Microbial diversity of Azadirachta indica (Neem) gum: An unexplored niche

Pragya Saxena Hillol Chakdar Arjun Singh Sheetal Shirodkar Alok K. Srivastava   

Open Access   

Published:  Nov 11, 2022

DOI: 10.7324/JABB.2023.110223
Abstract

Azadirachta indica (Neem) gum resists extreme environmental conditions due to its chemical nature. The composition of neem gum with respect to microbial load is yet to be investigated. Moreover, the population structure and the diversity of bacteria in neem gum are also poorly known. The current investigation is about isolation and recognizing the bacterial diversity of neem gum and characterizing their plant growth-promoting (PGP) attributes. Using 12 different growth media, a total of 130 bacterial isolates were obtained, of which 50 isolates displayed significant differences in morphology, biochemical, and molecular features. Amplified ribosomal DNA restriction analysis (ARDRA) followed by 16S rRNA gene homology-based identification suggested the presence of twenty putative bacterial forms in neem gum. The species of Enterobacter, Bacillus, Pseudomonas, Paenibacillus, and Brevibacterium were predominantly present. Out of these 50 isolates, 44 isolates showed IAA production up to 2–730 μg/mL. Similarly, siderophore and HCN production were exhibited by 21 and 12 different bacterial isolates, respectively. Isolates also exhibited phosphate (6), potassium (6), and zinc (18) solubilizing ability. In addition, the isolates were able to produce hydrolytic enzymes such as amylase (13), cellulose (12), lipase (14), and pectinase (31). The results of the study indicate that isolates may aid agricultural practices and optimize plant uptake of nutrients under adverse conditions.


Keyword:     Azadirachta indica Indole acetic acid Neem gum Plant growth promotion


Citation:

Saxena P, Chakdar H, Singh A, Shirodkar S, Srivastava AK. Microbial diversity of Azadirachta indica (Neem) gum: An unexplored niche. J App Biol Biotech. 2022. https://doi.org/10.7324/JABB.2023.110223

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Kumar VS, Navaratnam V. Neem (Azadirachta indica): Prehistory to contemporary medicinal uses to humankind. Asian Pac J Trop Biomed 2013;3:505-14.https://doi.org/10.1016/S2221-1691(13)60105-7

2. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 2002;10:1336-45.

3. Roshan A, Verma NK. A brief study on neem (Azarrdirachta indica A.) and its application a review. Res J Phytomed 2015;1:1-3.

4. Sarawaneeyaruk S, Krajangsang S, Pringsulaka O. The effects of neem extract and azadirachtin on soil microorganisms. J Soil Sci Plant Nutr 2015;15:1071-83.https://doi.org/10.4067/S0718-95162015005000075

5. Carney KM, Matson PA. Plant communities, soil microorganisms, and soil carbon cycling: Does altering the world belowground matter to ecosystem functioning? Ecosystems 2005;8:928-40.https://doi.org/10.1007/s10021-005-0047-0

6. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med 2017;15:73.https://doi.org/10.1186/s12967-017-1175-y

7. Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol 2020;8:467.https://doi.org/10.3389/fbioe.2020.00467

8. Rajagopal R, Suryanarayanan TS. Isolation of endophytic fungi from leaves of neem (Azadirachta indica). Curr Sci 2000;78:1375-8.

9. Mahesh B, Tejesvi MV, Nalini MS, Prakash HS, Kini R, Subbiah V, et al. Endophytic mycoflora of inner bark of Azadirachta indica A. Juss. Curr Sci 2005;88:218-9.

10. Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC. Endophytic actinomycetes from Azadirachta indica A. Juss.: Isolation, diversity, and anti-microbial activity. Microb Ecol 2008;57:749-56.https://doi.org/10.1007/s00248-008-9450-3

11. Tiwari P, Bae H. Horizontal gene transfer and endophytes: An implication for the acquisition of novel traits. Plants 2020;9:305.https://doi.org/10.3390/plants9030305

12. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 2015;79:293-320.https://doi.org/10.1128/MMBR.00050-14

13. Agasimundin VB, Rangiah K, Sheetal A, Gowda M. Neem Microbiome. Neem Genome; 2019. p. 111-23.https://doi.org/10.1007/978-3-030-16122-4_12

14. Irabor A, Mmbaga M. Evaluation of selected bacterial endophytes for biocontrol potential against Phytophthora Blight of Bell Pepper (Capsicum annuum L.). L. Plant Pathol Microbiol 2017;8:31-4.

15. Kurt A, Cengiz A, Kahyaoglu T. The effect of gum tragacanth on the rheological properties of salep based ice cream mix. Carbohydr Polym 2016;143:116-23.https://doi.org/10.1016/j.carbpol.2016.02.018

16. Martínez M, Beltrán O, Rincón F, de Pinto GL, Igartuburu JM. New structural features of Acacia tortuosa gum exudate. Food Chem 2015;182:105-10.https://doi.org/10.1016/j.foodchem.2015.02.124

17. Gomes LH, Duarte KM, Andrino FG, Tavares FC. A simple method for DNA isolation from Xanthomonas spp. Sci Agric 2000;57:553-5.https://doi.org/10.1590/S0103-90162000000300028

18. Chen J, Banks D, Jarret RL, Chang CJ, Smith BJ. Use of 16S rDNA sequences as signature characters to identify Xylella fastidiosa. Curr Microbiol 2000;40:29-33.https://doi.org/10.1007/s002849910006

19. Rai P, Sharma A, Saxena P, Soni AP, Chakdar H, Kashyap PL, et al. Comparison of molecular and phenetic typing methods to assess diversity of selected members of the genus Bacillus. Microbiology 2015;84:236-46.https://doi.org/10.1134/S0026261715020113

20. Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 1979;76:5269-73.https://doi.org/10.1073/pnas.76.10.5269

21. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-80.https://doi.org/10.1093/nar/22.22.4673

22. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4.https://doi.org/10.1093/molbev/msw054

23. Holt JG, Krieg NR, Sneath PH, Staley JT. Bergy's Manual of Determinative Bacteriology. 9th ed. Baltimore, MD, United States: Williams and Wilkins Publication; 1994.

24. Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 2008;163:173-81.https://doi.org/10.1016/j.micres.2006.04.001

25. Gupta S, Pandey S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 2019;10:1506.https://doi.org/10.3389/fmicb.2019.01506

26. Eid AM, Salim SS, Hassan SE, Ismail MA, Fouda A. Role of endophytes in plant health and abiotic stress management. In: Microbiome in Plant Health and Disease. Berlin: Springer; 2019. p. 119-44.https://doi.org/10.1007/978-981-13-8495-0_6

27. Bernfeld P. Amylases, α and β. In: Methods in Enzymology. Cambridge, Massachusetts: Academic Press; 1955. p. 149-58.https://doi.org/10.1016/0076-6879(55)01021-5

28. Singh A, Tiwari R, Sharma A, Adak A, Singh S, Prasanna R, et al. Taxonomic and functional diversity of the culturable microbiomes of epigeic earthworms and their prospects in agriculture. J Basic Microbiol 2016;56:1009-20.https://doi.org/10.1002/jobm.201500779

29. Namasivayam E, Ravindar. D J, K M, jiji A, Kumar M. Production of extracellular pectinase by Bacillus cereus isolated from market solid waste. J Bioanal Biomed 2011;3:70-5.https://doi.org/10.4172/1948-593X.1000046

30. Cao L, Qiu Z, You J, Tan H, Zhou S. Isolation and characterization of endophytic streptomycete antagonists of fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 2005;247:147-52.https://doi.org/10.1016/j.femsle.2005.05.006

31. Dos Santos HR, Argolo CS, Argôlo-Filho RC, Loguercio LL. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol 2019;19:74.https://doi.org/10.1186/s12866-019-1446-2

32. Donelli G, Vuotto C, Mastromarino P. Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism. Microb Ecol Health Dis 2013;24:20105.https://doi.org/10.3402/mehd.v24i0.20105

33. Singh MJ, Padmavathy S. Hydrocarbon biodegradation by endophytic bacteria from neem leaves LS. Int J Life Sci 2015;4:33-6.https://doi.org/10.5958/2319-1198.2015.00004.4

34. Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC. Endophytic actinomycetes from Azadirachta indica A. Juss.: Isolation, diversity, and anti-microbial activity. Microb Ecol 2008;57:749-56.https://doi.org/10.1007/s00248-008-9450-3

35. Kaur M. Endophytic actinomycetes from Azadirachta indica A. Juss. Characterization and anti-microbial activity. Int J Adv Res 2016;1:676-84.https://doi.org/10.21474/IJAR01/708

36. Dutta D, Puzari KC, Gogoi R, Dutta P. Endophytes: Exploitation as a tool in plant protection. Braz Arch Biol Technol 2014;57:621-9.https://doi.org/10.1590/S1516-8913201402043

37. ALKahtani MD, Fouda A, Attia KA, Al-Otaibi F, Eid AM, Ewais EE, et al. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy 2020;10:1325.https://doi.org/10.3390/agronomy10091325

38. Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P. Bioactive products from plant-endophytic gram-positive bacteria. Front Microbiol 2019;10:463.https://doi.org/10.3389/fmicb.2019.00463

39. Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM, et al. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 2016;106:236-43.https://doi.org/10.1016/j.plaphy.2016.05.006

40. Suman SK, Dhawaria M, Tripathi D, Raturi V, Adhikari DK, Kanaujia PK. Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. Int Biodeterior Biodegradation 2016;112:12-7.https://doi.org/10.1016/j.ibiod.2016.04.036

41. Eida AA, Ziegler M, Lafi FF, Michell CT, Voolstra CR, Hirt H, et al. Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS One 2018;13:208-23.https://doi.org/10.1371/journal.pone.0208223

42. Kolomiets EI, Zdor NA, Romanovskaya TV, Lobanok AG. Certain aspects of the phytoprotective activity of Streptomyces flavescens an antagonist of phytopathogenic fungi. Appl Biochem Microbiol 1997;33:451-4.

Article Metrics

24 Absract views 8 PDF Downloads 32 Total views

Related Search

By author names

Citiaion Alert By Google Scholar