Effect of temperature on drying kinetics, bioactive compounds, and antioxidant activity of okra seeds (Abelmoschus esculentus)

Ho Thi Ngan Ha Le Hoang Bao Ngoc Phan Uyen Nguyen Diep Kim Quyen Tran Nguyen Tuong Vy Nguyen Thi Ngoc Giang   

Open Access   

Published:  Dec 12, 2025

DOI: 10.7324/JABB.2026.260521
Abstract

Convection drying is a popular method for processing and preserving fruits and vegetables. In this study, four drying temperatures (50°C, 60°C, 70°C, and 80°C) were investigated in relation to the kinetics of moisture content, bioactive components, and antioxidant activity of okra seeds (OS). Eight popular drying models (Page, modified Page, Lewis, Henderson and Pabis, modified Henderson and Pabis, two-term, two-term exponential, and logarithmic) were fitted to determine which model would best describe the drying process. The effective moisture diffusivity and activation energy were computed using Fick’s diffusion equation. The findings demonstrated that raising the drying temperature shortened the drying time, and the Page model best fit the experimental data. Throughout the examined temperature range, the effective moisture diffusivity varied from 6.5109 × 10-¹² m²/s to 1.5140 × 10-¹¹ m²/s. An Arrhenius-type relationship with an activation energy of 37.76 ± 0.98 kJ/mol between 50ºC and 80ºC defined the temperature dependency of the effective moisture diffusivity. The higher contents of bioactive compounds (phenolics, β-carotene, and Vitamin C) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity were found in OS dried at 60ºC compared to other temperatures. These findings will offer further understanding of the suitable drying temperature for preparing OS as a material, a substitute, or for other applications.


Keyword:     Activation energy Bioactive compound Convection drying Mathematical model Moisture diffusivity Okra seed


Citation:

Ha HTN, Ngoc LHB, Nguyen PU, Quyen DK, Vy TNT, Giang NTN. Effect of temperature on drying kinetics, bioactive compounds, and antioxidant activity of okra seeds (Abelmoschus esculentus). J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2026.260521

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Ha HTN, Giang NTN, Nguyen PU, Quyen DK, Vy TNT, Ngoc LH. Effect of harvest stages on physicochemical properties, bioactive compounds, and antioxidant activity of okra (Abelmoschus esculentus L.) for processing applications. Acta Sci Pol Technol Aliment. 2024;23(1):15-27. https://doi.org/10.17306/J.AFS.001180

2. Fakudze NT, Sarbadhikary P, George BP, Abrahamse H. Ethnomedicinal uses, phytochemistry, and anticancer potentials of African medicinal fruits: A comprehensive review. Pharmaceuticals (Basel). 2023;16(8):1117. https://doi.org/10.3390/ph16081117

3. Guo G, Xu W, Zhang H, Hu X, Chen Y, He X, et al. Characteristics and antioxidant activities of seed oil from okra (Abelmoschus esculentus L.). Food Sci Nutr. 2024;12(4):2393-407. https://doi.org/10.1002/fsn3.3924

4. Karrar E, Ahmed IAM, Manzoor MF, AL-Farga A, Wei W, Albakry Z, et al. Effect of roasting pretreatment on fatty acids, oxidative stability, tocopherols, and antioxidant activity of gurum seeds oil. Biocatal Agric Biotechnol. 2021;34:102022. https://doi.org/10.1016/j.bcab.2021.102022

5. Adetuyi FO, Ibrahim TA. Effect of fermentation time on the phenolic, flavonoid, and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Niger Food J.2014;32(2):128-37. https://doi.org/10.1016/S0189-7241(15)30128-4

6. Xu K, Guo M, Roman L, Pico J, Martinez MM. Okra seed and seedless pod: Comparative study of their phenolics and carbohydrate fractions and their impact on bread-making. Food Chem. 2020;317:126387. https://doi.org/10.1016/j.foodchem.2020.126387

7. Benchasri S. Okra (Abelmoschus esculentus (L.) Moench) as a valuable vegetable of the world. Ratar Povrt. 2012;49(1):105-12. https://doi.org/10.5937/ratpov49-1172

8. dos Santos IF, dos Santos AM, Barbosa UA, Lima JS, dos Santos DC, Matos GD. Multivariate analysis of the mineral content of raw and cooked okra (Abelmoschus esculentus L.). Microchem J.2013;110:439-43. https://doi.org/10.1016/j.microc.2013.05.008

9. Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro AG. Free radical properties, source and targets, antioxidant consumption, and health. Oxygen. 2022;2(2):48-78. https://doi.org/10.3390/oxygen2020006

10. Andrés Juan C, Pérez de Lastra JM, Plou Gasca FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids, and proteins) and induced pathologies. Int J Mol Sci. 2021;22:4642. https://doi.org/10.3390/ijms22094642

11. Açikgöz Ç, Akpinar Borazan A, Ando?lu EM, Gökdai D. Chemical composition of Turkish okra seeds (Hibiscus esculenta L.) and the total phenolic content of okra seeds flour. Anadolu Univ J Sci Technol. 2016;17(5):766-74. https://doi.org/10.18038/aubtda.279845

12. Arapitsas P. Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chem. 2008;110(4):1041-5. https://doi.org/10.1016/j.foodchem.2008.03.014

13. Ong ES, Oh CLY, Tan JCW, Foo SY, Leo CH. Pressurized hot water extraction of okra seeds reveals antioxidant, antidiabetic, and vasoprotective activities. Plants (Basel). 2021;10(8):1645. https://doi.org/10.3390/plants10081645

14. Çelebi B, Ozer S, Ate? SC. Characterization of local okra seed (Abelmoschus esculentus) extract and evaluation of bioactivity. Cumhuriyet Sci J.2024;45(4):707-12. https://doi.org/10.17776/csj.1519528

15. Woumbo CY, Kuate D, Metue Tamo DG, Womeni HM. Antioxidant and antidiabetic activities of a polyphenol-rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE). Front Nutr. 2022;9:1030385. https://doi.org/10.3389/fnut.2022.1030385

16. Rahman MS, editor. Handbook of Food Preservation. Boca Raton: CRC Press; 2020.

17. Ogwu MC, Ogunsola OA. Physicochemical methods of food preservation to ensure food safety and quality. In: Food Safety and Quality in the Global South. Singapore: Springer Nature Singapore; 2024. p. 263-98.

18. Guo Q, Zhang M, Mujumdar AS, Yu D. Drying technologies of novel food resources for future foods: Progress, challenges and application prospects. Food Biosci. 2024;60:104490. https://doi.org/10.1016/j.fbio.2024.104490

19. Joardder MU, Akram W, Karim, A. Heat and Mass Transfer Modelling during Drying: Empirical to Multiscale Approaches. Boca Raton: CRC Press; 2021. https://doi.org/10.1201/9780429461040

20. Deng LZ, Mujumdar AS, Zhang Q, Yang XH, Wang J, Zheng ZA, et al. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Crit Rev Food Sci Nutr. 2019;59(9):1408-32. https://doi.org/10.1080/10408398.2017.1409192

21. Sharma PD, Rajak D, Kumar V, Shrivastava M. Solar drying & quality characteristics of okra [Abelmoschus esculentus (L.) Moench] as affected by blanching. Environ Ecol. 2016;34(3B):1297-302.

22. Li H, Xie L, Ma Y, Zhang M, Zhao Y, Zhao X. Effects of drying methods on drying characteristics, physicochemical properties, and antioxidant capacity of okra. LWT. 2019;101:630-8. https://doi.org/10.1016/j.lwt.2018.11.076

23. Bruce DM. Exposed-layer barley drying: Three models fitted to new data up to 150?. J Agric Eng Res. 1985;32(4):337-48. https://doi.org/10.1016/0021-8634(85)90098-8

24. Page GE. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin-Layers. United States: Purdue University; 1949.

25. Overhults DG, White GM, Hamilton HE, Ross IJ.Drying soybeans with heated air. Trans ASAE 1973;16(1):112. https://doi.org/10.13031/2013.37459

26. Henderson SM, Pabis S. Grain drying theory. I. Temperature effect on drying coefficient. J Agric Eng Res. 1961;6:169-74.

27. To?rul ?T, Pehlivan D. Mathematical modelling of solar drying of apricots in thin-layers. J Food Eng. 2002;55(3):209-16. https://doi.org/10.1016/S0260-8774(02)00065-1

28. Henderson SM. Progress in developing the thin-layer drying equation. Trans ASAE. 1974;17(6):1167-8. https://doi.org/10.13031/2013.37052

29. Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. A model for ear-corn drying. Trans ASAE. 1981;5(4):1261-5. https://doi.org/10.13031/2013.34757

30. Yaldiz O, Ertekin C, Uzun HI. Mathematical modeling of thin-layer solar drying of sultana grapes. Energy. 2001;26(5):457-65. https://doi.org/10.1016/S0360-5442(01)00018-4

31. Akpinar EK, Toraman S. Determination of drying kinetics and convective heat transfer coefficients of ginger slices. Heat Mass Transfer. 2016;52(10):2271-81. https://doi.org/10.1007/s00231-015- 1729-6

32. Culaba A, Atienza AH, Ubando A, Mayol A, Cuello J.Seaweed drying characterization via serial statistical criteria analysis. IOP Conf Ser Mater Sci Eng. 2021;1109(1):012051. https://doi.org/10.1088/1757-899X/1109/1/012051

33. El-Mesery HS, Qenawy M, Hu Z, Alshaer WG. Evaluation of infrared drying for okra: Mathematical modelling, moisture diffusivity, energy activity, and quality attributes. Case Stud Therm Eng. 2023;50:103451. https://doi.org/10.1016/j.csite.2023.103451

34. Crank J.The Mathematics of Diffusion. Oxford: Oxford University Press; 1979. p.414.

35. An K, Li H, Zhao D, Ding S, Tao H, Wang Z. Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Dry Technol. 2013;31(6):698-706. https://doi.org/10.1080/07373937.2012.755192

36. He C, Wang H, Yang Y, Huang Y, Zhang X, Arowo M, et al. Drying behavior and kinetics of drying process of plant-based enteric hard capsules. Pharmaceutics. 2021;13(3):335. https://doi.org/10.3390/pharmaceutics13030335

37. Sakre N, Das SK, Maiti B. Hybrid microwave with hot air drying of black?gram (Vigna mungo L.) nuggets: Drying characteristics, modeling, and process optimization. J Food Process Preserv. 2022;46(11):e17012. https://doi.org/10.1111/jfpp.17012

38. Trang PQ, Sy DT, Quang TH, Bich HT, Minh PTH, Quang Huong NT. Study on the extraction process of chlorophyll from silkworm feces. JST. 2021;57(1):117-20.

39. Biswas AK, Sahoo J, Chatli MK. A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT Food Sci Technol. 2011;44(8):1809-13. https://doi.org/10.1016/j.lwt.2011.03.017

40. Abeysuriya HI, Bulugahapitiya VP, Loku Pulukkuttige J.Total vitamin C, ascorbic acid, dehydroascorbic acid, antioxidant properties, and iron content of underutilized and commonly consumed fruits in Sri Lanka. Int J Food Sci. 2020;2020(1):4783029. https://doi.org/10.1155/2020/4783029

41. Dominguez-López I, Pérez M, Lamuela-Raventós RM. Total (poly) phenol analysis by the Folin-Ciocalteu assay as an anti-inflammatory biomarker in biological samples. Crit Rev Food Sci Nutr. 2024;64(27):10048-54. https://doi.org/10.1080/10408398.202 3.2220031

42. Thorat ID, Mohapatra D, Sutar RF, Kapdi SS, Jagtap DD. Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber officinale R.) slices. Food Bioprocess Technol. 2012;5(4):1379-83. https://doi.org/10.1007/s11947-010- 0429-y

43. Brandão RJ, Borel LD, Marques LG, Prado MM. Heat and mass transfer, energy and product quality aspects in drying processes using infrared radiation. In: Drying and Energy Technologies. Cham: Springer International Publishing; 2015. p. 111-30. https://doi.org/10.1007/978-3-319-19767-8_6

44. de Oliveira DEC, Guimarães JM, Bueno SGS, da Costa Júnior JR, Alves EM, Silva BMC. Drying kinetics of pumpkin seeds. Com Sci. 2021;12:e3391. https://doi.org/10.14295/cs.v12.3391

45. Quequeto WD, Resende O, Silva PC, Silva FAZ, Silva LDM. Drying kinetics of noni seeds. J Agric Sci. 2019;11(5):250-8. https://doi.org/10.5539/jas.v11n5p250

46. Silva FPD, Siqueira VC, Quinzani GA, Martins EA, Goneli AL. Drying kinetics of niger seeds. Eng Agríc. 2017;37(4):727-38. https://doi.org/10.1590/1809-4430-eng.agric.v37n4p727-738/2017

47. Wanderley RDOS, de Figueirêdo RMF, Queiroz AJDM, Dos Santos FS, Paiva YF, Ferreira JP, et al. The temperature influence on drying kinetics and physico-chemical properties of pomegranate peels and seeds. Foods. 2023;12(2):286. https://doi.org/10.3390/foods12020286

48. Cosme-De Vera FH, Soriano AN, Dugos NP, Rubi RVC. A comprehensive review on the drying kinetics of common tubers. Appl Sci Eng Prog. 2021;14(2):146-55. https://doi.org/10.14416/j.asep.2021.03.003

49. Xie L, Mujumdar AS, Fang XM, Wang J, Dai JW, Du ZL, et al. Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry (Lycium barbarum L.): Effects on drying kinetics and quality attributes. Food Bioprod Process. 2017;102:320-31. https://doi.org/10.1016/j.fbp.2017.01.012

50. Santos FSD, de Figueiredo RMF, Queiroz AJDM, de Lima ARC, de Lima TLB. The effect of temperature on the okra drying process: Kinetic study and physical properties of powders. Aust J Crop Sci. 2021;15(5):649-60. https://doi.org/10.1016/j.matpr.2022.02.008

51. Dhurve P, Arora VK, Yadav DK, Malakar S. Drying kinetics, mass transfer parameters, and specific energy consumption analysis of watermelon seeds dried using the convective dryer. Mater Today Proc. 2022;59:926-32.

52. Pham ND, Martens W, Karim MA, Joardder MUH. Nutritional quality of heat-sensitive food materials in intermittent microwave convective drying. Food Nutr Res. 2018;62:10-29219. https://doi.org/10.29219/fnr.v62.1292

53. Martins T, Barros AN, Rosa E, Antunes L. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules. 2023;28(14):5344. https://doi.org/10.3390/molecules28145344

54. Popescu EC, Buruleanu CL. Heat degradation kinetics of the chlorophyll from spinach and its correlation with the reflection spectra. Matrix. 2017;9:830-4.

55. Ebadi M, Mohammadi M, Pezeshki A, Jafari SM. Health benefits of beta-carotene. In: Handbook of Food Bioactive Ingredients: Properties and Applications. Cham: Springer International Publishing; 2023. p. 1-26.

56. Duerbeck NB, Dowling DD, Duerbeck JM. Vitamin C: Promises not kept. Obstet Gynecol Surv. 2016;71(3):187-93. https://doi.org/10.1097/OGX.0000000000000289

57. Bhuyan DJ, Basu A. Phenolic compounds: potential health benefits and toxicity. In: Utilisation of Bioactive Compounds from Agricultural and Food Production Waste. Boca Raton: CRC Press; 2017. p. 27-59.

58. Suryana MR, Haziman ML, Islamawan PA, Hariadi H, Yusuf D. Use of beta-carotene pigment to improve food product chemical and sensory qualities: A review. J Funct Food Nutr. 2023;4(2):67-78. https://doi.org/10.33555/jffn.v4i2.92

59. Da?han ?, Yildirim A, Yilmaz FM, Vardin H, Karaaslan M. The effect of temperature and method of drying on Isot (Urfa pepper) and its vitamin C degradation kinetics. Ital J Food Sci. 2018;30(3):504-21.

60. Pashae M, Hassanpour H. Phenolic, amino acids, and fatty acids profiles and the nutritional properties in the fresh and dried fruits of black rosehip (Rosa pimpinellifolia L.). Sci Rep 2024;14(1):19665. https://doi.org/10.1038/s41598-024-70574-5

61. Pashazadeh H, Redha AA, Koca I. Effect of convective drying on phenolic acid, flavonoid and anthocyanin content, texture and microstructure of black rosehip fruit. J Food Compos Anal. 2024;125:105738. https://doi.org/10.1016/j.jfca.2023.105738

62. Wong DW. Feruloyl esterase: A key enzyme in biomass degradation. Appl Biochem Biotechnol. 2006;133(2):87-112. https://doi.org/10.1385/ABAB:133:2:87

63. Liu RH. Whole grain phytochemicals and health. J Cereal Sci. 2007;46(3):207-19. https://doi.org/10.1016/j.jcs.2007.06.010

64. Bhanja T, Kumari A, Banerjee R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol. 2009;100(11):2861-6. https://doi.org/10.1016/j.biortech.2008.12.055

65. Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO. Bound phenolics in foods, a review. Food Chem. 2014;152:46-55. https://doi.org/10.1016/j.foodchem.2013.11.093

66. Arlai A, Nakkong R, Samjamin N, Sitthipaisarnkun B. The effects of heating on physical and chemical constitutes of organic and conventional okra. Proc Eng. 2012;32:38-44. https://doi.org/10.1016/j.proeng.2012.01.1234

67. Foyer CH, Kyndt T, Hancock RD. Vitamin C in plants: novel concepts, new perspectives, and outstanding issues. Antioxid Redox Signal. 2020;32(7):463-85. https://doi.org/10.1089/ars.2019.781

68. Ahmed IAM, Uslu N, Özcan MM, Juhaimi FA, Ghafoor K, Babiker EE, et al. Effect of conventional oven roasting treatment on the physicochemical quality attributes of sesame seeds obtained from different locations. Food Chem. 2021;338:128109. https://doi.org/10.1016/j.foodchem.2020.128109

69. Omoniyi SA, Idowu MA, Francis PN, Adeola AA. Nutrient Composition and functional properties of okra seed flour and some quality attributes of its soups. J Culin Sci Technol. 2021;19(4):285- 93. https://doi.org/10.1080/15428052.2020.1759169

70. Cornelia M, Anggraini M. Healthy drinks made from okra and green tea extract for reducing blood cholesterol. Food Res. 2020;4(2): 468-73. https://doi.org/10.26656/fr.2017.4(2).315

Article Metrics
9 Views 4 Downloads 13 Total

Year

Month

Related Search

By author names

Similar Articles

Development of Meat-based Functional Foods: A Review

Alim-Un-Nisa, Naseem Zahra, Sajila Hina,Shahid Masood, Ali Javed, Syed ManzarInam

Microbial biotechnology for bio-prospecting of microbial bioactive compounds and secondary metabolites

Ajar Nath Yadav

Effect of diverse fermentation treatments on nutritional composition, bioactive components, and anti-nutritional factors of finger millet (Eleusine coracana L.)

Sumaira Jan, Krishan Kumar, Ajar Nath Yadav, Naseer Ahmed, Priyanka Thakur, Divya Chauhan, Qurat-Ul-Eain Hyder Rizvi, Harcharan Singh Dhaliwal

Application of intermittent vacuum treatment on the osmotic dehydration of black cherry tomatoes (Solanum lycopersicum cv. OG)

Ho Thi Ngan Ha,, Nguyen Minh Thuy

Endophytic Fungi as Emerging Bioresources for Bioactive Compounds for Sustainable Development

Divjot Kour, Neelam Yadav, Ajar Nath Yadav

Biotechnological potential of secondary metabolites: Current status and future challenges

Sofia Sharief Khan, Divjot Kour, Seema Ramniwas, Shaveta Singh, Sanjeev Kumar, Satvinder Kour, Roshi Sharma, Harpreet Kour, Shafaq Rasool, Sarvesh Rustagi, Sangram Singh, Kundan Kumar Chaubey, Ashutosh Kumar Rai, Ajar Nath Yadav

Optimization of pasteurization process of the ready-to-drink beverage from Hong Quan (Flacourtia jangomas) fruit by response surface methodology

Tan Duy Nguyen,, Tuyen Thi Xuan Vo,, Khang Nghia Tran,

Food waste as potential bioresources for extraction of carotenoid of nutraceutical importance: Current research and future challenges

Jeet Nag Das, Suradeep Basak, Vandana Sablania, Rajeshwari Negi, Neelam Yadav,, Sarvesh Rustagi, Sangram Singh, Ashutosh Kumar Rai, Sheikh Shreaz, Ajar Nath Yadav

Prospecting the potential for sustainability, nutritional composition, health benefits, and versatile application of millets: Current research and future challenges

Shweta Dhiman, Krishan Kumar, Tawseefa Jan, Naseer Ahmed, Mohd Aaqib Sheikh, Imran Sheikh, Ashutosh Kumar Rai, Sarvesh Rustagi, Sangram Singh, Sheikh Shreaz, Paridhi Puri, Neelam Yadav,, Ajar Nath Yadav

Microalgae: A valuable bio-resource for pharmaceuticals and nutraceuticals

Sanjesh Tiwari, Vandana Sharma, Anuradha Patel, Vaishali Yadav, Charu Kalra, Garima Singh, Namira Arif, Arushi Khandelwal, Anupam Tiwari, Dileep Kumar Singh

Dehydration kinetics of green banana slices, characterization of optimized product based on physicochemical, nutritional, optical, and sensory attributes

Ram Kaduji Gadhave, Ravneet Kaur, Rahul Das, Kamlesh Prasad