiol Biotechnol 1995; 11:242-43.

18. Peralta RM, Terenzi HF, Jorge JA. β-D-glycosidase activities of Humicola grisea: biochemical and kinetic characterization of a multifunctional enzyme. Biochim Biophys Acta 1990; 1033:243-49.

19. Costa AM, Ribeiro WX, Kato E, Monteiro ARG, Peralta RM. Production of tannase by Aspergillus tamarii in submerged cultures. Braz Arch Biol Technol 2008; 51(2): 399-404.

20. Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM. Purification and properties of thermostable extracellular α-D-xylosidase produced by thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 2001; 26(3):156-60.

21. Pinto GAS, Leite SGF, Terzi SC, Couri S. Selection of tannase-producing Aspergillus niger strains. Braz J Microbiol 2001; 32:24-6.

22. Batra A, Saxena RK. Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem 2005; 40:1553-57.

23. Melo AG, Souza PNC, Maia NC, Thomas AB, Silva LBR, Batista LRB, Ferreira RL, Cardoso PG. Screening and identification of tannase-producing fungi isolated from Brazilian caves. Afr J Microbiol Res 2013; 7(6):483-87.

24. Murugan K, Saravanababu S, Arunachalam M. Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery eflluent fungal isolates using simple agar plate and SmF process. Bioresour Technol 2007; 98:946-49.

25. Lokeswari N. Production of tannase through submerged fermentation of tannin-containing cashew husk by Aspergillus oryzae. Rasãyan J Chem 2010; 3(1):32-37.

26. Banerjee D, Mondal KC, Pati BR. Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF 9. J Basic Microbiol 2001; 41(6): 313-18.

27. Mukherjee G, Banerjee R. Effects of temperature, pH and additives on the activity of tannase produced by a coculture of Rhizopus oryzae and Aspergillus foetidus. World J Microbiol Biotechnol 2006; 22:207-12.

28. George DS, Ong CB. Improvement of tannase production under submerged fermentation by Aspergillus niger FBT1 isolated from a mangrove forest. J Biotechnol Comput Biol Bionanotechnol 2013; 94(4):451-56.

29. Chhokar V, Sangwan M, Beniwal V, Nehra K, Nehra KS. Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299. Appl Biochem Biotechnol 2010; 160(8): 2256-64.

30. Cruz-Hernandez M, Contreras-Esquivel JC, Lara F, Rodriguez R, Aguilar CN. Isolation and evaluation of tannin degrading fungal strains from the Mexican desert. Z Naturforsch C 2005; 60: 844-48.

31. Melo AG, Souza PNC, Maia NC, Thomas AB, Silva LBR, Batista LRB, Ferreira RL, Cardoso PG. Screening and identification of tannase-producing fungi isolated from Brazilian caves. Afr J Microbiol Res 2013; 7(6):483-87.

32. Treviño-Cueto B, Luis M, Contreras-Esquivel JC, Rodríguez R, Aguilera A, Aguilar CN. Gallic acid and tannase accumulation during fungal solid-state culture of a tannin-rich desert plant (Larrea tridentate Cov). Bioresour Technol 2007; 98:721-24.

33. Banerjee D, Mondal KC, Pati BR. Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiol Immunol Hung 2007; 54(2):159-66.

34. Seth M, Chand S. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori - optimisation of process parameters. Process Biochem 2000; 36:39-44.

35. Srivastava A, Kar R. Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Braz J Microbiol 2009; 40(4):782-89.

36. Bajpai B, Patil S. Induction of tannin acyl hydrolase (EC 3.1.1.20) activity in some members of fungi imperfecti. Enz Microb Technol 1997; 20:612-14.

37. Belmares R, Contreras-Esquivel JC, Rodriguez-Herrera R, Coronel AR, Aguilar CN. Microbial production of tannase: an enzyme with potential use in food industry. Lebensm-Wiss U-Techno 2004; 37:857-64.

38. Lal D, Gardner JJ. Production, characterization and purification of tannase from Aspergillus niger. Eur J Experiment Biol 2012; 2(5): 1430-38.

39. Aboubakr HA, El-Sahn MA, El-Banna AA. Some factors affecting tannase production by Aspergillus niger Van Tieghem. Braz J Microbiol 2013; 44(2):559-67.

40. Yao J, Guo GS, Ren GH, Liu YH. Production, characterization and applications of tannase. J Mol Cat B: Enzymatic 2014; 101:137-47.

41. Pinto GAS, Gouri S, Leite SGF, Brito ES. Tanase: conceitos, produção e aplicação. Boletim do Centro de Pesquisa e Processamento de Alimentos 2005; 23(2):435-62.

42. Banerjee D, Pati BR. Optimization of tannase production by Aureobasidium pullulans DBS66. J Microbiol Biotechnol 2007; 17(6), 1049-53.

43. Huang WNJ, Borthwick AGL. Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6. Process Biochem 2005; 40:1245-49.

Article Metrics

273 Absract views 454 PDF Downloads 727 Total views

Related Search

By author names

Citiaion Alert By Google Scholar