Evaluation of chromium stress tolerance in endophytic bacteria isolated from chickpea root nodules and their plant growth-promoting traits
Endophytic bacteria reside within plant tissues and are frequently associated with plant growth promotion (PGP). The study aimed to isolate and screen endophytic bacteria associated with chickpea plants in heavy metal (HM)- contaminated agricultural fields. Chromium (Cr) was used as an HM to evaluate its potential to sustain PGP under Cr (VI) stress conditions. A total of 15 bacterial strains were isolated and screened for Cr (VI) tolerance, out of which two bacterial strains were selected for the production of PGP traits. Basic local alignment search tool alignment of 16S rRNA gene sequences confirmed the bacterial strains as Serratia spp. strain SMAJ_44 and Enterobacter spp. strain SMAJ_47. The IC50 value of Cr (VI) for strains SMAJ_44 and SMAJ was 500 and 270 μM. PGP traits were evaluated for both strains; strain SMAJ_47 showed high indole acetic acid production. Our findings indicate that both strains exhibited key PGP traits under lower Cr concentrations. In addition, the strains demonstrated tolerance to other HMs such as arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), as well as resilience to salt and drought stress. These findings highlight the potential of bacterial strains as bioinoculants for enhancing plant growth and supporting sustainable agriculture and bioremediation efforts.
Majhi S, Sikdar M. Evaluation of chromium stress tolerance in endophytic bacteria isolated from chickpea root nodules and their plant growth-promoting traits. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2025.245742
1. Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, et al. Heavy metal contamination: An alarming threat to environment and human health. In: Environmental Biotechnology: For Sustainable Future. Singapore: Springer Singapore; 2019. p. 103-25. https://doi.org/10.1007/978-981-10-7284-0_5
2. Yang Y, Ding J, Chi Y, Yuan J. Characterization of bacterial communities associated with the exotic and heavy metal tolerant wetland plant Spartina alterniflora. Sci Rep. 2020;10:17985. https://doi.org/10.1038/s41598-020-75041-5
3. El-Ballat EM, Elsilk SE, Ali HM, Ali HE, Hano C, El-Esawi MA. Metal-resistant PGPR strain Azospirillum brasilense EMCC1454 enhances growth and chromium stress tolerance of chickpea (Cicer arietinum L.) by modulating redox potential, osmolytes, antioxidants, and stress-related gene expression. Plants. 2023;12:2110. https://doi.org/10.3390/plants12112110
4. Hossini H, Shafie B, Niri AD, Nazari M, Esfahlan AJ, Ahmadpour M, et al. A comprehensive review on human health effects of chromium: Insights on induced toxicity. Environ Sci Pollut Res. 2022;29:70686- 705. https://doi.org10.1007/s11356-022-22705-6
5. International Agency for Research on Cancer. Agents Classified by the IARC Monographs. IGARSS 2014. France: International Agency for Research on Cancer; 2012.
6. Majhi S, Sikdar M. How heavy metal stress affects the growth and development of pulse crops: Insights into germination and physiological processes. 3 Biotech. 2023;13:155. https://doi.org/10.1007/s13205-023-03585-0
7. Tirry N, Kouchou A, El Omari B, Ferioun M, El Ghachtouli N. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J Genet Eng Biotechnol. 2021;19:149. https://doi.org/10.1186/s43141-021-00254-8
8. Ajmal AW, Saroosh S, Mulk S, Hassan MN, Yasmin H, Jabeen Z, et al. Bacteria isolated from wastewater irrigated agricultural soils adapt to heavy metal toxicity while maintaining their plant growth promoting traits. Sustainability. 2021;13:7792. https://doi.org/10.3390/su13147792
9. Kong Z, Wu Z, Glick BR, He S, Huang C, Wu L. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils. Ecotoxicol Environ Saf. 2019;183:109504. https://doi.org/10.1016/j.ecoenv.2019.109504
10. Ullah A, Heng S, Munis MF, Fahad S, Yang X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ Exp Bot. 2015;117:28-40. https://doi.org/10.1016/j.envexpbot.2015.05.001
11. Akhtar N, Ilyas N, Mashwani ZR, Hayat R, Yasmin H, Noureldeen A, et al. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiol Biochem. 2021;166:160-76. https://doi.org/10.1016/j.plaphy.2021.05.039
12. Riskuwa-Shehu ML, Ismail HY, Ijah UJ. Heavy metal resistance by endophytic bacteria isolated from guava (Psidium Guajava) and mango (Mangifera Indica) Leaves. Int Ann Sci. 2019;9:16-23. https://doi.org/10.21467/ias.9.1.16-23
13. Zahra ST, Tariq M, Abdullah M, Ullah MK, Rafiq AR, Siddique A, et al. Salt-tolerant plant growth-promoting bacteria (ST-PGPB): An effective strategy for sustainable food production. Curr Microbiol. 2024;81:304. https://doi.org/10.1007/s00284-024-03830-6
14. Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep. 2019;9:2097. https://doi.org/10.1038/s41598-019-38702-8
15. Kalsoom A, Batool R, Jamil N. Beneficial rhizospheric associated traits of chromate resistant bacteria for remediation of Cr (VI) contaminated soil. Bioremediat J. 2023;27:189-207. https://doi.org/10.1080/10889868.2022.2054930
16. Kumar A, Tripti, Maleva M, Bruno LB, Rajkumar M. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere. 2021;276:130038. https://doi.org/10.1016/j.chemosphere.2021.130038
17. Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability. 2021;13:1140. https://doi.org/10.3390/su13031140
18. Misra S, Semwal P, Pandey DD, Mishra SK, Chauhan PS. Siderophore-producing Spinacia oleracea bacterial endophytes enhance nutrient status and vegetative growth under iron-deficit conditions. J Plant Growth Regul. 2024;43:1317-30. https://doi.org/10.1007/s00344-023-11185-8
19. Blaga AC, Zaharia C, Suteu D. Polysaccharides as support for microbial biomass-based adsorbents with applications in removal of heavy metals and dyes. Polymers (Basel). 2021;13:2893. https://doi.org/10.3390/polym13172893
20. Thai TD, Lim W, Na D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front Bioeng Biotechnol. 2023;11:1- 21. https://doi.org/10.3389/fbioe.2023.1178680
21. Liu Y, Li J, Du J, Hu M, Bai H, Qi J, et al. Accurate assessment of antibiotic susceptibility and screening resistant strains of a bacterial population by linear gradient plate. Sci China Life Sci. 2011;54:953- 960. https://doi.org/10.1007/s11427-011-4230-6
22. Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST. Bergey’s Manual of Determinative Bacteriology. 9th ed. Baltimore: Lippincott Williams and Wilkins; 2000.
23. Anumalla M, Batchu UR, Singh NK, Bhukya B, Reddy Shetty P. Draft genome analysis of Delftia tsuruhatensis IICT-RSP4, a strain with uricase potential isolated from soil. Indian J Microbiol. 2025. https://doi.org/10.1007/s12088-024-01434-z
24. Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, et al. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: Strategy for culture-independent study. Environ Microbiol. 2022;24:5019-38. https://doi.org/10.1111/1462-2920.16109
25. Mukherjee S, De A, Sarkar NK, Saha NC. Isolation and characterization of benzene utilizing Bacillus spp. from petroleum contaminated soil in Kolkata, West Bengal, India. Asian J Microbiol Biotechnol Environ Sci. 2019;21:428-37.
26. Kabir MM, Fakhruddin AN, Chowdhury MA, Pramanik MK, Fardous Z. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes. World J Microbiol Biotechnol. 2018;34:126. https://doi.org/10.1007/s11274-018-2510-z
27. Mekonnen E, Kebede A, Nigussie A, Kebede G, Tafesse M. Isolation and characterization of urease-producing soil bacteria. Int J Microbiol. 2021;2021:1-11. https://doi.org/10.1155/2021/8888641
28. Sadiqi S, Hamza M, Ali F, Alam S, Shakeela Q, Ahmed S, et al. Molecular characterization of bacterial isolates from soil samples and evaluation of their antibacterial potential against MDRS. Molecules. 2022;27:6281. https://doi.org/10.3390/molecules27196281
29. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci. 2004;101:11030-5. https://doi.org/10.1073/pnas.0404206101
30. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022-7. https://doi.org/10.1093/molbev/msab120
31. Xu Y, Tan L, Li Q, Zheng X, Liu W. Sublethal concentrations of heavy metals Cu2+ and Zn2+ can induce the emergence of bacterial multidrug resistance. Environ Technol Innov. 2022;27:102379. https://doi.org/10.1016/j.eti.2022.102379
32. Firinc? C, Zamfir LG, Constantin M, R?ut I, Capr? L, Popa D, et al. Microbial removal of heavy metals from contaminated environments using metal-resistant indigenous strains. J Xenobiot. 2023;14:51-78. https://doi.org/10.3390/jox14010004
33. Yaghoubian Y, Siadat SA, Moradi Telavat MR, Pirdashti H, Yaghoubian I. Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica. Environ Sci Pollut Res. 2019;26:7863-72. https://doi.org/10.1007/s11356-019-04255-6
34. Zutshi S, Choudhary M, Bharat N, Abdin MZ, Fatma T. Evaluation of antioxidant defense responses to lead stress in Hapalosiphon fontinalis ?339(1). J Phycol. 2008;44:889-96. https://doi.org/10.1111/j.1529-8817.2008.00542.x
35. Shukor MY, Masdor N, Baharom NA, Jamal JA, Abdullah MP, Shamaan NA, et al. An inhibitive determination method for heavy metals using bromelain, a cysteine protease. Appl Biochem Biotechnol. 2008;144:283-91. https://doi.org/10.1007/s12010-007-8063-5
36. Afridi MS, Van Hamme JD, Bundschuh J, Sumaira, Khan MN, Salam A, et al. Biotechnological approaches in agriculture and environmental management - bacterium Kocuria rhizophila 14ASP as heavy metal and salt- tolerant plant growth- promoting strain. Biologia (Bratisl). 2021;76:3091-105. https://doi.org/10.1007/s11756-021-00826-6
37. Agunbiade VF, Fadiji AE, Agbodjato NA, Babalola OO. Isolation and characterization of plant-growth-promoting, drought-tolerant rhizobacteria for improved maize productivity. Plants. 2024;13:1298. https://doi.org/10.3390/plants13101298
38. Majhi K, Let M, Bandopadhyay R. Efficacious use of Micrococcus yunnanensis GKSM13 for the growth of rice seedlings under copper stress with elucidation into genomic traits. Curr Plant Biol. 2024;37:100318. https://doi.org/10.1016/j.cpb.2023.100318
39. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26:192-5. https://doi.org/10.1104/pp.26.1.192
40. Pinto MS, Inocente LB, Oliveira PN, Silva KJ, Carrer H. Plant growth-promoting (PGP) traits of endophytic bacteria from in vitro cultivated Tectona grandis L.f. Forests. 2022;13:1539. https://doi.org/10.3390/f13101539
41. Payne SM. Detection, isolation, and characterization of siderophores. Methods Enzymol. 1994;235:329-44. https://doi.org/10.1016/0076-6879(94)35151-1
42. Abdelwahed S, Trabelsi E, Saadouli I, Kouidhi S, Masmoudi AS, Cherif A, et al. A new pioneer colorimetric micro-plate method for the estimation of ammonia production by plant growth promoting rhizobacteria (PGPR). Main Gr Chem. 2022;21:55-68. https://doi.org/10.3233/MGC-210077
43. Kshetri L, Pandey P, Sharma GD. Rhizosphere mediated nutrient management in Allium hookeri Thwaites by using phosphate solubilizing rhizobacteria and tricalcium phosphate amended soil. J Plant Interact. 2018;13:256-69. https://doi.org/10.1080/17429145.2018.1472307
44. Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, et al. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front Microbiol. 2020;11:585215. https://doi.org/10.3389/fmicb.2020.585215
45. Sathishkumar R, Kannan R, Jinendiran S, Sivakumar N, Selvakumar G, Shyamkumar R. Production and characterization of exopolysaccharide from the sponge-associated Bacillus subtilis MKU SERB2 and its in-vitro biological properties. Int J Biol Macromol. 2021;166:1471-9. https://doi.org/10.1016/j.ijbiomac.2020.11.026
46. Rodríguez J, Lobato C, Vázquez L, Mayo B, Flórez AB. Prodigiosin-producing Serratia marcescens as the causal agent of a red colour defect in a blue cheese. Foods. 2023;12:2388. https://doi.org/10.3390/foods12122388
47. Barra Caracciolo A, Terenzi V. Rhizosphere microbial communities and heavy metals. Microorganisms. 2021;9:1462. https://doi.org/10.3390/microorganisms9071462
48. Razzaghi Komaresofla B, Alikhani HA, Etesami H, Khoshkholgh- Sima NA. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria. Appl Soil Ecol. 2019;138 160-170. https://doi.org/10.1016/j.apsoil.2019.02.022
49. Gamalero E, Favale N, Bona E, Novello G, Cesaro P, Massa N, et al. Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance. Appl Sci. 2020;10:5767. https://doi.org/10.3390/app10175767
50. Uzma M, Iqbal A, Hasnain S. Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna radiata. PLoS One. 2022;17:e0262932. https://doi.org/10.1371/journal.pone.0262932
51. Latif M, Bukhari SA, Alrajhi AA, Alotaibi FS, Ahmad M, Shahzad AN, et al. Inducing drought tolerance in wheat through exopolysaccharide-producing rhizobacteria. Agronomy. 2022;12:1140. https://doi.org/10.3390/agronomy12051140
52. ALKahtani MD, Fouda A, Attia KA, Al-Otaibi F, Eid AM, Ewais EE, et al. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy. 2020;10:1325. https://doi.org/10.3390/agronomy10091325
53. Khiangte L, Lalfakzuala R. Effects of heavy metals on phosphatase enzyme activity and indole-3-acetic acid (IAA) production of phosphate solubilizing bacteria. Geomicrobiol J. 2021;38:494-503. https://doi.org/10.1080/01490451.2021.1894271
54. Rizvi A, Khan MS. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere. 2017;185:942-52. https://doi.org/10.1016/j.chemosphere.2017.07.088
55. Naveed M, Qureshi MA, Zahir ZA, Hussain MB, Sessitsch A, Mitter B. L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Ann Microbiol. 2015;65:1381-9. https://doi.org/10.1007/s13213-014-0976-y
56. Shahzad R, Waqas M, Khan AL, Al-Hosni K, Kang SM, Seo CW, et al. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol Hung. 2017;68:175-86. https://doi.org/10.1556/018.68.2017.2.5
57. Sheng MM, Jia HK, Zhang GY, Zeng LN, Zhang TT, Long YH, et al. Siderophore production by rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and its antifungal effects on Candida albicans. J Microbiol Biotechnol. 2020;30:689- 99. https://doi.org/10.4014/jmb.1910.10066
58. Shi P, Xing Z, Zhang Y, Chai T. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3. IOP Conf Ser Earth Environ Sci. 2017;52:012103. https://doi.org/10.1088/1742- 6596/52/1/012103
59. Braud A, Geoffroy V, Hoegy F, Mislin GL, Schalk IJ. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ Microbiol Rep. 2010;2:419- 25. https://doi.org/10.1111/j.1758-2229.2009.00126.x
60. Lucero CT, Lorda GS, Anzuay MS, Ludueña LM, Taurian T. Peanut endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants. Curr Microbiol. 2021;78:1961- 72. https://doi.org/10.1007/s00284-021-02469-x
61. Bhagat N, Raghav M, Dubey S, Bedi N. Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. J Microbiol Biotechnol. 2021;31:1045-59. https://doi.org/10.4014/jmb.2105.05009
62. Almutairi MH, Helal MM. Exopolysaccharide production from isolated Enterobacter sp. strain ACD2 from the northwest of Saudi Arabia. J King Saud Univ Sci. 2021;33:101318. https://doi.org/10.1016/j.jksus.2020.101318
63. Prakash Shyam K, Rajkumar P, Ramya V, Sivabalan S, Kings AJ, et al. Exopolysaccharide production by optimized medium using novel marine Enterobacter cloacae MBB8 isolate and its antioxidant potential. Carbohydr Polym Technol Appl. 2021;2:100070. https://doi.org/10.1016/j.carpta.2021.100070
64. Bezawada J, Hoang NV, More TT, Yan S, Tyagi N, Tyagi RD, et al. Production of extracellular polymeric substances (EPS) by Serratia sp.1 using wastewater sludge as raw material and flocculation activity of the EPS produced. J Environ Manage. 2013;128:83-91. https://doi.org/10.1016/j.jenvman.2013.04.039
65. Khan A, Singh AV. Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World J Microbiol Biotechnol. 2021;37:198. https://doi.org/10.1007/s11274-021-03166-4
66. Leng F, Zhang K, Hu S, Li S, Yu C, Wang Y. Exopolysaccharides of Serratia fonticola CPSE11 can alleviate the toxic effect of Cd2+ on Codonopsis pilosula. Environ Sci Pollut Res. 2023;30:80378-92. https://doi.org/10.1007/s11356-023-28145-0
67. Dhanya BE, Athmika, Rekha PD. Characterization of an exopolysaccharide produced by Enterobacter sp. YU16-RN5 and its potential to alleviate cadmium induced cytotoxicity in vitro. 3 Biotech. 2021;11:491. https://doi.org/10.1007/s13205-021-03034-w
Year
Month
Bioconversion of sugarcane molasses to poly(3-hydroxybutyrate-co-3- hydroxyvalerate) by endophytic Bacillus cereus RCL 02
Rituparna Das, Arundhati Pal, Amal Kanti PaulBacterial endophytes from halophyte black saxaul (Haloxylon aphyllum Minkw.) and their plant growth-promoting properties
Vyacheslav Shurigin,, Begali Alikulov, Kakhramon Davranov, Zafar IsmailovEvaluation of plant growth-promoting activities of endophytic bacteria of Musa acuminata and their characterization
Shilpi Singh, Kamlesh Choure, Piyush Kant Rai, Sourabh Singh Gour, Vivek Kumar AgnihotriEndophytic bacterial metagenomics and phosphate solubilization activities in an endemic legume Humboldtia brunonis Wall.
Ganesh V. Shendye, N. ThamizhseranEndophytic nitrogen-fixing bacteria: Untapped treasurer for agricultural sustainability
Kusam Lata Rana, Divjot Kour, Tanvir Kaur, Rajeshwari Negi, Rubee Devi, Neelam Yadav, Pankaj Kumar Rai, Sangram Singh, Ashutosh Kumar Rai, Ashok Yadav, R. Z. Sayyed, Ajar Nath YadavCharacterization of indole-3-acetic acid biosynthesis and stability from Micrococcus luteus
Patcha Boonmahome, Wiyada MongkolthanarukEffects of abiotic and biotic stresses on antagonistic activities of symbiotic bacterial strains isolated from Adenosma bracteosum
Thanh-Dung Nguyen, Huu-Nghia Duong, Phu-Tho Nguyen,, Thuy-Trang Pham, Huu-Hiep Nguyen, Thi-Pha Nguyen, Huu-Thanh Nguyen,Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture
Ajar Nath Yadav, Anil Kumar SaxenaScreening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants
Rajat Maheshwari, Namita Bhutani, Pooja SunejaBioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.)
Kusam Lata Rana, Divjot Kour, Tanvir Kaur, Rubee Devi, Ashok Yadav, Ajar Nath YadavArbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability
Kumar Anand, Gaurav Kumar Pandey, Tanvir Kaur, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Kriti Akansha, Ashok Yadav, Rubee Devi, Divjot Kour, Ashutosh Kumar Rai, Manish Kumar, Ajar Nath YadavPhosphate-Solubilizing Microorganisms for Agricultural Sustainability
Ajar Nath YadavPotassium Solubilizing Microorganisms for Agricultural Sustainability
Ajar Nath YadavStress Adaptive Phosphorus Solubilizing Microbiomes for Agricultural Sustainability
Divjot Kour, Ajar Nath YadavMicrobial diversity of Azadirachta indica (Neem) gum: An unexplored niche
Pragya Saxena,, Hillol Chakdar, Arjun Singh, Sheetal Shirodkar, Alok K. SrivastavaRhizospheres of Rubus ellipticus and Ageratina riparia from Meghalaya exhibit Actinomycetota that promote plant growth
Debulman Syiemiong, Dhruva Kumar Jha, Samrat Adhikari, Dapkupar Mylliemngap, Richborn Kharbuki, Dominic Lyngdoh, Joel Paul Warlarpih, Neha Paul, Kevin Matthew Lamare, Chalcedony Wahlang, Rangehbok LyngkhoiMinerals Solubilizing Microbes for Agricultural Sustainability
Ajar Nath YadavPhyllospheric microbiomes for agricultural sustainability
Ajar Nath Yadav,Harnessing multifunctional drought adaptive phosphorus solubilizing microbes for resilient agro-ecosystems
Divjot Kour, Tanvir Kaur, Ajar Nath Yadav,Agrobacterium rhizogenes as molecular tool for the production of hairy roots in Withania somnifera
Manali Singh,, Deep Chandra Suyal, Nisha Dinkar, Soniya Joshi, Nishtha Srivastava, Vineet Kumar Maurya, Abhiruchi Agnihotri, Sanjeev Agrawal