Agrobacterium rhizogenes as molecular tool for the production of hairy roots in Withania somnifera

Manali Singh Deep Chandra Suyal Nisha Dinkar Soniya Joshi Nishtha Srivastava Vineet Kumar Maurya Abhiruchi Agnihotri Sanjeev Agrawal   

Open Access   

Published:  Oct 01, 2022

DOI: 10.7324/JABB.2023.110201
Abstract

India is the world’s richest country, with a vast array of plants and genetic resources for medicinal plants. When it comes to the introduction of new plant species, environmental factors are crucial. When plants are subjected to various environmental conditions, they produce tissue-specific secondary metabolites. The main metabolites are found in varying amounts throughout the medicinal plant’s tissues. With regard to location and environmental conditions, production of bioactive metabolites plays a critical impact. As a result, the agro-climatic conditions are favorable for the introduction and domestication of new imported plant types with improved and consistent contents. Keeping in mind the pharmacological importance of bioactive components, the current chapter focuses on the hairy root production used to increase their production through the use of new technologies. Keeping in mind the pharmacological importance of bioactive substances, the current chapter focuses on hairy root formation, which is aided by rhizosphere modeling through Agrobacterium rhizogenes. In some dicotyledonous plants, soil bacteria called A. rhizogenes causes hairy root disease. A. rhizogenes-mediated transformation aids in a better understanding of the rhizosphere’s host-plant association system, as well as the use, transformation, and formation of new upgrade transgenic crops hairy root culture, which is beneficial for improved growth and continuous production of pharmacologically bioactive ingredients in elite germplasm.


Keyword:     Agrobacterium rhizogenes Transformation Hairy roots Enhanced secondary metabolites Sustainable agriculture


Citation:

Singh M, Suyal DC, Dinkar N, Joshi S, Srivastava N, Maurya VK, Agnihotri A, Agrawal S. Agrobacterium rhizogenes as a molecular tool for the production of hairy roots in Withania somnifera. J App Biol Biotech. 2022. https://doi.org/10.7324/JABB.2023.110201

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Hinsinger P, Marschner P. Rhizosphere-perspectives and challenges-a tribute to Lorenz Hiltner 12-17 September 2004-Munich, Germany. Plant Soil 2006;283:7-8.https://doi.org/10.1007/s11104-006-0057-5

2. Singh M, Poddar NK, Singh D, Agrawal S. Foliar application of elicitors enhanced the yield of withanolide contents in Withania somnifera (L.) Dunal (variety, Poshita). 3 Biotech 2020;10:157.https://doi.org/10.1007/s13205-020-2153-2

3. Jones D, Nguyen C, Finlay R. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant Soil 2009;321:5-33.https://doi.org/10.1007/s11104-009-9925-0

4. Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, et al. Dynamicof the genetic structure of bacterial and fungal communities at different developmental stagesof Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 2006;170:165-75.https://doi.org/10.1111/j.1469-8137.2006.01650.x

5. Micallef SA, Channer S, Shiaris MP, Colon-Carmona A. Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 2009;4:777-80.https://doi.org/10.4161/psb.4.8.9229

6. Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, et al. White lupin has developed a complex strategy to limitmicrobial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 2006;29:919-27.https://doi.org/10.1111/j.1365-3040.2005.01473.x

7. Kelgane SB, Salve J, Sampara P, Debnath K. Efficacy and tolerability of ashwagandha root extract in the elderly for improvement of

general well-being and sleep: A prospective, randomized, double-blind, placebo-controlled study. Cureus 2020;12:7083.

8. Singh B, Saxena AK, Chandan BK, Gupta DK, Bhutani KK, Anand KK. Adaptogenic activity of a novel, withanolide free aqueous fraction from the roots of Withania somnifera Dun. Phytother Res 2001;15:311-8.https://doi.org/10.1002/ptr.858

9. Verma N,Gupta SK, Tiwari S, Mishra AK. Safety of ashwagandha root extract: A randomized, placebo-controlled, study in healthy volunteers. Complement Ther Med 2021;57:102642.https://doi.org/10.1016/j.ctim.2020.102642

10. Davis L, Kuttan G. Effect of Withania somnifera on DMBA induced carcinogenesis. J Ethnopharmacol 2001;75:165-8.https://doi.org/10.1016/S0378-8741(00)00404-9

11. Bhasin S, Singh M, Singh D. Review on bioactive metabolites of Withania somnifera. (L.) Dunal and its pharmacological significance. J Pharmacogn Phytochem 2019;8:3906-9.

12. Singh M, Shah P, Punetha H, Agrawal S. Varietal comparison of withanolide contents in different tissues of Withania somnifera (L.) Dunal (ashwagandha). Int J Life Sci Sci Res 2018;4:1752-8.https://doi.org/10.21276/ijlssr.2018.4.3.3

13. Umadevi M, Rajeswari R, Sharmila Rahale C, Selvavenkadesh S, Pushpa R, Kumar KP, et al. Traditional and medicinal uses of Withania somnifera. Pharm Innov 2012;1:102-10.

14. Mills E, Cooper C, Seely D, Kanfer I. African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutr J 2005;4:19.https://doi.org/10.1186/1475-2891-4-19

15. Pandey MM, Rastogi S, Rawat AK. Indian traditional Ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med 2013;2013:376327.https://doi.org/10.1155/2013/376327

16. Kuo YT, Liao HH, Chiang JH, Wu MY, Chen BC, Chang CM, et al. Complementary chinese herbal medicine therapy improves survival of patients with pancreatic cancer in taiwan: A nationwide population-based cohort study. Integr Cancer Ther 2018;17:411-22.https://doi.org/10.1177/1534735417722224

17. Renu S, Manvi M, Sapna B. Evaluation of antibacterial potential of stem and bark of Moringa oleifera Lam. Bioscan 2010;1:89-94.

18. Singh M, Shah P, Punetha H, Gaur AK, Kumar A, Agrawal S. Isolation and quantification of a potent anti cancerous compound, Withaferin A from the aerial parts of Withania somnifera (Ashwagandha). Ad In Plant Sci 2017;30:231-5.

19. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 2001;51:89-103.https://doi.org/10.1099/00207713-51-1-89

20. Lima JE, Benedito VA, Figueira A, Peres LE. Callus, shoot and hairyroot formation in vitro as affected by the sensitivity to auxin and ethylenein tomato mutants. Plant Cell Rep 2009;28:1169-77.https://doi.org/10.1007/s00299-009-0718-y

21. Ono NN, Tian L. The multiplicity of hairy root cultures: Prolific possibilities. Plant Sci 2011;180:439-46.https://doi.org/10.1016/j.plantsci.2010.11.012

22. Ozyigit II, Dogan I, Tarhan EA. Agrobacterium rhizogenes-mediated transformation and its biotechnological applications in cropsof rhizodeposits in structuring rhizosphere bacterial communities. FEMS Microbiol Ecol 2013;1903:75-84.https://doi.org/10.1007/978-1-4614-7028-1_1

23. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 2008;9:605-18.https://doi.org/10.1038/nrg2386

24. De boer KD, Lye JC, Aitken CD, Su AK, Hamill JD. The A622 genein Nicotiana glauca (tree tobacco): Evidence for a functional role inpyridine alkaloid synthesis. Plant Mol Biol 2009;69:299-312.https://doi.org/10.1007/s11103-008-9425-2

25. Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, et al. Biosynthesis of camptothecin: In silico and in vivo tracer study from [1 13C] glucose. Plant Physiol 2004;134:161-70.https://doi.org/10.1104/pp.103.029389

26. John J. Therapeutic potential of Withania somnifera: A report on phyto pharmacological properties. Int J Pharm Sci Res 2014;5:2131-48.

27. Datta A, Jain G, Avashthi H, Singh M, Agrawal S. Molecular docking of withanolides from Withania somnifera against vimentin protein. Indian Res J Genet Biotech 2017;9:609-12.

28. Choudhary D, Bhattacharyya S, Joshi K. Body weight management in adults under chronic stress through treatment with ashwagandha root extract: A double-blind, randomized, placebo-controlled trial. J Evid Based Complementary Altern Med 2017;22:96-106.https://doi.org/10.1177/2156587216641830

29. Chandran U, Patwardhan B. Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. J Ethnopharmacol 2017;197:250-6.https://doi.org/10.1016/j.jep.2016.07.080

30. Abhyankar GA and Chinchanikar GS. Response of Withania somnifera Dunal leaf explants in vitro. Phytomorphology.1996;46(3):249-252.

31. Prakash J, Gupta SK, Dinda AK. Withania somnifera root extract prevents DMBA-induced squamous cell carcinoma of skin in swiss albino mice. Nutr Cancer 2002;42:91-7.https://doi.org/10.1207/S15327914NC421_12

32. Gupta SK, Dua A, Vohra BP. Withania somnifera (Ashwagandha) attenuates antioxidant defense in aged spinal cord and inhibits copper induced lipid peroxidation and protein oxidative modifications. Drug Metabol Drug Interact 2003;19:211-22.https://doi.org/10.1515/DMDI.2003.19.3.211

33. Chen WY, Chang FR, Huang, ZY, Chen, JH and Wu YC. Tubocapsenolide A, a novel Withanolide, inhibits proliferation and induces apoptosis in MDAMB-231 cells by thiol oxidation of heat shock proteins. J. Biol. Chem. 2008;283:17184-93.https://doi.org/10.1074/jbc.M709447200

34. Ahmed BM, Akhter S, Aminual MD and Frazana SA. In vitro antioxidant and free radical scavenging activity of Withania somnifera root. Iosr J. Pharm. 2013;3:38-47.https://doi.org/10.9790/3013-32203847

35. Jayaprakasam B, Nair MG. Cyclooxygenase-2 inhibitory withanolides from Withania somnifera leaves. Tetrahedron 2003;59:841-9.https://doi.org/10.1016/S0040-4020(02)01601-0

36. Sengupta P, Agarwal A, Pogrebetskaya M, Roychoudhury S, Durairajanayagam D, Henkel R. Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod Biomed Online 2018;36:311-26.https://doi.org/10.1016/j.rbmo.2017.11.007

37. Dongre S, Langade D, Bhattacharyya S. Efficacy and safety of ashwagandha (Withania somnifera) root extract in improving sexual function in women: A pilot study. Biomed Res Int 2015;2015:284154.https://doi.org/10.1155/2015/284154

38. Wankhede S, LangadeD, Joshi K, Sinha SR, Bhattacharyya S. Examining the effect of Withania somnifera supplementation on muscle strength and recovery: A randomized controlled trial. J Int Soc Sports Nutr 2015;12:43.https://doi.org/10.1186/s12970-015-0104-9

39. Mishra LC, Singh BB, Dagenais S. Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): A review. Altern Med Rev 2000;5:334-46.

40. Dhuley JN. Nootropic-like effect of Ashawagandha (Withania somnifera L.) in mice. Phytoter Res 2001;15:524-8.https://doi.org/10.1002/ptr.874

41. Kaur P, Mathur S, Sharma M, Tiwari M, Srivastava KK, Chandra R. A biologically active constituent of Withania somnifera (Aswagandha) with anti stress activity. Ind J Clin Biochem 2001;16:195-8.https://doi.org/10.1007/BF02864860

42. Gupta GL, Rana AC. PHCOG MAG: Plant review. Withania somnifera (Aswagandha): A review. Pharmacognosy 2007;1:129-36.

43. Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of ashwagandha (Withania somnifera (L.) dunal) root extract in improving memory and cognitive functions. J Diet Suppl 2017;14:599-612.https://doi.org/10.1080/19390211.2017.1284970

44. Davis L, Kuttan G. Effect of Withania somnifera on DMBA induced carcinogenesis. J Ethnopharmacol 2001;75:165-8.https://doi.org/10.1016/S0378-8741(00)00404-9

45. Kumar A, Kaul MK, Bhan MK, Khanna PK, Suri KA. Morphological and chemical variation in 25 collections of the Indian medicinal plant, Withania somnifera (L.)Dunal (Solanaceae).Genet Resour Crop Evol 2007;54:655-60.https://doi.org/10.1007/s10722-006-9129-x

46. Chukwuma CI, Matsabisa MG, Ibrahim MA, Erukainure OL, Chabalala MH, Islam MS. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J Ethnopharmacol 2019;235:329-60.https://doi.org/10.1016/j.jep.2019.02.024

47. Agarwal AV, Gupta P, Singh D, Dhar YV, Chanda D and Trivedi PK. Comprehensive assessment of the gene involved in withanolide biosynthesis from Withania somnifera: chemotype specific and elicitor responsive expression. Funct Integr Genomics, 2017;17(4): 477-90.https://doi.org/10.1007/s10142-017-0548-x

48. Rao SR, Ravishankar GA. Plant cell cultures, chemical factories of secondary metabolites. Biotechnol Adv 2002;20:101-53.https://doi.org/10.1016/S0734-9750(02)00007-1

49. Tripathi N, Shrivastava D, Ahmad Mir B, Kumar S, Govil S, Vahedi M, et al. Metabolomic and biotechnological approaches to determine therapeutic potential of Withania somnifera (L.) Dunal: A review. Phytomedicine 2018;50:127-36.https://doi.org/10.1016/j.phymed.2017.08.020

50. Georgiev MI, Ludwig-Muller J, Alipieva K, Lippert A. Sonication-assisted Agrobacterium rhizogenes- mediated transformation of Verbascum xanthophoeniceum Griseb for bioactive metabolite accumulation. Plant Cell Rep 2011;30:859-66.https://doi.org/10.1007/s00299-010-0981-y

51. Ma LS, Hachani A, Lin JS, Filloux A, Lai EM. Agrobacterium tumefaciens deploys superfamily of Type VI secretion DNase effectors as weapons for interbacterial competition in plants. Cell Host Microbe 2014;16:94-104.https://doi.org/10.1016/j.chom.2014.06.002

52. Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: Poisons with a purpose. Nat Rev Microbiol 2014;12:137-48.https://doi.org/10.1038/nrmicro3185

53. Mishra LC, Singh BB, Dagenais S. Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): A review. Altern Med Rev 2000;5:334-46.

54. Shi Y, Lee LY, Gelvin SB. Is VIP1 important for Agrobacterium-mediated transformation? Plant J 2014;79:848-60.https://doi.org/10.1111/tpj.12596

55. Willig CJ, Duan K, Zhang ZJ. Transcriptome profiling of plant genes in response to Agrobacterium tumefaciens mediated transformation. Curr Top Microbiol Immunol 2018;418:319-48.https://doi.org/10.1007/82_2018_115

56. Liu Y, Zhang Z, Fu J, Wang G, Wang J, Liu Y. Transcriptome analysis of maize immature embryos reveals the roles of cysteine in improving Agrobacterium infection efficiency. Front Plant Sci 2017;8:1778.https://doi.org/10.3389/fpls.2017.01778

57. Ara TALAT and Chaudhary AK. Study on efficacy of two strains (ATCC 15834 and MTCC 532) of Agrobacterium rhizogene on hairy root induction of Withania somnifera. Int. J. Biotechol. Res., 2014;4:1-8.

58. Gelvin SB. Agrobacterium in the genomics age. Plant Physiol 2009;150:1665-76.https://doi.org/10.1104/pp.109.139873

59. Chaudhuri KN, Ghosh B, Tepfer D, Jha S. Genetic transformation of Tylphora indica with Agrobacterium rhizogenes A4: Growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 2005;24:25-35.https://doi.org/10.1007/s00299-004-0904-x

60. Sudha CG, Seeni S. Establishment and analysis of fast growing normal root culture of Decalepis arayalpathra, a rare endemic medicinal plant. Curr Sci 2001;81:371-4.

61. Giri A, Narasu ML. "Transgenic hairy roots: Recent trends and applications." Biotechnol Adv 2000;18:1-22.https://doi.org/10.1016/S0734-9750(99)00016-6

62. Al-Hindawi MK, Al-Khafaji SH and Abdul-Nabi MH. Anti-granuloma activity of Iraqi Withania somnifera. J. Ethnopharmacol. 1992;37(2):113-6.https://doi.org/10.1016/0378-8741(92)90069-4

63. Choi HR, Choi JS, Han YN, Bae SJ and Chung HY. Peroxynitrite scavenging activity of herb extracts. Phytother. Res. 2002;16(4):364-67.https://doi.org/10.1002/ptr.904

64. Pawar PK, Teli NP, Bhalsing SR, Maheshwari VL. Micropropagation and organogenetic studies in Withania somnifera (L.) Dunal. J Plant Biol 2001;28:217-21.

65. Bandyopadhyay M, Jha S, Tepfer D. Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 2007;26:599-609.https://doi.org/10.1007/s00299-006-0260-0

66. Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, et al. Establishment of Withania somnifera hairy root culturesfor the production of withanolide A. J Integr Plant Biol 2008;50:975-81.https://doi.org/10.1111/j.1744-7909.2008.00680.x

67. Hu ZB, Du M. Hairy root and its application in plant genetic engineering. J Integr Plant Biol 2006;48:121-7.https://doi.org/10.1111/j.1744-7909.2006.00121.x

68. Baburaj S and Gunasekaran K. In vitro differentiation of shoots from leaf callus cultures of Withania somnifera (L) Dunal. J. Indian Bot. Soc. 1995;74(1-4): 323-24.

69. Barche S, Kirad SK and Sharma AK. Withania somnifera (ashwagandha) - An important medicinal plant. Int J Agric Sci Vet Med. 2: 40-5.

70. Wise AA, Fang F, Lin YH, He F, Lynn DG, Binns AN. The receiver domain of hybrid histidine kinase VirA: An enhancing factor for vir gene expression in Agrobacterium tumefaciens. J Bacteriol 2010;192:1534-42.https://doi.org/10.1128/JB.01007-09

71. Hu X, Zhao J, Degrado WF, Binns AN. Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. Proc Natl Acad Sci U S A 2013;110:678-83.https://doi.org/10.1073/pnas.1215033110

72. Yuan ZC, Liu P, Saenkham P, Kerr K, Nester EW. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 2008;190:494-507.https://doi.org/10.1128/JB.01387-07

73. Lai EM, Shih HW, Wen SR, Cheng MW, Hwang HH, Chiu SH. Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 2006;6:4130-6.https://doi.org/10.1002/pmic.200600254

74. Atmakuri K, Cascales E, Christie PJ. Energetic components Vir D4, Vir B11 and Vir B4 mediate early DNA transfer reactions required for bacterial Type IV secretion. Mol Micrbiol 2004;54:1199-211.https://doi.org/10.1111/j.1365-2958.2004.04345.x

75. Gelvin SB. Agrobacterium in the genomics age. Plant Physiol 2009;150:1665-76.https://doi.org/10.1104/pp.109.139873

76. Kalogeraki VS, Zhu J, Stryker JL, Winans SC. The right end of the vir region of an octopine-type Ti plasmid contains four new members of the vir regulon that are not essential for pathogenesis. J Bacteriol 2000;182:1774-8.https://doi.org/10.1128/JB.182.6.1774-1778.2000

77. Magori S, Citovsky V. Agrobacterium counteracts host-induced degradation of its effector F-box protein. Sci Signal 2011;4:ra69.https://doi.org/10.1126/scisignal.2002124

78. Kumar A, Kaul MK, Bhan MK, Khanna PK, Suri KA. Morphological and chemical variation in 25 collections of the Indian medicinal plant, Withania somnifera (L.)Dunal (Solanaceae). Genet Resour Crop Evol 2007;54:655-60.https://doi.org/10.1007/s10722-006-9129-x

79. Ozyigit II. Agrobacterium tumefaciens and its use in plant biotechnology. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A, editors. Crop Production for Agricultural Improvement. Dordrecht: Springer, the Netherlands; 2012. p. 317-61.https://doi.org/10.1007/978-94-007-4116-4_12

80. Abou-Douh AM. New Withanolides and Other Constituents from the Fruit of Withania somnifera. Architectural Pharmacol. 2002;335:267-2.https://doi.org/10.1002/1521-4184(200208)335:6<267::AID-ARDP267>3.0.CO;2-E

81. Dewir YH, Chakrabarty D, Lee SH, Hahn EJ and Paek KY. Indirect regeneration of Withania somnifera and comparative analysis of withanolides in in vitro and greenhouse grown plants. Biol. Plant. 2010;54:357-60.https://doi.org/10.1007/s10535-010-0063-6

82. Zhong JJ. Biochemical engineering of the production of plant-specific secondary metabolites by cell cultures. Adv. Biochem.Eng. Biotechnol. 2001;72:1-26.https://doi.org/10.1007/3-540-45302-4_1

83. Abraham A, Kirson I, Glotter E and Lavie D.Achemotaxonom¬ical study of Withania somnifera (L.)Dunal. Phytochemistry. 1968;7(6):957-62.https://doi.org/10.1016/S0031-9422(00)82182-2

84. Kim M, Ahn JW, Song K, Paek KH, Pai HS. Forkhead-associated domains of the tobacco NtFHA1 transcription activator and the yeast Fhl1 forkhead transcription factor are functionally conserved. J Biol Chem 2002;277:38781-90.https://doi.org/10.1074/jbc.M201559200

85. Chatterjee S, Srivastava S, Khalid A, Singh N, Sangwan RS, Sidhu OP et al. Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochem. 2010;71:1085-94.https://doi.org/10.1016/j.phytochem.2010.04.001

86. Chaurasiya ND, Gupta VK and Sangwan RS. Leaf ontogenic phase related dynamics of withaferin A and withanone biogenesis in ashwagandha (Withania somnifera)-an important medicinal herb. J. Plant Biol. 2007;50(4):508-13.https://doi.org/10.1007/BF03030691

87. Chauhan S, Joshi A and Jain D. RAPD Based Genetic Diversity Analysis in 25 Genotypes of Withania somnifera (L.) Dunal, Int. J. Curr. Microbiol. App. Sci. 2017;6(8):2353-61.https://doi.org/10.20546/ijcmas.2017.608.278

88. Bouchez D, Tourneur J. Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid. 1991;25(1):27-39.https://doi.org/10.1016/0147-619X(91)90004-G

89. Ahuja A, Kaur D, Sharada M, Kumar A, Suri KA and Dutt P. Glycowithanolides accumulation in vitro shoot cultures of Indianginseng (Withania somnifera Dunal). Nat. Prod. Comm. 2009;4(4):479-82.https://doi.org/10.1177/1934578X0900400407

90. Le Flem-Bonhomme V, Laurain-Mattar D, Fliniaux MA. Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant by A. rhizogenes LBA 9402. Planta 2004;218:890-93.https://doi.org/10.1007/s00425-003-1196-z

91. Sivanandhan G, Dev GK, Jeyaraj M, Rajesh M, Muthuselvam M, Selvaraj N, et al. A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.)Dunal. Protoplasma 2013;250:885-98.https://doi.org/10.1007/s00709-012-0471-x

92. Liu Z, Park BJ, Kanno A, Kameya T. The novel use of a combination of sonication and vacuum infiltration in Agrobactrium-mediated transformation of kidney been (Phaseolus vulgaris L.) with lea gene. Mol Breed 2005;16:189-97.https://doi.org/10.1007/s11032-005-6616-2

93. Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 2011;30:425-36.https://doi.org/10.1007/s00299-010-0996-4

94. Khanna H, Becker D, Kleidon J, Dale J. Centrifugation Assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 2004;14:239-52.https://doi.org/10.1023/B:MOLB.0000047771.34186.e8

95. Hiei Y, Ishida Y, Kasaoka K, Komari T. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult 2006;87:233-43.https://doi.org/10.1007/s11240-006-9157-4

Article Metrics

3 Absract views 15 PDF Downloads 18 Total views

Related Search

By author names

Citiaion Alert By Google Scholar