Endophytic nitrogen-fixing bacteria: Untapped treasurer for agricultural sustainability

Kusam Lata Rana Divjot Kour Tanvir Kaur Rajeshwari Negi Rubee Devi Neelam Yadav Pankaj Kumar Rai Sangram Singh Ashutosh Kumar Rai Ashok Yadav R. Z. Sayyed Ajar Nath Yadav   

Open Access   

Published:  Nov 10, 2022

DOI: 10.7324/JABB.2023.110207

Nitrogen (N) is one of the vital elements required for proper growth and development of plants. In the earth’s atmosphere, N is available in the form of nitrogen gas (N2) and mostly plants utilize N in the form nitrate (NO3-) and ammonium ion (NH4+) which are fixed through the biological process known as N2 fixation. As N is one of the elements most likely to be limiting to plant growth, this phenomenon provides an alternative to the implementations of chemical fertilizers as source of nutrients which have resulted in the ammonia volatilization, leading to significant impact on global warming in the atmosphere which, further, diverts the focus of scientist to find out eco-friendly technology. Globally, the demand for introducing eco-friendly practices for improving sustainable agriculture productivity has been increased. Since long time, microbes play an important role in providing pollution-free environment. Endophytic microbes being present inside the specific tissues of plants mostly empower in the growth of plants. The endophytic nitrogen-fixing microbe has been well characterized from leguminous as well non-legume crops. Endophytic bacteria belong to different phyla such as Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The predominant N2-fixing endophytic Burkholderia, Rhizobium, Pseudomonas, Bradyrhizobium, Bacillus, Frankia, Enterobacter, and Azospirillum have been reported from different host plant. Nitrogen-fixing endophytic bacteria has a wide variety of application for maintaining growth of plant, crop yield, and health of soil for sustainable agriculture. The present review focuses on major developments on biodiversity of N-fixing endophytic microbiomes and their role for plant growth promotion and soil health for agroenvironmental sustainability.

Keyword:     Biological nitrogen fixation Endophytic bacteria lant growth promotion Sustainable agriculture


Rana KL, Kour D, Kaur T, Negi R, Devi R, Yadav N, Rai PK, Singh S, Rai AK, Yadav A, Sayyed RZ, Yadav AN. Endophytic nitrogen-fixing bacteria: Untapped treasurer for agricultural sustainability. J App Biol Biotech. 2022. https://doi.org/10.7324/JABB.2023.110207

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. do Vale Barreto Figueiredo M, do Espírito Santo Mergulhão AC, Sobral JK, de Andrade Lira M, de Araújo AS. Biological nitrogen fixation: Importance, associated diversity, and estimates. In: Arora NK, editor. Plant Microbe Symbiosis: Fundamentals and Advances. New Delhi: Springer; 2013. p. 267-89. https://doi.org/10.1007/978-81-322-1287-4_10

2. Rondon MA, Lehmann J, Ramírez J, Hurtado M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fert Soils 2007;43:699-708. https://doi.org/10.1007/s00374-006-0152-z

3. Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M, et al. Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia 2021;76:2687-709. https://doi.org/10.1007/s11756-021-00806-w

4. Kahindi JH, Karanja NK. Essentials of nitrogen fixation biotechnology. Biotechnology 2009;8:54.

5. Rockström J, Steffen W, Noone K, Persson Å, Chapin F 3rd, Lambin E, et al. A safe operating space for humanity. Nature 2009;461:472-75. https://doi.org/10.1038/461472a

6. Bhattacharjee RB, Singh A, Mukhopadhyay S. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: Prospects and challenges. Appl Microbiol Biotechnol 2008;80:199-209. https://doi.org/10.1007/s00253-008-1567-2

7. Cocking EC. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 2003;252:169-75. https://doi.org/10.1023/A:1024106605806

8. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 2015;79:293-320. https://doi.org/10.1128/MMBR.00050-14

9. Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant Microb Interact 2006;19:827-37. https://doi.org/10.1094/MPMI-19-0827

10. Yadav AN, Kour D, Kaur T, Devi R, Yadav A. Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol 2022;67:203-32. https://doi.org/10.1007/s12223-021-00939-0

11. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, et al. Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh B, editor. Advances in Endophytic Fungal Research. Cham: Springer; 2019. p. 105-44. https://doi.org/10.1007/978-3-030-03589-1_6

12. Cavalcante VA, Dobereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 1988;108:23-31. https://doi.org/10.1007/BF02370096

13. Sevilla M, Burris RH, Gunapala N, Kennedy C. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant Microb Interact 2001;14:358-66. https://doi.org/10.1094/MPMI.2001.14.3.358

14. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, et al. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the Northern hills zone of India. Ann Microbiol 2015;65:1885-99. https://doi.org/10.1007/s13213-014-1027-4

15. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 1994;176:1913-23. https://doi.org/10.1128/jb.176.7.1913-1923.1994

16. Sw?drzy?ska D, Sawicka A. Effect of inoculation with Azospirillum brasilense on development and yielding of maize (Zea mays ssp. saccharata L.) under different cultivation conditions. Pol J Environ Stud 2000;9:505-9.

17. Zhao L, Xu Y, Lai X. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 2018;49:269-78. https://doi.org/10.1016/j.bjm.2017.06.007

18. Castro S, Permigiani M, Vinocur M, Fabra A. Nodulation in peanut (Arachis hypogaea L.) roots in the presence of native and inoculated rhizobia strains. Appl Soil Ecol 1999;13:39-44. https://doi.org/10.1016/S0929-1393(99)00016-5

19. Yadav AN, Kumar V, Dhaliwal HS, Prasad R, Saxena AK. Microbiome in crops: Diversity, distribution, and potential role in crop improvement. In: Prasad R, Gill SS, Tuteja N, editors. Crop Improvement Through Microbial Biotechnology. San Diego: Elsevier; 2018. p. 305-32. https://doi.org/10.1016/B978-0-444-63987-5.00015-3

20. Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol 2002;48:285-94. https://doi.org/10.1139/w02-023

21. Kuklinsky?Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani? Kleiner AA, Azevedo JL. Isolation and characterization of soybean?associated bacteria and their potential for plant growth promotion. Environ Microbiol 2004;6:1244-51. https://doi.org/10.1111/j.1462-2920.2004.00658.x

22. Perin L, Martínez-Aguilar L, Paredes-Valdez G, Baldani J, Estrada-De Los Santos P, Reis V, et al. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 2006;56:1931-7. https://doi.org/10.1099/ijs.0.64362-0

23. Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 2008;55:21-37. https://doi.org/10.1007/s00248-007-9247-9

24. Peng G, Yuan Q, Li H, Zhang W, Tan Z. Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 2008;58:2158-63. https://doi.org/10.1099/ijs.0.65632-0

25. Dakora F, Matiru V, King M, Phillips D. Plant growth promotion in legumes and cereals by lumichrome, a rhizobial signal metabolite. In: Finan TM, O'Brian MR, Layzell DB, Vessey K, Newton WE, editors. Nitrogen Fixation: Global Perspectives. Wallingford, UK: CABI Publishing; 2002. p. 321-2.

26. Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, et al. Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 2008;58:2871-5. https://doi.org/10.1099/ijs.0.2008/000703-0

27. Rami?rez-Bahena MH, Garci?a-Fraile P, Peix A, Valverde A, Rivas RL, Igual JM, et al. Revision of the taxonomic status of the species R. leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (= NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 2008;58:2484-90. https://doi.org/10.1099/ijs.0.65621-0

28. Glick BR. Resource acquisition. In: Glick BR, editor. Beneficial Plant-bacterial Interactions. Cham: Springer International Publishing; 2015. p. 29-63. https://doi.org/10.1007/978-3-319-13921-0_2

29. Zhang X, Sun L, Ma X, Sui XH, Jiang R. Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 2011;61:2425-9. https://doi.org/10.1099/ijs.0.026146-0

30. Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 2015;76:327-32. https://doi.org/10.1007/s10725-014-9993-x

31. Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, et al. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 2017;199:97-104. https://doi.org/10.1007/s00203-016-1281-x

32. Govindarajan M, Kwon SW, Weon HY. Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 2007;23:997-1006. https://doi.org/10.1007/s11274-006-9326-y

33. Montañez A, Abreu C, Gill PR, Hardarson G, Sicardi M. Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biol Fert Soils 2009;45:253-63. https://doi.org/10.1007/s00374-008-0322-2

34. Mbai F, Magiri E, Matiru V, Nganga J, Nyambati V. Isolation and characterization of bacterial root endophytes with potential to enhance plant growth from Kenyan Basmati rice. Am Int J Contemp Res 2013;3:25-40.

35. Hirsch AM. Brief History of the Discovery of Nitrogen Fixing Organisms; 2009. Available from: http://wwwmcdbuclaedu/research/hirsch/imagesb/historydiscoveryn2fixing organisms pdf [Last accessed on 2022 Sep 29].

36. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech 2015;5:355-77. https://doi.org/10.1007/s13205-014-0241-x

37. Gourion B, Berrabah F, Ratet P, Stacey G. Rhizobium-legume symbioses: The crucial role of plant immunity. Trends Plant Sci 2015;20:186-94. https://doi.org/10.1016/j.tplants.2014.11.008

38. Youssef M, Eissa M. Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 J Biotechnol Pharm Res 2014;5:1-6.

39. Zhang L, Shi X, Si M, Li C, Zhu L, Zhao L, et al. Rhizobium smilacinae sp. nov., an endophytic bacterium isolated from the leaf of Smilacina japonica. Antonie van Leeuwenhoek 2014;106:715-23. https://doi.org/10.1007/s10482-014-0241-1

40. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. The Prokaryotes: Actinobacteria. Berlin, Germany: Springer; 2014. https://doi.org/10.1007/978-3-642-30120-9

41. Soe KM, Bhromsiri A, Karladee D, Yamakawa T. Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr 2012;58:319-25. https://doi.org/10.1080/00380768.2012.682044

42. Lechevalier MP. Taxonomy of the genus Frankia (Actinomycetales). Int J Syst Evol Microbiol 1994;44:1-8. https://doi.org/10.1099/00207713-44-1-1

43. Coombs JT, Franco CM. Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 2003;69:4260-2. https://doi.org/10.1128/AEM.69.7.4260-4262.2003

44. Benson DR, Silvester W. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 1993;57:293-319. https://doi.org/10.1128/mr.57.2.293-319.1993

45. Nouioui I, Ghodhbane-Gtari F, Rohde M, Klenk HP, Gtari M. Frankia coriariae sp. nov., an infective and effective microsymbiont isolated from Coriaria japonica. Int J Syst Evol Microbiol 2017;67:1266-70. https://doi.org/10.1099/ijsem.0.001797

46. Tian X, Cao L, Tan H, Han W, Chen M, Liu Y, et al. Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 2007;53:700-7. https://doi.org/10.1007/s00248-006-9163-4

47. Ikeda S, Okubo T, Kaneko T, Inaba S, Maekawa T, Eda S, et al. Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. ISME J 2010;4:315. https://doi.org/10.1038/ismej.2009.119

48. Shah S, Shah R, Xu H, Aryal U. Biofertilizers: An alternative source of nutrients for sustainable production of tree crops. J Sustain Agric 2007;29:85-95. https://doi.org/10.1300/J064v29n02_07

49. Bohlool B, Ladha J, Garrity D, George T. Biological nitrogen fixation for sustainable agriculture: A perspective. Plant Soil 1992;141:1-11. https://doi.org/10.1007/BF00011307

50. Ladha J, Barraquio W, Watanabe I. Immunological techniques to identify Azospirillum associated with wetland rice. Can J Microbiol 1982;28:478-85. https://doi.org/10.1139/m82-073

51. Rodrigues EP, Rodrigues LS, de Oliveira AL, Baldani VL, dos Santos Teixeira KR, Urquiaga S, et al. Azospirillum amazonense inoculation: Effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 2008;302:249-61. https://doi.org/10.1007/s11104-007-9476-1

52. de Bellone SC, Bellone C. Presence of endophytic diazotrophs in sugarcane juice. World J Microbiol Biotechnol 2006;22:1065-8. https://doi.org/10.1007/s11274-005-4562-0

53. Reis VM, Baldani JI, Baldani VL, Dobereiner J. Biological dinitrogen fixation in gramineae and palm trees. Crit Rev Plant Sci 2000;19:227-47. https://doi.org/10.1080/07352680091139213

54. Dalla Santa OR, Hernández RF, Alvarez GL, Ronzelli P Jr., Soccol CR. Azospirillum sp. inoculation in wheat, barley and oats seeds greenhouse experiments. Braz Arch Biol Technol 2004;47:843-50. https://doi.org/10.1590/S1516-89132004000600002

55. Cohen AC, Travaglia CN, Bottini R, Piccoli PN. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 2009;87:455-62. https://doi.org/10.1139/B09-023

56. Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 2009;73:2595-9. https://doi.org/10.1271/bbb.90402

57. De Salamone IE, Di Salvo LP, Ortega JS, Sorte PM, Urquiaga S, Teixeira KR. Field response of rice paddy crop to Azospirillum inoculation: Physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 2010;336:351-62. https://doi.org/10.1007/s11104-010-0487-y

58. Trabelsi D, Mhamdi R. Microbial inoculants and their impact on soil microbial communities: A review. Biomed Res Int 2013;2013:863240. https://doi.org/10.1155/2013/863240

59. Matsumura EE, Secco VA, Moreira RS, dos Santos OJ, Hungria M, de Oliveira AL. Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Ann Microbiol 2015;65:2187-200. https://doi.org/10.1007/s13213-015-1059-4

60. Hahn L, Sá EL, Filho BD, Machado RG, Damasceno RG, Giongo A. Rhizobial inoculation, alone or coinoculated with Azospirillumbrasilense, promotes growth of wetland rice. Rev Bras Ciênc Solo 2016;40:e0160006. https://doi.org/10.1590/18069657rbcs20160006

61. Cassán F, Díaz-Zorita M. The Contribution of the use of Azospirillum sp. in sustainable agriculture: Learnings from the laboratory to the field. In: Castro-Sowinski S, editor. Microbial Models: From Environmental to Industrial Sustainability. Singapore: Springer Singapore; 2016. p. 293-321. https://doi.org/10.1007/978-981-10-2555-6_14

62. Fujita M, Kusajima M, Okumura Y, Nakajima M, Minamisawa K, Nakashita H. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in tomato. B Biosci Biotechnol Biochem 2017;81:1657-62. https://doi.org/10.1080/09168451.2017.1329621

63. Kusajima M, Shima S, Fujita M, Minamisawa K, Che FS, Yamakawa H, et al. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. Biosci Biotechnol Biochem 2018;82:1522-6. https://doi.org/10.1080/09168451.2018.1480350

64. Mohapatra D, Singh N, Rath S. Prospects and application of Azospirillum spp. as a natural agricultural biofertilizer. In: Kumar P, Patra JK, Chandra P, editors. Advances in Microbial Biotechnology. New Jersey: Apple Academic Press; 2018. p. 169-90. https://doi.org/10.1201/9781351248914-6

65. Saikia SP, Jain V. Biological nitrogen fixation with non-legumes: An achievable target or a dogma? Curr Sci 2007;92:317-22.

66. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 2001;67:5285-93. https://doi.org/10.1128/AEM.67.11.5285-5293.2001

67. Dos Reis FB Jr., Reis VM, Urquiaga S, Döbereiner J. Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane (Saccharum spp.). Plant Soil 2000;219:153-9. https://doi.org/10.1023/A:1004732500983

68. Catalán AI, Ferreira F, Gill PR, Batista S. Production of polyhydroxyalkanoates by Herbaspirillum seropedicae grown with different sole carbon sources and on lactose when engineered to express the lacZlacY genes. Enzyme Microb Technol 2007;40:1352-7. https://doi.org/10.1016/j.enzmictec.2006.10.008

69. Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, et al. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 2011;7:e1002064.

70. Chubatsu LS, Monteiro RA, de Souza EM, de Oliveira MA, Yates MG, Wassem R, et al. Nitrogen fixation control in Herbaspirillum seropedicae. Plant Soil 2012;356:197-207. https://doi.org/10.1007/s11104-011-0819-6

71. Canellas LP, Balmori DM, Médici LO, Aguiar NO, Campostrini E, Rosa RC, et al. A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 2013;366:119-32. https://doi.org/10.1007/s11104-012-1382-5

72. Straub D, Yang H, Liu Y, Tsap T, Ludewig U. Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. J Exp Bot 2013;64:4603-15. https://doi.org/10.1093/jxb/ert276

73. Hoseinzade H, Ardakani M, Shahdi A, Rahmani HA, Noormohammadi G, Miransari M. Rice (Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae. J Integr Agric 2016;15:1385-94. https://doi.org/10.1016/S2095-3119(15)61241-2

74. Pankievicz V, Camilios-Neto D, Bonato P, Balsanelli E, Tadra- Sfeir M, Faoro H, et al. RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots. Plant Mol Biol 2016;90:589-603. https://doi.org/10.1007/s11103-016-0430-6

75. Maheshwari DK, Annapurna K. Endophytes: Crop Productivity and Protection. Berlin, Germany: Springer; 2017. https://doi.org/10.1007/978-3-319-66544-3

76. Yamada Y, Hoshino KI, Ishikawa T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 1997;61:1244-51. https://doi.org/10.1271/bbb.61.1244

77. Stephan M, Oliveira M, Teixeira K, Martinez-Drets G, Döbereiner J. Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol Lett 1991;77:67-72. https://doi.org/10.1111/j.1574-6968.1991.tb04323.x

78. Döbereiner J. Isolation and identification of root associated diazotrophs. In: Skinner FA, Boddey RM, Fendrik I, editors. Nitrogen Fixation with Non-legumes. Dordrecht: Springer; 1989. p. 103-8. https://doi.org/10.1007/978-94-009-0889-5_13

79. Muthukumarasamy R, Revathi G, Lakshminarasimhan C. Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biol Fert Soils 1999;29:157-64. https://doi.org/10.1007/s003740050539

80. James E, Reis V, Olivares F, Baldani J, Döbereiner J. Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 1994;45:757-66. https://doi.org/10.1093/jxb/45.6.757

81. Dong Z, Heydrich M, Bernard K, McCully M. Further evidence that the N (inf2)-fixing endophytic bacterium from the intercellular spaces of sugarcane stems is Acetobacter diazotrophicus. Appl Environ Microbiol 1995;61:1843-6. https://doi.org/10.1128/aem.61.5.1843-1846.1995

82. Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo I, Caballero-Mellado J. Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 1993;154:145-50. https://doi.org/10.1007/BF00012519

83. Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C. Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 2002;83:137-45.

84. Munoz-Rojas J, Fuentes-Ramírez LE, Caballero-Mellado J. Antagonism among Gluconacetobacter diazotrophicus strains in culture media and in endophytic association. FEMS Microbiol Ecol 2005;54:57-66. https://doi.org/10.1016/j.femsec.2005.02.011

85. Piñón D, Casas M, Blanch Ma, Fontaniella B, Blanco Y, Vicente C, et al. Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Res Microbiol 2002;153:345-51. https://doi.org/10.1016/S0923-2508(02)01336-0

86. Blanco Y, Arroyo M, Legaz M, Vicente C. Isolation from Gluconacetobacter diazotrophicus cell walls of specific receptors for sugarcane glycoproteins, which act as recognition factors. J Chromatogr A 2005;1093:204-11. https://doi.org/10.1016/j.chroma.2005.07.019

87. Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C. Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 2006;280:239-52. https://doi.org/10.1007/s11104-005-3223-2

88. Boddey R, Urquiaga S, Reis V, Döbereiner J. Biological nitrogen fixation associated with sugar cane. Plant Soil 1991;137:111-7. https://doi.org/10.1007/BF02187441

89. Baldani J, Caruso L, Baldani VL, Goi SR, Döbereiner J. Recent advances in BNF with non-legume plants. Soil Biol Biochem 1997;29:911-22. https://doi.org/10.1016/S0038-0717(96)00218-0

90. Cojho EH, Reis VM, Schenberg AC, Döbereiner J. Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiol Lett 1993;106:341-6. https://doi.org/10.1111/j.1574-6968.1993.tb05986.x

91. Alvarez B, Martínez-Drets G. Metabolic characterization of Acetobacter diazotrophicus. Can J Microbiol 1995;41:918-24. https://doi.org/10.1139/m95-126

92. Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, et al. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 2005;28:277-86. https://doi.org/10.1016/j.syapm.2005.01.006

93. Rouws L, Meneses C, Guedes H, Vidal M, Baldani J, Schwab S. Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Lett Appl Microbiol 2010;51:325-30. https://doi.org/10.1111/j.1472-765X.2010.02899.x

94. Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, et al. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant Microbe Interact 2013;26:937-45. https://doi.org/10.1094/MPMI-12-12-0286-R

95. de Souza AR, De Souza S, De Oliveira M, Ferraz T, Figueiredo F, Rana, et al.: Endophytic nitrogen-fixing bacteria 2022;X(XX):1-19 15

Da Silva N, et al. Endophytic colonization of A. thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense. Plant Soil 2016;399:257-70. https://doi.org/10.1007/s11104-015-2672-5

96. Stopnisek N, Bodenhausen N, Frey B, Fierer N, Eberl L, Weisskopf L. Genus?wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations. Environ Microbiol 2014;16:1503-12. https://doi.org/10.1111/1462-2920.12211

97. Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, et al. Pseudomonas cepacia infection in cystic fibrosis: An emerging problem. J Pediatr 1984;104:206-10. https://doi.org/10.1016/S0022-3476(84)80993-2

98. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Evol Microbiol 1997;47:1188-200. https://doi.org/10.1099/00207713-47-4-1188

99. Pérez?Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, et al. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 2012;14:1091-117. https://doi.org/10.1111/j.1462-2920.2011.02613.x

100. Aizawa T, Ve NB, Nakajima M, Sunairi M. Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 2010;60:1152-7. https://doi.org/10.1099/ijs.0.015198-0

101. Baldani V, Oliveira E, Balota E, Baldani J, Kirchhof G, Döbereiner J, et al. Burkholderia brasilensis sp. nov., uma nova espécie de bactéria diazotrófica endofítica. An Acad Bras Cienc 1997;69:116.

102. Sessitsch A, Coenye T, Sturz A, Vandamme P, Barka EA, Salles J, et al. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 2005;55:1187-92. https://doi.org/10.1099/ijs.0.63149-0

103. Coenye T, Laevens S, Willems A, Ohlén M, Hannant W, Govan J, et al. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 2001;51:1099-107. https://doi.org/10.1099/00207713-51-3-1099

104. Frommel MI, Nowak J, Lazarovits G. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 1991;96:928-36. https://doi.org/10.1104/pp.96.3.928

105. Barka EA, Belarbi A, Hachet C, Nowak J, Audran JC. Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 2000;186:91-5. https://doi.org/10.1111/j.1574-6968.2000.tb09087.x

106. Nowak J, Asiedu S, Lazarovits G, Pillay V, Stewart A, Smith C, et al. Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plantlets co-cultured with a plant growth promoting pseudomonad bacterium. In: Chagvardieff CP, editor. Ecophysiology and Photosynthetic In Vitro Cultures. Aix en Provence: CEA; 1995. p. 173-80.

107. Pillay V, Nowak J. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 1997;43:354-61. https://doi.org/10.1139/m97-049

108. Barka EA, Gognies S, Nowak J, Audran JC, Belarbi A. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 2002;24:135-42. https://doi.org/10.1016/S1049-9644(02)00034-8

109. Luvizotto DM, Marcon J, Andreote FD, Dini-Andreote F, Neves AA, Araújo WL, et al. Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World J Microbiol Biotechnol 2010;26:1829-36. https://doi.org/10.1007/s11274-010-0364-0

110. Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 2007;63:84-93. https://doi.org/10.1111/j.1574-6941.2007.00410.x

111. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, et al. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 2013;4:120. https://doi.org/10.3389/fpls.2013.00120

112. Lowman S, Kim-Dura S, Mei C, Nowak J. Strategies for enhancement of switchgrass (Panicum virgatum L.) performance under limited nitrogen supply based on utilization of N-fixing bacterial endophytes. Plant Soil 2016;405:47-63. https://doi.org/10.1007/s11104-015-2640-0

113. Baldani VD, Baldani JI, Döbereiner J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fert Soils 2000;30:485-91. https://doi.org/10.1007/s003740050027

114. Singh RK, Mishra RP, Jaiswal HK, Kumar V, Pandey SP, Rao SB, et al. Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 2006;52:345-9. https://doi.org/10.1007/s00284-005-0138-3

115. Procópio R, Araújo W, Maccheroni W Jr., Azevedo J. Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res 2009;8:1408-22. https://doi.org/10.4238/vol8-4gmr691

116. Van VT, Berge O, Ke SN, Balandreau J, Heulin T. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensison early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 2000;218:273-84. https://doi.org/10.1023/A:1014986916913

117. Mishra PK, Mishra S, Selvakumar G, Bisht J, Kundu S, Gupta HS. Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 2009;25:753-61. https://doi.org/10.1007/s11274-009-9963-z

118. Wulff E, Mguni C, Mansfeld?Giese K, Fels J, Lübeck M, Hockenhull J. Biochemical and molecular characterization of B. amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 2002;51:574-84. https://doi.org/10.1046/j.1365-3059.2002.00753.x

119. Rajendran L, Karthikeyan G, Raguchander T, Samiyappan R. Cloning and sequencing of novel endophytic Bacillus subtilis from coconut for the management of basal stem rot disease. Asian J Plant Pathol 2008;2:1-14. https://doi.org/10.3923/ajppaj.2008.1.14

120. Chen Y, Gao X, Chen Y, Qin H, Huang L, Han Q. Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed. Biol Control 2014;78:67-76. https://doi.org/10.1016/j.biocontrol.2014.07.012

121. Wang H, Wen K, Zhao X, Wang X, Li A, Hong H. The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Prot 2009;28:634-9. https://doi.org/10.1016/j.cropro.2009.03.017

122. Liu M, Luo K, Wang Y, Zeng A, Zhou X, Luo F, et al. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3. PLoS One 2014;9:e108012. https://doi.org/10.1371/journal.pone.0108012

123. Khalifa AY, Almalki MA. Isolation and characterization of an endophytic bacterium, Bacillus megaterium BMN1, associated with root-nodules of Medicago sativa L. growing in Al-Ahsaa region, Saudi Arabia. Ann Microbiol 2015;65:1017-26. https://doi.org/10.1007/s13213-014-0946-4

124. Munjal V, Nadakkakath AV, Sheoran N, Kundu A, Venugopal V, Subaharan K, et al. Genotyping and identification of broad spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17. Biol Control 2016;92:66-76. https://doi.org/10.1016/j.biocontrol.2015.09.005

125. Gupta C, Kumar B, Dubey R, Maheshwari D. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC 1 against Sclerotinia sclerotiorum causing stem rot of peanut. Biocontrol 2006;51:821-35. https://doi.org/10.1007/s10526-006-9000-1

126. Chung BS, Aslam Z, Kim SW, Kim GG, Kang HS, Ahn JW, et al. A bacterial endophyte, Pseudomonas brassicacearum YC5480,

isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathol J 2008;24:461-8. https://doi.org/10.5423/PPJ.2008.24.4.461

127. Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, Van Der Lelie D, et al. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 2010;158:2915-9. https://doi.org/10.1016/j.envpol.2010.06.004

128. Aeron A, Dubey R, Maheshwari D, Pandey P, Bajpai VK, Kang SC. Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Euro J Plant Pathol 2011;131:81-93. https://doi.org/10.1007/s10658-011-9789-z

129. Pandey PK, Yadav SK, Singh A, Sarma BK, Mishra A, Singh HB. Cross?species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J Phytopathol 2012;160:532-9. https://doi.org/10.1111/j.1439-0434.2012.01941.x

130. Gupta G, Panwar J, Jha PN. Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R. Br. Appl Soil Ecol 2013;64:252-61. https://doi.org/10.1016/j.apsoil.2012.12.016

131. Sun K, Liu J, Gao Y, Jin L, Gu Y, Wang W. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep 2014;4:5462. https://doi.org/10.1038/srep05462

132. Miller S, Mark G, Franks A, O'Gara F. Pseudomonas-plant interactions. In: Pseudomonas: Model Organism, Pathogen, Cell Factory. Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim; 2008. p. 353-76. https://doi.org/10.1002/9783527622009.ch13

133. Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 2009;63:541-56. https://doi.org/10.1146/annurev.micro.62.081307.162918

134. Zhao LF, Xu YJ, Ma ZQ, Deng ZS, Shan CJ, Wei GH. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 2013;44:629-37. https://doi.org/10.1590/S1517-83822013000200043

135. Tariq T, Shafiqe HA, Sultana V, Ehteshamul-Haque S. Management of root rot disease of wheat with endophytic plant growth promoting Pseudomonas associated with healthy wheat roots. Int J Biol Res 2014;2:39-43.

136. Pham VT, Rediers H, Ghequire MG, Nguyen HH, De Mot R, Vanderleyden J, et al. The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 2017;199:513-7. https://doi.org/10.1007/s00203-016-1332-3

137. Sandhya V, Shrivastava M, Ali SZ, Prasad VS. Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 2017;43:22-34. https://doi.org/10.3103/S1068367417010165

138. Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 2017;185:75-85. https://doi.org/10.1016/j.chemosphere.2017.06.135

139. Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar RN, White JF. Seed vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol 2017;122:1680-91. https://doi.org/10.1111/jam.13463

140. Jha P, Kumar A. Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 2009;58:179-88. https://doi.org/10.1007/s00248-009-9485-0

141. Ladha JK, Reddy P. The Quest for Nitrogen Fixation in Rice. Los Baños, Philippines: International Rice Research Institute; 2000.

142. Egener T, Martin DE, Sarkar A, Reinhold-Hurek B. Role of a ferredoxin gene cotranscribed with the nif HDK operon in N2 fixation and nitrogenase "switch-off" of Azoarcus sp. strain BH72. J Bacteriol 2001;183:3752-60. https://doi.org/10.1128/JB.183.12.3752-3760.2001

143. Malik K, Bilal R, Mehnaz S, Rasul G, Mirza M, Ali S. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. In: Ladha JK, de Bruijn FJ, Malik KA, editors. Opportunities for Biological Nitrogen Fixation in Rice and other Non-legumes. Dordrecht: Springer; 1997. p. 37-44. https://doi.org/10.1007/978-94-011-5744-5_5

144. Ahemad M, Khan MS. Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 2009;12:217-26. https://doi.org/10.1007/s12892-009-0130-8

145. Ramos PL, Van Trappen S, Thompson FL, Rocha RC, Barbosa HR, De Vos P, et al. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 2011;61:926-31. https://doi.org/10.1099/ijs.0.019372-0

146. Dutta D, Gachhui R. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 2006;56:1899-903. https://doi.org/10.1099/ijs.0.64101-0

147. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, et al. Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Evol Microbiol 1989;39:361-4. https://doi.org/10.1099/00207713-39-3-361

148. Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Santos PE-dl. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 2004;54:1165-72. https://doi.org/10.1099/ijs.0.02951-0

149. Zhu B, Zhou Q, Lin L, Hu C, Shen P, Yang L, et al. Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.). Int J Syst Evol Microbiol 2013;63:2577-82. https://doi.org/10.1099/ijs.0.045500-0

150. Lin L, Wei C, Chen M, Wang H, Li Y, Li Y, et al. Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E. Stand Genom Sci 2015;10:22. https://doi.org/10.1186/s40793-015-0004-2

151. Loganathan P, Nair S. Crop-specific endophytic colonization by a novel, salt-tolerant, N 2-fixing and phosphate-solubilizing Gluconacetobacter sp. from wild rice. Biotechnol Lett 2003;25:497-501. https://doi.org/10.1023/A:1022645124506

152. Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M. Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 2006;56:1677-80. https://doi.org/10.1099/ijs.0.63934-0

153. Zhang GX, Peng GX, Wang ET, Yan H, Yuan QH, Zhang W, et al. Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov. Arch Microbiol 2008;189:431-9. https://doi.org/10.1007/s00203-007-0333-7

154. Chaudhary HJ, Peng G, Hu M, He Y, Yang L, Luo Y, et al. Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microb Ecol 2012;63:813-21. https://doi.org/10.1007/s00248-011-9978-5

155. Hardoim PR, Nazir R, Sessitsch A, Elhottová D, Korenblum E, van Overbeek LS, et al. The new species Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice. BMC Microbiol 2013;13:164. https://doi.org/10.1186/1471-2180-13-164

156. Dreyfus B, Garcia JL, Gillis M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Evol Microbiol 1988;38:89-98. https://doi.org/10.1099/00207713-38-1-89

157. Glazebrook J, Walker GC. A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 1989;56:661-72. https://doi.org/10.1016/0092-8674(89)90588-6

158. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Evol Microbiol 1991;41:417-26. https://doi.org/10.1099/00207713-41-3-417

159. El?Hamdaoui A, Redondo?Nieto M, Rivilla R, Bonilla I, Bolanos L. Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum-pea (Pisum sativum) symbiosis and nodule development under salt stress. Plant Cell Environ 2003;26:1003-11. https://doi.org/10.1046/j.1365-3040.2003.00995.x

160. Wang F, Wang ET, Wu LJ, Sui XH, Li Jr Y, Chen WX. Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. IntJ Syst Evol Microbiol 2011;61:2582-8. https://doi.org/10.1099/ijs.0.026484-0

161. Sevilla M, Meletzus D, Teixeira K, Lee S, Nutakki A, Baldani I, et al. Analysis of nif and regulatory genes in Acetobacter diazotrophicus. Soil Biol Biochem 1997;29:871-4. https://doi.org/10.1016/S0038-0717(96)00210-6

162. Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, et al. The genetics of symbiotic nitrogen fixation: Comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes 2012;3:138-66. https://doi.org/10.3390/genes3010138

163. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 2011;469:58-63. https://doi.org/10.1038/nature09622

164. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, et al. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 2006;56:1263-71. https://doi.org/10.1099/ijs.0.64025-0

165. Chen WM, James EK, Coenye T, Chou JH, Barrios E, De Faria SM, et al. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 2006;56:1847-51. https://doi.org/10.1099/ijs.0.64325-0

166. Peng G, Zhang W, Luo H, Xie H, Lai W, Tan Z. Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int J Syst Evol Microbiol 2009;59:1650-5. https://doi.org/10.1099/ijs.0.005967-0

167. Gao JL, Lv FY, Wang XM, Yuan M, Li JW, Wu QY, et al. Flavobacterium endophyticum sp. nov., a nif H gene-harbouring endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2015;65:3900-4. https://doi.org/10.1099/ijsem.0.000513

168. Dutta D, Gachhui R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 2007;57:353-7. https://doi.org/10.1099/ijs.0.64638-0

169. Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual JM. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 2003;53:1979-83. https://doi.org/10.1099/ijs.0.02677-0

170. Xing K, Bian GK, Qin S, Klenk HP, Yuan B, Zhang YJ, et al. Kibdelosporangium phytohabitans sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. containing 1-aminocyclopropane-1-carboxylic acid deaminase. Antonie Leeuwenhoek 2012;101:433-41. https://doi.org/10.1007/s10482-011-9652-4

171. Román-Ponce B, Wang D, Vásquez-Murrieta MS, Chen WF, Estrada-de los Santos P, Sui XH, et al. Kocuria arsenatis sp. nov., an arsenic-resistant endophytic actinobacterium associated with Prosopis laegivata grown on high-arsenic-polluted mine tailing. Int J Syst Evol Microbiol 2016;66:1027-33. https://doi.org/10.1099/ijsem.0.000830

172. Behera P, Ramana VV, Maharana B, Joseph N, Vaishampayan P, Singh NK, et al. Mangrovibacter phragmitis sp. nov., an endophyte isolated from the roots of Phragmites karka. Int J Syst Evol Microbiol 2017;67:1228-34. https://doi.org/10.1099/ijsem.0.001789

173. Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M, Mamtimin H, et al. Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 2014;64:3215-21. https://doi.org/10.1099/ijs.0.061416-0

174. Guo GN, Zhou X, Zhao R, Chen XY, Chen ZL, Li XD, et al. Paenibacillus herberti sp. nov., an endophyte isolated from Herbertus sendtneri. Antonie van Leeuwenhoek 2015;108:587-96. https://doi.org/10.1007/s10482-015-0514-3

175. Gao JL, Lv FY, Wang XM, Qiu TL, Yuan M, Li JW, et al. Paenibacillus wenxiniae sp. nov., a nif H gene-harbouring endophytic bacterium isolated from maize. Antonie Leeuwenhoek 2015;108:1015-22. https://doi.org/10.1007/s10482-015-0554-8

176. Madhaiyan M, Jin TY, Roy JJ, Kim SJ, Weon HY, Kwon SW, et al. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int J Syst Evol Microbiol 2013;63:2477-83. https://doi.org/10.1099/ijs.0.044461-0

177. Kesari V, Ramesh AM, Rangan L. Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. BioMed Res Int 2013;2013:165198. https://doi.org/10.1155/2013/165198

178. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, et al. Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 2008;58:1409-13. https://doi.org/10.1099/ijs.0.65723-0

179. Gisin J, Müller A, Pfänder Y, Leimkühler S, Narberhaus F, Masepohl B. A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions. J Bacteriol 2010;192:5943-52. https://doi.org/10.1128/JB.00742-10

180. Bhattacharyya P, Jha D. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J Microbiol Biotechnol 2012;28:1327-50. https://doi.org/10.1007/s11274-011-0979-9

181. Loiret F, Ortega E, Kleiner D, Ortega?Rodés P, Rodes R, Dong Z. A putative new endophytic nitrogen?fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 2004;97:504-11. https://doi.org/10.1111/j.1365-2672.2004.02329.x

182. Defez R, Andreozzi A, Bianco C. The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microb Ecol 2017;74:441-52. https://doi.org/10.1007/s00248-017-0948-4

183. Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Ann Bot 2013;111:743-67. https://doi.org/10.1093/aob/mct048

184. Pan B, Vessey JK. Response of the endophytic diazotroph Gluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O2 pressure. Appl Environ Microbiol 2001;67:4694-700. https://doi.org/10.1128/AEM.67.10.4694-4700.2001

185. Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR. Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 1989;219:49-57. https://doi.org/10.1007/BF00261156

186. Arnold W, Rump A, Klipp W, Priefer UB, Pühler A. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 1988;203:715-38. https://doi.org/10.1016/0022-2836(88)90205-7

187. Merrick M, Edwards R. Nitrogen control in bacteria. Microbiol Mol Biol Rev 1995;59:604-22. https://doi.org/10.1128/mr.59.4.604-622.1995

188. Ureta A, Nordlund S. Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein. J Bacteriol 2002;184:5805-9. https://doi.org/10.1128/JB.184.20.5805-5809.2002

189. Vermeiren H, Willems A, Schoofs G, De Mot R, Keijers V, Hai W, et al. The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol 1999;22:215-24. https://doi.org/10.1016/S0723-2020(99)80068-X

190. Egener T, Hurek T, Reinhold-Hurek B. Use of green fluorescent protein to detect expression of nlf genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. Mol Plant Microbe Interact 1998;11:71-5. https://doi.org/10.1094/MPMI.1998.11.1.71

191. Reis VM, Döbereiner J. Effect of high sugar concentration on nitrogenase activity of Acetobacter diazotrophicus. Arch Microbiol 1998;171:13-8. https://doi.org/10.1007/s002030050672

192. Madhaiyan M, Poonguzhali S, Hari K, Saravanan V, Sa T. Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic Biochem Physiol 2006;84:143-54. https://doi.org/10.1016/j.pestbp.2005.06.004

193. Kennedy I. Integration of nitrogenase in cellular metabolism. In: Hardy RW, Bottomley R, Burns RC, editors. A Treatise of Dinitrogen Fixation: Inorganic and Physical Chemistry and Biochemistry. New York: Wiley; 1979. p. 653-90.

194. Coppola D, Giordano D, Tinajero-Trejo M, Di Prisco G, Ascenzi P, Poole RK, et al. Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species. Biochim Biophys Acta Proteins Proteom 2013;1834:1923-31. https://doi.org/10.1016/j.bbapap.2013.02.018

195. Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012;2012:963401. https://doi.org/10.6064/2012/963401

196. Ronson CW, Primrose SB. Carbohydrate metabolism in Rhizobium trifolii: Identification and symbiotic properties of mutants. Microbiology 1979;112:77-88. https://doi.org/10.1099/00221287-112-1-77

197. Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T. Two seasons' study on nifH gene expression and nitrogen fixationby diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): Expression of nifH genes similar to those of rhizobia. Plant Soil 2011;338:435-49. https://doi.org/10.1007/s11104-010-0557-1

198. Roncato-Maccari LD, Ramos HJ, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, et al. Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 2003;45:39-47. https://doi.org/10.1016/S0168-6496(03)00108-9

199. Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Cura JA. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 2009;41:1768-74. https://doi.org/10.1016/j.soilbio.2007.12.031

200. Hongrittipun P, Youpensuk S, Rerkasem B. Screening of Nitrogen Fixing Endophytic Bacteria in Oryza sativa L. J Agric Sci 2014;6:66. https://doi.org/10.5539/jas.v6n6p66

201. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003;255:571-86. https://doi.org/10.1023/A:1026037216893

202. Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, et al. Endophytic fungi: Biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A, editors. Recent Advancement in White Biotechnology through Fungi: Diversity and Enzymes Perspectives. Vol. 1. Springer, Switzerland; 2019. p. 1-62. https://doi.org/10.1007/978-3-030-10480-1_1

203. Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN, et al. Endophytic fungi from medicinal plants: Biodiversity and biotechnological applications. In: Kumar A, Radhakrishnan E, editors. Microbial Endophytes. Cambridge, MA: Woodhead Publishing; 2020. p. 273-305. https://doi.org/10.1016/B978-0-12-819654-0.00011-9

204. Yadav AN, Singh J, Rastegari AA, Yadav N. Plant Microbiomes for Sustainable Agriculture. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-38453-1

205. Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere 2021;31:43-75. https://doi.org/10.1016/S1002-0160(20)60057-1

206. McAfee J. Potassium, a Key Nutrient for Plant Growth. Department of Soil and Crop Sciences; 2008. Available from: http://jimmcafee tamu edu/files/potassium [Last accessed on 2022 Sep 29].

207. Rodr??guez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 1999;17:319-39. https://doi.org/10.1016/S0734-9750(99)00014-2

208. Kumar M, Tomar RS, Lade H, Paul D. Methylotrophic bacteria in sustainable agriculture. World J Microbiol Biotechnol 2016;32:120. https://doi.org/10.1007/s11274-016-2074-8

209. Verma SC, Ladha JK, Tripathi AK. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 2001;91:127-41. https://doi.org/10.1016/S0168-1656(01)00333-9

210. Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 2017;8:971. https://doi.org/10.3389/fmicb.2017.00971

211. Sashidhar B, Podile AR. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 2010;109:1-12. https://doi.org/10.1111/j.1365-2672.2009.04654.x

212. Kapri A, Tewari L. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz J Microbiol 2010;41:787-95. https://doi.org/10.1590/S1517-83822010005000001

213. Martínez-Viveros O, Jorquera M, Crowley D, Gajardo G, Mora M. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 2010;10:293-319. https://doi.org/10.4067/S0718-95162010000100006

214. McGrath JW, Wisdom GB, McMullan G, Larkin MJ, Quinn JP. The purification and properties of phosphonoacetate hydrolase, a novel carbon?phosphorus bond?cleavage enzyme from Pseudomonas fluorescens 23F. Eur J Biochem 1995;234(1):225-30. https://doi.org/10.1111/j.1432-1033.1995.225_c.x

215. Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann Microbiol 2010;60:579-98. https://doi.org/10.1007/s13213-010-0117-1

216. Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 2015;6:745. https://doi.org/10.3389/fmicb.2015.00745

217. You C, Zhou F. Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol 1989;35:403-8. https://doi.org/10.1139/m89-062

218. Oliveira Ad, Urquiaga S, Döbereiner J, Baldani J. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 2002;242:205-15. https://doi.org/10.1023/A:1016249704336

219. Saubidet MI, Fatta N, Barneix AJ. The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 2002;245:215-22. https://doi.org/10.1023/A:1020469603941

220. Ji SH, Gururani MA, Chun SC. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 2014;169:83-98. https://doi.org/10.1016/j.micres.2013.06.003

221. Bai Y, Zhou X, Smith DL. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 2003;43(5):1774-81. https://doi.org/10.2135/cropsci2003.1774

222. James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK. Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM, editors. The Quest for Nitrogen Fixation in Rice. Makati City, Philippines: International Rice Research Institute; 2000. p. 119-40.

223. Ladha J, Barraquio W, Watanabe I. Isolation and identification of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can J Microbiol 1983;29:1301-8. https://doi.org/10.1139/m83-203

224. Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, et al. Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 2001;237:47-54. https://doi.org/10.1023/A:1013388619231

225. Eskin N. Colonization of Zea mays by the Nitrogen Fixing Bacterium Gluconacetobacter diazotrophicus. Electronic Thesis and Dissertation Respository; 2012.

226. Suman A, Shrivastava A, Gaur A, Singh P, Singh J, Yadav R. Nitrogen use efficiency of sugarcane in relation to its BNF potential and population of endophytic diazotrophs at different N levels. Plant Growth Regul 2008;54:1-11. https://doi.org/10.1007/s10725-007-9219-6

227. Ladha J, Barraquio W, Revilla L. Isolation of endophytic diazotrophic bacteria from wetland rice. In: Ladha JK, de Bruijn FJ, Malik KA, editors. Opportunities for Biological Nitrogen Fixation in Rice and other Non-legumes. Dordrecht: Springer; 1997. p. 15-24. https://doi.org/10.1007/978-94-011-5744-5_3

228. Roesch LF, Camargo FA, Bento FM, Triplett EW. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 2008;302:91-104. https://doi.org/10.1007/s11104-007-9458-3

229. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 2001;183:2634-45. https://doi.org/10.1128/JB.183.8.2634-2645.2001

230. Puri A, Padda KP, Chanway CP. Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biol Biochem 2015;89:210-6. https://doi.org/10.1016/j.soilbio.2015.07.012

231. Singh D, Rajawat MV, Kaushik R, Prasanna R, Saxena AK. Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 2017;416:107-16. https://doi.org/10.1007/s11104-017-3189-x

232. Bayliss W, Starling EH. Croonian lecture: The chemical regulation of the secretory process. Proc R Soc Lond 1904;73:310-22. https://doi.org/10.1098/rspl.1904.0045

233. Li JH, Wang ET, Chen WF, Chen WX. Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang Province of China. Soil Biol Biochem 2008;40:238-46. https://doi.org/10.1016/j.soilbio.2007.08.014

234. Ambawade M, Pathade G. Production of gibberellic acid by Bacillus siamensis BE 76 isolated from banana plant (Musa spp.). Int J Sci Res 2015;4:394-8.

235. Yoon V, Tian G, Vessey JK, Macfie SM, Dangi OP, Kumer AK, et al. Colonization efficiency of different sorghum genotypes by Gluconacetobacter diazotrophicus. Plant Soil 2016;398:243-56. https://doi.org/10.1007/s11104-015-2653-8

236. Rodrigues EP, Soares CP, Galvão PG, Imada EL, Simões-Araújo JL, Rana, et al.: Endophytic nitrogen-fixing bacteria 2022;X(XX):1-19 19

Rouws LF, et al. Identification of genes involved in indole-3-acetic acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 strain using transposon mutagenesis. Front Microbiol 2016;7:1572. https://doi.org/10.3389/fmicb.2016.01572

237. Bhutani N, Maheshwari R, Negi M, Suneja P. Optimization of IAA production by endophytic Bacillus spp. from Vigna radiata for their potential use as plant growth promoters. Israel J Plant Sci 2018;65:83-96. https://doi.org/10.1163/22238980-00001025

238. Crowley DE. Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J, editors. Iron Nutrition in Plants and Rhizospheric Microorganisms. Dordrecht: Springer Netherlands; 2006. p. 169-98. https://doi.org/10.1007/1-4020-4743-6_8

239. Bultreys A. Siderotyping, a tool to characterize, classify and identify fluorescent pseudomonads. In: Varma A, Chincholkar SB, editors. Microbial Siderophores. Berlin, Heidelberg: Springer; 2007. p. 67-89. https://doi.org/10.1007/978-3-540-71160-5_3

240. Loaces I, Ferrando L, Scavino AF. Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 2011;61:606-18. https://doi.org/10.1007/s00248-010-9780-9

241. Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, et al. Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 2016;3:1-10. https://doi.org/10.1186/s40538-015-0051-3

242. Kong Z, Deng Z, Glick BR, Wei G, Chou M. A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Ann Microbiol 2017;67:49-58. https://doi.org/10.1007/s13213-016-1235-1

243. Dolphen R, Thiravetyan P. Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria. Chemosphere 2019;223:448-54. https://doi.org/10.1016/j.chemosphere.2019.02.054

244. Abeles FB, Morgan P, Saltveit Jr M. Ethylene in Plant Biology. San Diego: Academic Press; 1992.

245. Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol 1995;41:109-17. https://doi.org/10.1139/m95-015

246. Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase?containing plant growth?promoting rhizobacteria. Physiol Plant 2003;118:10-5. https://doi.org/10.1034/j.1399-3054.2003.00086.x

247. Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 2005;251:1-7. https://doi.org/10.1016/j.femsle.2005.07.030

248. Shaharoona B, Arshad M, Zahir ZA, Khalid A. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 2006;38:2971-5. https://doi.org/10.1016/j.soilbio.2006.03.024

249. Nadeem SM, Zahir ZA, Naveed M, Arshad M. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 2007;53:1141-9. https://doi.org/10.1139/W07-081

250. Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, et al. Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 2008;66:85-95. https://doi.org/10.1111/j.1574-6941.2008.00582.x

251. Karthikeyan B, Joe MM, Islam MR, Sa T. ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 2012;56:77-86. https://doi.org/10.1007/s13199-012-0162-6

252. Vargas L, de Carvalho TL, Ferreira PC, Baldani VL, Baldani JI, Hemerly AS. Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soil 2012;356:127-37. https://doi.org/10.1007/s11104-012-1274-8

253. Nascimento FX, Brígido C, Glick BR, Oliveira S. ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol Lett 2012;336:26-37. https://doi.org/10.1111/j.1574-6968.2012.02648.x

254. Ahmad E, Khan MS, Zaidi A. ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis 2013;61:93-104. https://doi.org/10.1007/s13199-013-0259-6

255. Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, et al. Biofertilizers: A potential approach for sustainable agriculture development. Environ Sci Pollut Res 2017;24:3315-35. https://doi.org/10.1007/s11356-016-8104-0

256. Yadav AN, Rastegari AA, Yadav N. Microbiomes of Extreme Environments, Volume 2: Biotechnological Applications in Agriculture, Environment and Industry. Vol. 2. Boca Raton, USA: CRC Press, Taylor and Francis Group; 2020. https://doi.org/10.1201/9780429328633

257. Kumar P, Dubey RC, Maheshwari DK, Bajpai VK. ACC deaminase producing Rhizobium leguminosarum RPN5 isolated from root nodules of Phaseolus vulgaris L. Bangladesh J Bot 2016;45:477-84.

258. Win KT, Tanaka F, Okazaki K, Ohwaki Y. The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol Biochem 2018;127:599-607. https://doi.org/10.1016/j.plaphy.2018.04.038

Article Metrics

1 Absract views 13 PDF Downloads 14 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Similar Articles

Bioconversion of sugarcane molasses to poly(3-hydroxybutyrate-co-3- hydroxyvalerate) by endophytic Bacillus cereus RCL 02

Rituparna Das, Arundhati Pal, Amal Kanti Paul

Bacterial endophytes from halophyte black saxaul (Haloxylon aphyllum Minkw.) and their plant growth-promoting properties

Vyacheslav Shurigin,, Begali Alikulov, Kakhramon Davranov, Zafar Ismailov

Evaluation of plant growth-promoting activities of endophytic bacteria of Musa acuminata and their characterization

Shilpi Singh, Kamlesh Choure, Piyush Kant Rai, Sourabh Singh Gour, Vivek Kumar Agnihotri

Endophytic bacterial metagenomics and phosphate solubilization activities in an endemic legume Humboldtia brunonis Wall.

Ganesh V. Shendye, N. Thamizhseran

Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture

Ajar Nath Yadav, Anil Kumar Saxena

Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants

Rajat Maheshwari, Namita Bhutani, Pooja Suneja

Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.)

Kusam Lata Rana, Divjot Kour, Tanvir Kaur, Rubee Devi, Ashok Yadav, Ajar Nath Yadav

Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability

Kumar Anand, Gaurav Kumar Pandey, Tanvir Kaur, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Kriti Akansha, Ashok Yadav, Rubee Devi, Divjot Kour, Ashutosh Kumar Rai, Manish Kumar, Ajar Nath Yadav

Phosphate-Solubilizing Microorganisms for Agricultural Sustainability

Ajar Nath Yadav

Potassium-Solubilizing Microorganisms for Agricultural Sustainability

Ajar Nath Yadav

Stress Adaptive Phosphorus Solubilizing Microbiomes for Agricultural Sustainability

Divjot Kour, Ajar Nath Yadav

Microbial diversity of Azadirachta indica (Neem) gum: An unexplored niche

Pragya Saxena,, Hillol Chakdar, Arjun Singh, Sheetal Shirodkar, Alok K. Srivastava

Rhizospheres of Rubus ellipticus and Ageratina riparia from Meghalaya exhibit Actinomycetota that promote plant growth

Debulman Syiemiong, Dhruva Kumar Jha, Samrat Adhikari, Dapkupar Mylliemngap, Richborn Kharbuki, Dominic Lyngdoh, Joel Paul Warlarpih, Neha Paul, Kevin Matthew Lamare, Chalcedony Wahlang, Rangehbok Lyngkhoi

Agrobacterium rhizogenes as molecular tool for the production of hairy roots in Withania somnifera

Manali Singh,, Deep Chandra Suyal, Nisha Dinkar, Soniya Joshi, Nishtha Srivastava, Vineet Kumar Maurya, Abhiruchi Agnihotri, Sanjeev Agrawal