Review Article | Volume 10, Supplement 1, March, 2022

Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability

Kumar Anand Gaurav Kumar Pandey Tanvir Kaur Olivia Pericak Collin Olson Rajinikanth Mohan Kriti Akansha Ashok Yadav Rubee Devi Divjot Kour Ashutosh Kumar Rai Manish Kumar Ajar Nath Yadav   

Open Access   

Published:  May 10, 2022

DOI: 10.7324/JABB.2022.10s111
Abstract

Globally, by 2050, agricultural food production will be increased to feed the growing population. To achieve the objective in sustainable manner, scientific chronicles have explores the mutualistic interaction between plant roots and rhizosphere microbiome. One of the interactions of plants roots was found with arbuscular mycorrhiza fungi (AMF), a rhizosphere microbiome. Biofertilization process by the mean of AMF has depicted as a beneficial alternative to chemical fertilization practices. It has been recognized for having several potential applications such as plant fertilization (phosphorus, nitrogen and other micronutrients), alleviation of biotic (protecting plants from pest and pathogens), and abiotic stresses (drought, salinity, heavy metals, low and high temperature). AMF sustainably increases the plant growth and production by establishing within the host root with the help of set of genes and fulfilling the needs of the host. At present, worldwide total 340 species of AMF has been found. In the present review, global diversity, molecular crosstalk in AMF symbiosis and their potential application in sustainable agriculture has been reviewed.


Keyword:     Arbuscular mycrorrhizal fungi Biodiversity Endomycrorrhiza Plant growth promotion Symbioisis Sustainable agriculture.


Citation:

Anand K, Pandey GK, Kaur T, Pericak O, Olson C, Mohan R, Akansha K, Yadav A, Devi R, Kour D, Rai AK, Kumar M, Yadav AN. Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability. J App Biol Biotech.2022;10(Suppl 1):90-107.

DOI:10.7324/JABB.2022.10s111

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Bagyaraj DJ, Nethravathi CJ, Nitin KS. Soil biodiversity and arthropods: Role in soil fertility. In: Chakravarthy AK, Sridhara S, editors. Economic and Ecological Significance of Arthropods in Diversified Ecosystems: Sustaining Regulatory Mechanisms. Singapore: Springer; 2016. p. 17-51. https://doi.org/10.1007/978-981-10-1524-3_2

2. Fr?c M, Hannula SE, Be?ka M, J?dryczka M. Fungal biodiversity and their role in soil health. Front Microbiol 2018;9:707. https://doi.org/10.3389/fmicb.2018.00707

3. Lehmann A, Leifheit E, Rillig M. Mycorrhizas and soil aggregation. In: Johnson N, Gehring C, Jansa J, editors. Mycorrhizal Mediation of Soil. Amsterdam, Netherlands: Elsevier; 2017. p. 241-62. https://doi.org/10.1016/B978-0-12-804312-7.00014-0

4. Kaur R, Singh A, Kang J. Influence of different types mycorrhizal fungi on crop productivity. Curr Agric Res J 2014;2:51-4. https://doi.org/10.12944/CARJ.2.1.07

5. Barman J, Samanta A, Saha B, Datta S. Mycorrhiza. Resonance 2016;21:1093-104. https://doi.org/10.1007/s12045-016-0421-6

6. Feddermann N, Finlay R, Boller T, Elfstrand M. Functional diversity in arbuscular mycorrhiza-the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 2010;3:1-8. https://doi.org/10.1016/j.funeco.2009.07.003

7. Igiehon NO, Babalola OO. Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 2017;101:4871-81 https://doi.org/10.1007/s00253-017-8344-z

8. Parniske M. Intracellular accommodation of microbes by plants: A common developmental program for symbiosis and disease? Curr Opin Plant Biol 2000;3:320-8. https://doi.org/10.1016/S1369-5266(00)00088-1

9. van der Heijden MG, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol 2015;205:1406-23. https://doi.org/10.1111/nph.13288

10. Oldroyd GE. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013;11:252-63. https://doi.org/10.1038/nrmicro2990

11. Miransari M. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 2011;89:917-30. https://doi.org/10.1007/s00253-010-3004-6

12. Zabihi H, Savaghebi G, Khavazi K, Ganjali A, Miransari M. Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 2011;33:145-52. https://doi.org/10.1007/s11738-010-0531-9

13. Sreenivasa M, Bagyaraj D. Use of pesticides for mass production of vesicular-arbuscular mycorrhizal inoculum. Plant Soil 1989;119:127-32. https://doi.org/10.1007/BF02370276

14. Andrade G, Mihara K, Linderman R, Bethlenfalvay G. Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 1998;202:89-96. https://doi.org/10.1023/A:1004301423150

15. Bethlenfalvay GJ. 20 Mycorrhizal Fungi in Nitrogen-fixing Legumes: Problems and Prospects. In: Norris JR, Read DJ, Varma AK, editors. Methods in Microbiology. Vol. 24. Cambridge, Massachusetts: Academic Press; 1992. p. 375-89. https://doi.org/10.1016/S0580-9517(08)70103-X

16. Moricca S, Ragazzi A. Fungal endophytes in Mediterranean oak forests: A lesson from Discula quercina. Phytopathology 2008;98:380-6. https://doi.org/10.1094/PHYTO-98-4-0380

17. Smith SE, Read DJ. Mycorrhizal Symbiosis. San Diego: Academic Press; 2010.

18. Smith S, Read D. Mycorrhizal Symbiosis. 3rd ed. New York: Academic Press; 2008.

19. Sturz A, Carter M, Johnston H. A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil Tillage Res 1997;41:169-89. https://doi.org/10.1016/S0167-1987(96)01095-1

20. Mcgonigle TP, Miller MH. Development of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol Biochem 1996;28:263-9. https://doi.org/10.1016/0038-0717(95)00129-8

21. Miller M, McGonigle T, Addy H. Functional ecology of vesicular arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 1995;15:241-55. https://doi.org/10.3109/07388559509147411

22. Gianinazzi S, Schüepp H. Impact of Arbuscular Mycorrhizas on Substainable Agriculture and Natural Ecosystems. Basel: Birkhäuser Verlag; 1994. https://doi.org/10.1007/978-3-0348-8504-1

23. Gianinazzi S, Schüepp H, Barea JM, Haselwandter K. Mycorrhizal Technology in Agriculture: From Genes to Bioproducts. Basel: Birkhäuser; 2012.

24. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 2003;37:1-16. https://doi.org/10.1007/s00374-002-0546-5

25. Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, et al. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the Class III chitinase gene VCH3. Plant Cell Physiol 2006;47:154-63. https://doi.org/10.1093/pcp/pci231

26. Hamel C. Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 2004;84:383-95. https://doi.org/10.4141/S04-004

27. Ernst W. Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 1996;11:163-7. https://doi.org/10.1016/0883-2927(95)00040-2

28. Khan AR, Park GS, Asaf S, Hong SJ, Jung BK, Shin JH. Complete genome analysis of Serratia marcescens RSC-14: A plant growthpromoting bacterium that alleviates cadmium stress in host plants. PLoS One 2017;12:e0171534. https://doi.org/10.1371/journal.pone.0171534

29. Cozzolino V, Di Meo V, Piccolo A. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J Geochem Explor 2013;129:40-4. https://doi.org/10.1016/j.gexplo.2013.02.006

30. Pfeffer PE, Douds DD, Bécard G, Shachar-Hill Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 1999;120:587-98. https://doi.org/10.1104/pp.120.2.587

31. Sadhana B. Arbuscular mycorrhizal fungi (AMF) as a biofertilizer-a review. Int J Curr Microbiol App Sci 2014;3:384-400.

32. Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and mobilizing microbes: A review. Pedosphere 2021;31:43-75. https://doi.org/10.1016/S1002-0160(20)60057-1

33. Jones MD, Durall D, Tinker P. A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: Growth response, phosphorus uptake efficiency and external hyphal production. New Phytol 1998;140:125-34. https://doi.org/10.1046/j.1469-8137.1998.00253.x

34. Osorio N, Habte M. Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res Manag 2001;15:263-74. https://doi.org/10.1080/15324980152119810

35. Surendran U, Vani D. Influence of arbuscular mycorrhizal fungi in sugarcane productivity under semiarid tropical agro ecosystem in India. Int J Plant Prod 2013;7:269-78.

36. Jensen A. Influence of four vesicular?arbuscular mycorrhizal fungi on nutrient uptake and growth in barley (Hordeum vulgare). New Phytol 1982;90:45-50. https://doi.org/10.1111/j.1469-8137.1982.tb03239.x

37. Jayachandran K, Schwab A, Hetricic B. Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 1992;24:897-903. https://doi.org/10.1016/0038-0717(92)90012-M

38. Jakobsen I, Abbott L, Robson A. External hyphae of vesicular?arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 1992;120:371-80. https://doi.org/10.1111/j.1469-8137.1992.tb01077.x

39. Singh S, Kapoor K. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fert Soils 1999;28:139-44. https://doi.org/10.1007/s003740050475

40. Khaliq A, Sanders FE. Effects of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley. Soil Biol Biochem 2000;32:1691-6. https://doi.org/10.1016/S0038-0717(00)00086-9

41. Jansa J, Mozafar A, Frossard E. Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 2005;276:163-76. https://doi.org/10.1007/s11104-005-4274-0

42. Thonar C, Schnepf A, Frossard E, Roose T, Jansa J. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 2011;339:231-45. https://doi.org/10.1007/s11104-010-0571-3

43. Sharif M, Claassen N. Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere 2011;21:502-11. https://doi.org/10.1016/S1002-0160(11)60152-5

44. Shukla A, Kumar A, Jha A, Ajit, Rao DVKN. Phosphorus threshold for arbuscular mycorrhizal colonization of crops and tree seedlings. Biol Fert Soils 2012;48:109-16. https://doi.org/10.1007/s00374-011-0576-y

45. Hart MM, Forsythe JA. Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci Hortic 2012;148:206-14. https://doi.org/10.1016/j.scienta.2012.09.018

46. Symanczik S, Lehmann MF, Wiemken A, Boller T, Courty PE. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza 2018;28:779-85. https://doi.org/10.1007/s00572-018-0853-9

47. Calonne-Salmon M, Plouznikoff K, Declerck S. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo [a] pyrene-tolerant plant species. Mycorrhiza 2018;28:761-71. https://doi.org/10.1007/s00572-018-0861-9

48. Saia S, Aissa E, Luziatelli F, Ruzzi M, Colla G, Ficca AG, et al. Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 2020;30:133-47. https://doi.org/10.1007/s00572-019-00927-w

49. Goltapeh EM, Danesh YR, Prasad R, Varma A: Mycorrhizal fungi: What we know and what should we know? In: Berlin VA, editors. Mycorrhiza: State of the Art, Genetics and Molecular Biology, EcoFunction, Biotechnology, Eco-Physiology, Structure and Systematics. Heidelberg: Springer; 2008. p. 3-27. https://doi.org/10.1007/978-3-540-78826-3_1

50. Frey B, Schüepp H. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 1993;124:221-30. https://doi.org/10.1111/j.1469-8137.1993.tb03811.x

51. Hawkins HJ, George E. Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol Plant 1999;105:694-700. https://doi.org/10.1034/j.1399-3054.1999.105414.x

52. Muthukumar T, Udaiyan K, Rajeshkannan V. Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fert Soils 2001;34:417-26. https://doi.org/10.1007/s00374-001-0425-5

53. Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005;125:155-66. https://doi.org/10.1016/j.geoderma.2004.07.003

54. Stancheva I, Geneva M, Zehirov G, Tsvetkova G, Hristozkova M, Georgiev G. Effects of combined inoculation of pea plants with arbuscular mycorrhizal fungi and Rhizobium on nodule formation and nitrogen fixing activity. Gen Appl Plant Physiol 2006;4:61-6.

55. Aysan E, Demir S. Using arbuscular mycorrhizal fungi and Rhizobium leguminosarum, Biovar phaseoli Against Sclerotinia sclerotiorum (Lib.) de bary in the common bean (Phaseolus vulgaris L.). Plant Pathol J 2009;8:74-78. https://doi.org/10.3923/ppj.2009.74.78

56. Kim K, Yim W, Trivedi P, Madhaiyan M, Boruah HP, Islam MR, et al. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 2010;327:429-40. https://doi.org/10.1007/s11104-009-0072-4

57. Erman M, Demir S, Ocak E, Tüfenkçi ?, O?uz F, Akköprü A. Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum L.) under irrigated and rainfed conditions 1 yield, yield components, nodulation and AMF colonization. Field Crops Res 2011;122:14-24. https://doi.org/10.1016/j.fcr.2011.02.002

58. Bhattacharjee S, Sharma GD. Effect of dual inoculation of arbuscular mycorrhiza and rhizobium on the chlorophyll, nitrogen and phosphorus contents of pigeon pea (Cajanus cajan L.). Adv Microbiol 2012;2:561-4. https://doi.org/10.4236/aim.2012.24072

59. Pérez-Tienda J, Valderas A, Camañes G, García-Agustín P, Ferrol N. Kinetics of NH4+ uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza 2012;22:485-91. https://doi.org/10.1007/s00572-012-0452-0

60. Li H, Wang C, Li X, Christie P, Dou Z, Zhang J, et al. Impact of the earthworm Aporrectodea trapezoides and the arbuscular mycorrhizal fungus Glomus intraradices on 15N uptake by maize from wheat straw. Biol Fert Soils 2013;49:263-71. https://doi.org/10.1007/s00374-012-0716-z

61. Mortimer PE, Le Roux MR, Pérez-Fernández MA, Benedito VA, Kleinert A, Xu J, et al. The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions. Plant Soil 2013;366:229-41. https://doi.org/10.1007/s11104-012-1421-2

62. Vafadar F, Amooaghaie R, Otroshy M. Effects of plant-growthpromoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 2014;9:128-36. https://doi.org/10.1080/17429145.2013.779035

63. Sarkar A, Asaeda T, Wang Q, Rashid MH. Arbuscular mycorrhizal influences on growth, nutrient uptake, and use efficiency of Miscanthus sacchariflorus growing on nutrient-deficient river bank soil. Flora 2015;212:46-54. https://doi.org/10.1016/j.flora.2015.01.005

64. Cao J, Wang C, Ji D. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline. Sci Total Environ 2016;571:926-34. https://doi.org/10.1016/j.scitotenv.2016.07.077

65. Ramegowda V, Senthil-Kumar M. The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. J Plant Physiol 2015;176:47-54. https://doi.org/10.1016/j.jplph.2014.11.008

66. Kadioglu A, Terzi R, Saruhan N, Saglam A. Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 2012;182:42-8. https://doi.org/10.1016/j.plantsci.2011.01.013

67. Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol Rev 2008;32:723-35. https://doi.org/10.1111/j.1574-6976.2008.00123.x

68. Dar M, Reshi Z. Vesicular arbuscular mycorrhizal (VAM) fungi-as a major biocontrol agent in modern sustainable agriculture system. Russ Agric Sci 2017;43:138-43. https://doi.org/10.3103/S1068367417020057

69. Klironomos JN, Hart MM, Gurney JE, Moutoglis P. Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J Bot 2001;79:1161-6. https://doi.org/10.1139/b01-099

70. Datnoff LE, Nemec S, Pernezny K. Biol control of fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 1995;5:427-31. https://doi.org/10.1006/bcon.1995.1051

71. Norman JR, Atkinson D, Hooker JE. Arbuscular mycorrhizal fungalinduced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 1996;185:191-8. https://doi.org/10.1007/BF02257524

72. Dar GH, Zargar MY, Beigh GM. Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using Symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol 1997;34:74-80. https://doi.org/10.1007/s002489900036

73. Bødker L, Kjøller R, Rosendahl S. Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 1998;8:169-74. https://doi.org/10.1007/s005720050230

74. Slezack S, Duma-Gaudot E, Rosendahl S, Kjøller R, Paynot M, Negrel J, et al. Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytol 1999;142:517-29. https://doi.org/10.1046/j.1469-8137.1999.00421.x

75. Vigo C, Norman J, Hooker J. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 2000;49:509-14. https://doi.org/10.1046/j.1365-3059.2000.00473.x

76. Forge T, Muehlchen A, Hackenberg C, Neilsen G, Vrain T. Effects of preplant inoculation of apple (Malus domestica Borkh.) with arbuscular mycorrhizal fungi on population growth of the root-lesion nematode, Pratylenchus penetrans. Plant Soil 2001;236:185-96. https://doi.org/10.1023/A:1012743028974

77. Yao M, Tweddell R, Désilets H. Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 2002;12:235-42. https://doi.org/10.1007/s00572-002-0176-7

78. Diedhiou PM, Hallmann J, Oerke EC, Dehne HW. Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 2003;13:199-204. https://doi.org/10.1007/s00572-002-0215-4

79. Thygesen K, Larsen J, Bødker L. Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. Eur J Plant Pathol 2004;110:411-9. https://doi.org/10.1023/B:EJPP.0000021070.61574.8b

80. Akköprü A, Demir S. Biol control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 2005;153:544-50. https://doi.org/10.1111/j.1439-0434.2005.01018.x

81. Chandanie WA, Kubota M, Hyakumachi M. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 2006;286:209-17. https://doi.org/10.1007/s11104-006-9038-y

82. Meier S, Azcón R, Cartes P, Borie F, Cornejo P. Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Appl Soil Ecol 2011;48:117-24. https://doi.org/10.1016/j.apsoil.2011.04.005

83. Akhtar MS, Siddiqui ZA. Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Aust Plant Pathol 2007;36:175-80. https://doi.org/10.1071/AP07006

84. Reimann S, Hauschild R, Hildebrandt U, Sikora RA. Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biol control of the rootknot nematode Meloidogyne incognita on tomato. J Plant Dis Protect 2008;115:108-13. https://doi.org/10.1007/BF03356249

85. Møller K, Kristensen K, Yohalem D, Larsen J. Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biol Control 2009;49:120-5. https://doi.org/10.1016/j.biocontrol.2009.01.015

86. Singh PK, Singh M, Vyas D. Biocontrol of Fusarium wilt of chickpea using arbuscular mycorrhizal fungi and Rhizobium leguminosorum biovar. Caryologia 2010;63:349-53. https://doi.org/10.1080/00087114.2010.10589745

87. Saldajeno M, Hyakumachi M. The plant growth?promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping?off diseases in cucumber (Cucumis sativus) seedlings. Ann Appl Biol 2011;159:28-40. https://doi.org/10.1111/j.1744-7348.2011.00471.x

88. Vos C, Tesfahun A, Panis B, De Waele D, Elsen A. Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 2012;61:1-6. https://doi.org/10.1016/j.apsoil.2012.04.007

89. Sennoi R, Singkham N, Jogloy S, Boonlue S, Saksirirat W, Kesmala T, et al. Biol Control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Prot 2013;54:148-53. https://doi.org/10.1016/j.cropro.2013.08.011

90. Sui XL, Li AR, Chen Y, Guan KY, Zhuo L, Liu YY. Arbuscular mycorrhizal fungi: Potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis? Mycorrhiza 2014;24:187-95. https://doi.org/10.1007/s00572-013-0528-5

91. Sundram S, Meon S, Seman IA, Othman R. Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings. Mycorrhiza 2015;25:387-97. https://doi.org/10.1007/s00572-014-0620-5

92. Yuan S, Li M, Fang Z, Liu Y, Shi W, Pan B, et al. Biol control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol Control 2016;92:164-71. https://doi.org/10.1016/j.biocontrol.2015.10.013

93. Sharma IP, Sharma A. Co-inoculation of tomato with an arbuscular mycorrhizal fungus improves plant immunity and reduces root-knot nematode infection. Rhizosphere 2017;4:25-8. https://doi.org/10.1016/j.rhisph.2017.05.008

94. Olowe OM, Olawuyi OJ, Sobowale AA, Odebode AC. Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L. (Maize). Curr Plant Biol 2018;15:30-7. https://doi.org/10.1016/j.cpb.2018.11.005

95. Bagy HM, Hassan EA, Nafady NA, Dawood MF. Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biol Control 2019;134:103-13. https://doi.org/10.1016/j.biocontrol.2019.03.005

96. Ravnskov S, Cabral C, Larsen J. Mycorrhiza induced tolerance in Cucumis sativus against root rot caused by Pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis. Biol Control 2020;141:104133. https://doi.org/10.1016/j.biocontrol.2019.104133

97. Calvo-Polanco M, Sánchez-Romera B, Aroca R, Asins MJ, Declerck S, Dodd IC, et al. Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 2016;131:47-57. https://doi.org/10.1016/j.envexpbot.2016.06.015

98. Kaushal M, Wani SP. Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 2016;231:68-78. https://doi.org/10.1016/j.agee.2016.06.031

99. Kolenc Z, Vodnik D, Mandelc S, Javornik B, Kastelec D, ?erenak A. Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology. Plant Physiol Biochem 2016;105:67-78. https://doi.org/10.1016/j.plaphy.2016.03.026

100. Azcon R. Growth and nutrition of nodulated mycorrhizal and nonmycorrhizal Hedysarum coronarium as a result of treatment with fractions from a plant growth-promoting rhizobacteria. Soil Biol Biochem 1993;25:1037-42. https://doi.org/10.1016/0038-0717(93)90152-2

101. Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 2009;11:1548-61. https://doi.org/10.1111/j.1462-2920.2009.01882.x

102. Vazquez M, Azcon R, Barea J. Compatibility of a wild type and its genetically modified Sinorhizobium strain with two mycorrhizal fungi on Medicago species as affected by drought stress. Plant Sci 2001;161:347-58. https://doi.org/10.1016/S0168-9452(01)00416-2

103. Dell'Amico J, Torrecillas A, Rodriguez P, Morte A, SánchezBlanco MJ. Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. J Agric Sci 2002;138:387. https://doi.org/10.1017/S0021859602002101

104. Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcón R. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 2003;13:249-56. https://doi.org/10.1007/s00572-003-0223-z

105. Al-Karaki G, McMichael B, Zak J. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 2004;14:263-9. https://doi.org/10.1007/s00572-003-0265-2

106. Pinior A, Grunewaldt-Stöcker G, von Alten H, Strasser RJ. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 2005;15:596-605. https://doi.org/10.1007/s00572-005-0001-1

107. Aliasgharzad N, Neyshabouri MR, Salimi G. Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 2006;61:S324-8. https://doi.org/10.2478/s11756-006-0182-x

108. Marulanda A, Porcel R, Barea JM, Azcón R. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 2007;54:543. https://doi.org/10.1007/s00248-007-9237-y

109. Wu QS, Xia RX, Zou YN. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 2008;44:122-8. https://doi.org/10.1016/j.ejsobi.2007.10.001

110. Marulanda A, Barea JM, Azcón R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. J Plant Growth Regul 2009;28:115-24. https://doi.org/10.1007/s00344-009-9079-6

111. Zhang Y, Zhong CL, Chen Y, Chen Z, Jiang QB, Wu C, et al. Improving drought tolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions. New For 2010;40:261-71. https://doi.org/10.1007/s11056-010-9198-8

112. Asrar AW, Elhindi KM. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 2011;18:93-8. https://doi.org/10.1016/j.sjbs.2010.06.007

113. Asrar A, Abdel-Fattah G, Elhindi K. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 2012;50:305-16. https://doi.org/10.1007/s11099-012-0024-8

114. Tian YH, Lei YB, Zheng YL, Cai ZQ. Synergistic effect of colonization with arbuscular mycorrhizal fungi improves growth and drought tolerance of Plukenetia volubilis seedlings. Acta Physiol Plant 2013;35:687-96. https://doi.org/10.1007/s11738-012-1109-5

115. Zhang Z, Zhang J, Huang Y. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions. New For 2014;45:545-56. https://doi.org/10.1007/s11056-014-9417-9

116. Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, et al. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 2015;88:41-9. https://doi.org/10.1016/j.apsoil.2014.11.016

117. Zarik L, Meddich A, Hijri M, Hafidi M, Ouhammou A, Ouahmane L, et al. Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. C R Biol 2016;339:185-96. https://doi.org/10.1016/j.crvi.2016.04.009

118. Tyagi J, Varma A, Pudake RN. Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur J Soil Biol 2017;81:1-10. https://doi.org/10.1016/j.ejsobi.2017.05.007

119. Ouledali S, Ennajeh M, Zrig A, Gianinazzi S, Khemira H. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol Plant 2018;40:1-13. https://doi.org/10.1007/s11738-018-2656-1

120. Zhang Z, Zhang J, Xu G, Zhou L, Li Y. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New For 2019;50:593-604. https://doi.org/10.1007/s11056-018-9681-1

121. Liu L, Li D, Ma Y, Shen H, Zhao S, Wang Y. Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings. J Plant Growth Regul 2021;40:165. https://doi.org/10.1007/s00344-020-10165-6

122. Cheng HQ, Giri B, Wu QS, Zou YN, Ku?a K. Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Arch Agron Soil Sci 2021;2021:1878497. https://doi.org/10.1080/03650340.2021.1878497

123. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003;218:1-14. https://doi.org/10.1007/s00425-003-1105-5

124. Al-Karaki GN, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 2001;11:43-7. https://doi.org/10.1007/s005720100098

125. Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 2004;42:565-72. https://doi.org/10.1016/j.plaphy.2004.05.009

126. Elhindi KM, El-Din AS, Elgorban AM. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 2017;24:170-9. https://doi.org/10.1016/j.sjbs.2016.02.010

127. Hirrel MC, Gerdemann J. Improved growth of onion and bell pepper in saline soils by two vesicular?arbuscular mycorrhizal fungi. Soil Sci Soc Am J 1980;44:654-5. https://doi.org/10.2136/sssaj1980.03615995004400030046x

128. Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann Bot 2009;104:1263-80. https://doi.org/10.1093/aob/mcp251

129. Ruiz-Lozano JM, Azcón R. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 2000;10:137-43. https://doi.org/10.1007/s005720000075

130. Evelin H, Giri B, Kapoor R. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 2012;22:203-17. https://doi.org/10.1007/s00572-011-0392-0

131. Wu QS, Zou YN, Liu W, Ye X, Zai H, Zhao L. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: Changes in leaf antioxidant defense systems. Plant Soil Environ 2010;56:470-5. https://doi.org/10.17221/54/2010-PSE

132. Ibrahim A, Abdel-Fattah G, Eman F, Abd El-Aziz M, Shohr A. Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. Phyton 2011;51:261-76.

133. Augé RM, Toler HD, Sams CE, Nasim G. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhizainduced increases in stomatal conductance. Mycorrhiza 2008;18:115-21. https://doi.org/10.1007/s00572-008-0162-9

134. Ruiz?Lozano JM, Azcon R, Gomez M. Alleviation of salt stress by arbuscular?mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 1996;98:767-72. https://doi.org/10.1111/j.1399-3054.1996.tb06683.x

135. Azcon R, El-Atrash F. Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fixation (15 N) in Medicago sativa at four salinity levels. Biol Fert Soils 1997;24:81-6. https://doi.org/10.1007/BF01420225

136. Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 2002;12:185-90. https://doi.org/10.1007/s00572-002-0170-0

137. Giri B, Kapoor R, Mukerji KG. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fert Soils 2003;38:170-5. https://doi.org/10.1007/s00374-003-0636-z

138. Tian C, Feng G, Li X, Zhang F. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 2004;26:143-8. https://doi.org/10.1016/j.apsoil.2003.10.010

139. Diouf D, Duponnois R, Ba AT, Neyra M, Lesueur D. Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Funct Plant Biol 2005;32:1143-52. https://doi.org/10.1071/FP04069

140. Al-Karaki GN. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 2006;109:1-7. https://doi.org/10.1016/j.scienta.2006.02.019

141. He Z, He C, Zhang Z, Zou Z, Wang H. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 2007;59:128-33. https://doi.org/10.1016/j.colsurfb.2007.04.023

142. Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fert Soils 2008;44:501-9. https://doi.org/10.1007/s00374-007-0232-8

143. Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 2009;121:1-6. https://doi.org/10.1016/j.scienta.2009.01.001

144. Wu QS, Zou YN, He XH. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 2010;32:297-304. https://doi.org/10.1007/s11738-009-0407-z

145. Latef AA, Chaoxing H. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 2011;127:228-33. https://doi.org/10.1016/j.scienta.2010.09.020

146. Abdel-Fattah GM, Asrar AW. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol Plant 2012;34:267-77. https://doi.org/10.1007/s11738-011-0825-6

147. Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM. A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 2013;366:333-49. https://doi.org/10.1007/s11104-012-1409-y

148. Yang SJ, Zhang ZL, Xue YX, Zhang ZF, Shi SY. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Bot Stud 2014;55:1-7. https://doi.org/10.1186/s40529-014-0070-6

149. Garg N, Pandey R. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L.(Millsp.) genotypes. Mycorrhiza 2015;25:165-80. https://doi.org/10.1007/s00572-014-0600-9

150. Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 2016;26:673-84. https://doi.org/10.1007/s00572-016-0704-5

151. Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani AB, Aldehaish HA, Egamberdieva D, Abd-Allah EF. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 2018;25:1102-14. https://doi.org/10.1016/j.sjbs.2018.03.009

152. Ait-El-Mokhtar M, Laouane RB, Anli M, Boutasknit A, Wahbi S, Meddich A. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic 2019;253:429-38. https://doi.org/10.1016/j.scienta.2019.04.066

153. Wang J, Zhai L, Ma J, Zhang J, Wang GG, Liu X, et al. Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata. Mycorrhiza 2020;30:341-55. https://doi.org/10.1007/s00572-020-00954-y

154. Diao F, Dang Z, Xu J, Ding S, Hao B, Zhang Z, et al. Effect of arbuscular mycorrhizal symbiosis on ion homeostasis and salt tolerance-related gene expression in halophyte Suaeda salsa under salt treatments. Microbiol Res 2021;245:126688. https://doi.org/10.1016/j.micres.2020.126688

155. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: An overview. Environ Exp Bot 2007;61:199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011

156. Ruelland E, Zachowski A. How plants sense temperature. Environ Exp Bot 2010;69:225-32. 157. Theocharis A, Clément C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta 2012;235:1091-105. https://doi.org/10.1007/s00425-012-1641-y

158. Duhamel M, Vandenkoornhuyse P. Sustainable agriculture: Possible trajectories from mutualistic symbiosis and plant neodomestication. Trends Plant Sci 2013;18:597-600. https://doi.org/10.1016/j.tplants.2013.08.010

159. Zhu X, Song F, Xu H. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 2010;20:325-32. https://doi.org/10.1007/s00572-009-0285-7

160. Latef AA, Chaoxing H. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 2011;33:1217-25. https://doi.org/10.1007/s11738-010-0650-3

161. Zhou Z, Ma H, Liang K, Huang G, Pinyopusarerk K. Improved tolerance of teak (Tectona grandis Lf) seedlings to low-temperature stress by the combined effect of arbuscular mycorrhiza and paclobutrazol. J Plant Growth Regul 2012;31:427-35. https://doi.org/10.1007/s00344-011-9252-6

162. Maya MA, Matsubara YI. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 2013;23:381-90. https://doi.org/10.1007/s00572-013-0477-z

163. Liu A, Chen S, Chang R, Liu D, Chen H, Ahammed GJ, et al. Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2 O2 accumulation and ATPase activity. J Plant Res 2014;127:775-85. https://doi.org/10.1007/s10265-014-0657-8

164. Pedranzani H, Tavecchio N, Gutiérrez M, Garbero M, Porcel R, Ruiz-Lozano J. Differential effects of cold stress on the antioxidant response of mycorrhizal and non-mycorrhizal Jatropha curcas (L.) plants. J Agric Sci 2015;7:35-43. https://doi.org/10.5539/jas.v7n8p35

165. Liu A, Chen S, Wang M, Liu D, Chang R, Wang Z, et al. Arbuscular mycorrhizal fungus alleviates chilling stress by boosting redox poise and antioxidant potential of tomato seedlings. J Plant Growth Regul 2016;35:109-20. https://doi.org/10.1007/s00344-015-9511-z

166. Liu XM, Xu QL, Li QQ, Zhang H, Xiao JX. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress. J Plant Nutr 2017;40:2562-70. https://doi.org/10.1080/01904167.2017.1380823

167. Mathur S, Sharma MP, Jajoo A. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B Biol 2018;180:149-54. https://doi.org/10.1016/j.jphotobiol.2018.02.002

168. Hajiboland R, Joudmand A, Aliasgharzad N, Tolrá R, PoschenriederC. Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop Pasture Sci 2019;70:218-33. https://doi.org/10.1071/CP18385

169. Bidabadi SS, Mehralian M. Arbuscular mycorrhizal fungi inoculation to enhance chilling stress tolerance of watermelon. Gesunde Pflanz 2020;72:171-9. https://doi.org/10.1007/s10343-020-00499-2

170. Li S, Yang W, Guo J, Li X, Lin J, Zhu X. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. Plant Physiol Biochem 2020;154:1-10. https://doi.org/10.1016/j.plaphy.2020.05.025

171. Nagajyoti PC, Lee KD, Sreekanth T. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett 2010;8:199-216. https://doi.org/10.1007/s10311-010-0297-8

172. Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, et al. The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol Environ Saf 2013;89:66-72. https://doi.org/10.1016/j.ecoenv.2012.11.015

173. Zhang HH, Tang M, Chen H, Zheng CL, Niu ZC. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol 2010;46:306-11. https://doi.org/10.1016/j.ejsobi.2010.05.006

174. Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 2010;106:791-802. https://doi.org/10.1093/aob/mcq170

175. Garg N, Chandel S. Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses. J Plant Growth Regul 2012;31:292-308. https://doi.org/10.1007/s00344-011-9239-3

176. Hassan SE, Hijri M, St-Arnaud M. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol 2013;30:780-7. https://doi.org/10.1016/j.nbt.2013.07.002

177. Curaqueo G, Schoebitz M, Borie F, Caravaca F, Roldán A. Inoculation with arbuscular mycorrhizal fungi and addition of composted olivemill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment. Environ Sci Pollut Res 2014;21:7403-12. https://doi.org/10.1007/s11356-014-2696-z

178. Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 2015;10:e0145726. https://doi.org/10.1371/journal.pone.0145726

179. Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E. Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 2016;101:57-63. https://doi.org/10.1016/j.apsoil.2016.01.008

180. Ruscitti M, Arango M, Beltrano J. Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theor Exp Plant Physiol 2017;29:37-49. https://doi.org/10.1007/s40626-016-0081-7

181. Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, et al. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res 2018;25:24338-47. https://doi.org/10.1007/s11356-018-2487-z

182. Rasouli-Sadaghiani MH, Barin M, Khodaverdiloo H, MoghaddamSS, Damalas CA, Kazemalilou S. Arbuscular mycorrhizal fungi and rhizobacteria promote growth of Russian Knapweed (Acroptilon repens L.) in a Cd-contaminated soil. J Plant Growth Regulat 2019;38:113-21. https://doi.org/10.1007/s00344-018-9815-x

183. Wu JT, Wang L, Zhao L, Huang XC, Ma F. Arbuscular mycorrhizal fungi effect growth and photosynthesis of Phragmites australis (Cav.) Trin ex. Steudel under copper stress. Plant Biol 2020;22:62-9. https://doi.org/10.1111/plb.13039

184. Adeyemi NO, Atayese MO, Sakariyawo OS, Azeez JO, Sobowale SP, Olubode A, et al. Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere 2021;18:100325. https://doi.org/10.1016/j.rhisph.2021.100325

185. Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bücking H. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza 2015;25:533-46. https://doi.org/10.1007/s00572-015-0631-x

186. Wood T, Bormann F, Voigt G. Phosphorus cycling in a northern hardwood forest: Biological and chemical control. Science 1984;223:391-3. https://doi.org/10.1126/science.223.4634.391

187. Berruti A, Lumini E, Balestrini R, Bianciotto V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let's benefit from past successes. Front Microbiol 2016;6:1559. https://doi.org/10.3389/fmicb.2015.01559

188. Lecomte J, St-Arnaud M, Hijri M. Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 2011;317:43-51. https://doi.org/10.1111/j.1574-6968.2011.02209.x

189. Martins WFX, Rodrigues B. Identification of dominant arbuscular mycorrhizal fungi in different rice ecosystems. Agric Res 2020;9:46-55. https://doi.org/10.1007/s40003-019-00404-y

190. Sghir F, Touati J, Chliyeh M, Touhami AO, Filali-Maltouf A, El Modafar C, et al. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of date palm tree (Phoenix dactylifera) in Tafilalt and Zagora regions (Morocco). Am J Sci Med 2015;1:30-9.

191. Singh S, Pandey A, Palni LM. Screening of arbuscular mycorrhizal fungal consortia developed from the rhizospheres of natural and cultivated tea plants for growth promotion in tea [Camellia sinensis (L.) O. Kuntze]. Pedobiologia 2008;52:119-25. https://doi.org/10.1016/j.pedobi.2008.06.001

192. B?aszkowski J, Chwat G, Góralska A. Acaulospora ignota and Claroideoglomus hanlinii, two new species of arbuscular mycorrhizal fungi (Glomeromycota) from Brazil and Cuba. Mycol Prog 2015;14:18. https://doi.org/10.1007/s11557-015-1042-2

193. Mirzaei J, Noorbakhsh N. Identification of arbuscular mycorrhizal fungi associated with Crataegus pontica C. Koch from Ilam Province, Iran. ECOPERSIA 2014;2:767-77.

194. Estrada B, Beltrán-Hermoso M, Palenzuela J, Iwase K, Ruiz-Lozano JM, Barea JM, et al. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J Arid Environ 2013;97:170-5. https://doi.org/10.1016/j.jaridenv.2013.05.019

195. Gamper HA, Walker C, Schüßler A. Diversispora celata sp. nov: Molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytol 2009;182:495-506. https://doi.org/10.1111/j.1469-8137.2008.02750.x

196. Estrada B, Palenzuela J, Barea JM, Ruiz-Lozano JM, da Silva GA, Oehl F. Diversispora clara (Glomeromycetes) a new species from saline dunes in the Natural Park Cabo de Gata (Spain). Mycotaxon 2012;118:73-81. https://doi.org/10.5248/118.73

197. B?aszkowski J, Chwat G, Symanczik S, Góralska A. Dominikia duoreactiva sp. nov. and Dominikia difficilevidera sp. nov., two new species in the Glomeromycota. Botany 2015;93:389-96. https://doi.org/10.1139/cjb-2015-0016

198. B?aszkowski J, Chwat G, Góralska A, Ryszka P, Kovács GM. Two new genera, Dominikia and Kamienskia, and D. disticha sp. nov. in Glomeromycota. Nova Hedwigia 2015;100:225-38. https://doi.org/10.1127/nova_hedwigia/2014/0216

199. Ragupathy S, Mahadevan A. Distribution of vesicular-arbuscular mycorrhizae in the plants and rhizosphere soils of the tropical plains, Tamil Nadu, India. Mycorrhiza 1993;3:123-36. https://doi.org/10.1007/BF00208920

200. Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM. Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One 2015;10:e0128784. https://doi.org/10.1371/journal.pone.0128784

201. Sharma SD, Kumar P, Raj H, Bhardwaj SK. Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcum from local litchi orchards and evaluation of their activity in the air-layers system. Sci Hortic 2009;123:117-23. https://doi.org/10.1016/j.scienta.2009.07.019

202. Clark R, Zeto S, Zobel R. Arbuscular mycorrhizal fungal isolate effectiveness on growth and root colonization of Panicum virgatum in acidic soil. Soil Biol Biochem 1999;31:1757-63. https://doi.org/10.1016/S0038-0717(99)00084-X

203. Douds DD Jr., Schenck N. Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol Biochem 1991;23:177-83. https://doi.org/10.1016/0038-0717(91)90132-4

204. B?aszkowski J, Adamska I, Czerniawska B. Glomus insculptum, a new arbuscular mycorrhizal species from Poland. Mycotaxon 2004;89:225-34.

205. Jobim K, B?aszkowski J, Niezgoda P, Koz?owska A, Zubek S, Mleczko P, et al. New sporocarpic taxa in the phylum Glomeromycota: Sclerocarpum amazonicum gen. et sp. nov. in the family Glomeraceae (Glomerales) and Diversispora sporocarpia sp. nov. in the Diversisporaceae (Diversisporales). Mycol Prog 2019;18:369-84. https://doi.org/10.1007/s11557-018-01462-2

206. Walker C, Giovannetti M, Avio L, Citernesi A, Nicolson T. A new fungal species forming arbuscular mycorrhizas: Glomus viscosum. Mycol Res 1995;99:1500-6. https://doi.org/10.1016/S0953-7562(09)80799-5

207. Palenzuela J, Ferrol N, Boller T, Azcón-Aguilar C, Oehl F. Otospora bareai, a new fungal species in the glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia 2008;100:296-305. https://doi.org/10.1080/15572536.2008.11832484

208. Oehl F, Sieverding E. Pacispora, a new vesicular arbuscular mycorrhizal fungal genus in the glomeromycetes. Angew Botanik 2004;78:72-82.

209. B?aszkowski J, Kovács GM, Gáspár BK, Balázs TK, Buscot F, Ryszka P. The arbuscular mycorrhizal Paraglomus majewskii sp. nov. represents a distinct basal lineage in Glomeromycota. Mycologia 2012;104:148-56. https://doi.org/10.3852/10-430

210. Sudová R, Sýkorová Z, Rydlová J, ?tvrtlíková M, Oehl F. Rhizoglomus melanum, a new arbuscular mycorrhizal fungal species associated with submerged plants in freshwater lake Avsjøen in Norway. Mycol Prog 2015;14:9. https://doi.org/10.1007/s11557-015-1031-5

211. Symanczik S, B?aszkowski J, Chwat G, Boller T, Wiemken A, AlYahya'ei MN. Three new species of arbuscular mycorrhizal fungi discovered at one location in a desert of Oman: Diversispora omaniana, Septoglomus nakheelum and Rhizophagus arabicus. Mycologia 2014;106:243-59. https://doi.org/10.3852/106.2.243

212. Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 2013;201:42-51. https://doi.org/10.1016/j.plantsci.2012.11.009

213. Chaurasia B, Pandey A, Palni LM. Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons. For Ecol Manag 2005;207:315-24. https://doi.org/10.1016/j.foreco.2004.10.014

214. Hijri M, Redecker D, Petetot JA, Voigt K, Wöstemeyer J, Sanders IR. Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Appl Environ Microbiol 2002;68:4567-73. https://doi.org/10.1128/AEM.68.9.4567-4573.2002

215. Mbogne JT, Temegne CN, Hougnandan P, Youmbi E, Tonfack LB, Ntsomboh-Ntsefong G. Biodiversity of arbuscular mycorrhizal fungi of pumpkins (Cucurbita spp.) under the influence of fertilizers in ferralitic soils of Cameroon and Benin. J Appl Biol Biotechnol 2015;5:1-10.

216. B?aszkowski J, Chwat G, Kovács GM, Gáspár BK, Ryszka P, Or?owska E, et al. Septoglomus fuscum and S. furcatum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia 2013;105:670-80. https://doi.org/10.3852/12-127

217. B?aszkowski J, Chwat G, Góralska A, Ryszka P, Orfanoudakis M. Septoglomus jasnowskae and Septoglomus turnauae, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycol Prog 2014;13:999-1009. https://doi.org/10.1007/s11557-014-0985-z

Article Metrics

18 Absract views 58 PDF Downloads 76 Total views

Related Search

By author names

Citiaion Alert By Google Scholar


Similar Articles

Biodiversity of arbuscular mycorrhizal fungi of pumpkins (Cucurbita spp.) under the influence of fertilizers in ferralitic soils of Cameroon and Benin

Judith Taboula Mbogne , Carine Nono Temegne , Pascal Hougnandan, Emmanuel Youmbi , Libert Brice Tonfack , Godswill Ntsomboh-Ntsefong

Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health

Ajar Nath Yadav, Rajesh Kumar, Sunil Kumar, Vinod Kumar, TCK Sugitha, Bhanumati Singh, Vinay Singh Chauahan, Harcharan Singh Dhaliwal, Anil Kumar Saxena

Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture

Ajar Nath Yadav, Anil Kumar Saxena

Biodiversity of psychrotrophic microbes and their biotechnological applications

Ajar Nath Yadav, Neelam Yadav, Shashwati Ghosh Sachan, Anil Kumar Saxena

Biodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability

Ajar Nath Yadav

Biodiversity of cyanobacteria in fresh water ponds of Pudukkottai district, Tamil Nadu, India

Dhanalakshmi Jayakumar, Jeevan Pandiyan

Microbes for Agricultural and Environmental Sustainability

Ajar Nath Yadav, Divjot Kour, Ahmed M. Abdel-Azeem, Murat Dikilitas, Abd El-Latif Hesham, Amrik Singh Ahluwalia

Structural and functional diversity of plant growth promoting microbiomes for agricultural sustainability

Tanvir Kaur, Divjot Kour, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Ashok Yadav, Shashank Mishra, Manish Kumar, Ashutosh Kumar Rai, Ajar Nath Yadav

Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants

Rajat Maheshwari, Namita Bhutani, Pooja Suneja

Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.)

Kusam Lata Rana, Divjot Kour, Tanvir Kaur, Rubee Devi, Ashok Yadav, Ajar Nath Yadav

Bacterial endophytes from halophyte black saxaul (Haloxylon aphyllum Minkw.) and their plant growth-promoting properties

Vyacheslav Shurigin,, Begali Alikulov, Kakhramon Davranov, Zafar Ismailov

Phosphate-Solubilizing Microorganisms for Agricultural Sustainability

Ajar Nath Yadav

Potassium-Solubilizing Microorganisms for Agricultural Sustainability

Ajar Nath Yadav

Stress Adaptive Phosphorus Solubilizing Microbiomes for Agricultural Sustainability

Divjot Kour, Ajar Nath Yadav

Microbial diversity of Azadirachta indica (Neem) gum: An unexplored niche

Pragya Saxena,, Hillol Chakdar, Arjun Singh, Sheetal Shirodkar, Alok K. Srivastava

Rhizospheres of Rubus ellipticus and Ageratina riparia from Meghalaya exhibit Actinomycetota that promote plant growth

Debulman Syiemiong, Dhruva Kumar Jha, Samrat Adhikari, Dapkupar Mylliemngap, Richborn Kharbuki, Dominic Lyngdoh, Joel Paul Warlarpih, Neha Paul, Kevin Matthew Lamare, Chalcedony Wahlang, Rangehbok Lyngkhoi

Minerals Solubilizing Microbes for Agricultural Sustainability

Ajar Nath Yadav