Prospecting the potential for sustainability, nutritional composition, health benefits, and versatile application of millets: Current research and future challenges
Millets, often overshadowed by larger cereal counterparts, are undergoing a renaissance in the realm of nutrition and health. This review delves into their captivating nutritional and nutraceutical potential, uncovering their secrets and highlighting their importance in contemporary diets. Millets emerge as nutritional powerhouses, providing a well-rounded mix of macronutrients, dietary fiber, and plenty of vitamins and minerals. Their significant health benefits include aiding in weight management, controlling glycemic levels, and promoting heart health. Additionally, their antioxidant-rich nature contributes to disease prevention and overall well-being. Notably, millets act as gluten-free champions, offering safe options for individuals with celiac disease and gluten allergenicity. In addition to their nutritional value, millets showcase anti-inflammatory and anticancer properties, paving the way for potential nutraceutical applications. This review also explores culinary innovation, presenting tempting millet-based recipes to seamlessly integrate them into everyday meals, making their inclusion a delightful reality. Additionally, the by-products such as husks and seed coatings obtained from millets are abundant in vitamins, minerals, dietary fiber, and bioactive compounds. Despite the numerous health benefits associated with millets, their full potential remains untapped, with their primary uses revolving around feed and fodder.
Dhiman S, Kumar K, Jan T, Ahmed N, Sheikh MA, Sheikh I, Rai AK, Rustagi S, Singh S, Shreaz S, Puri P, Yadav N, Yadav AN. Prospecting the potential for sustainability, nutritional composition, health benefits, and versatile application of millets: Current research and future challenges. J Appl Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2025.190911
1. Paschapur AU, Joshi D, Mishra KK, Kant L, Kumar V, Kumar A. Millets for life: a brief introduction. In: Kumar A, Tripathi MK, Joshi D, Kumar V (eds.). Millets and millet technology, Springer, Singapore, pp 1-32, 2021. https://doi.org/10.1007/978-981-16-0676-2_1 | |
2. Zhu F. Structure, physicochemical properties and uses of millet starch. Food Res Int 2014;64:200-11. https://doi.org/10.1016/j.foodres.2014.06.026 | |
3. Annor GA, Marcone M, Bertoft E, Seetharaman K. Physical and molecular characterization of millet starches. Cereal Chem 2014;91:286-92. https://doi.org/10.1094/CCHEM-08-13-0155-R | |
4. Obilana AB. Overview: importance of millets in Africa. Enhancing nutritional and functional properties for Africa. In: Belton PS, Taylor JRN (eds.). Proceeding of the Workshop on the proteins of Sorghum and millets, Pretoria, South Africa, vol. 2, no. 4, pp 38:28, 2003 | |
5. Tripathi MK. Nutritional composition of millets. In: Kumar A, Tripathi MK, Joshi D, Kumar V (eds.). Millets millet technology, Springer, Singapore, pp 101-19, 2021. https://doi.org/10.1007/978-981-16-0676-2_5 | |
6. Amadou I, Gbadamosi O, Le G-W. Millet-based traditional processed foods and beverages. A review. Cereal Foods World 2011;56:115. https://doi.org/10.1094/CFW-56-3-0115 | |
7. Englyst K, Goux A, Meynier A, Quigley M, Englyst H, Brack O, et al. Inter-laboratory validation of the starch digestibility method for determination of rapidly digestible and slowly digestible starch. Food Chem 2018;245:1183-9. https://doi.org/10.1016/j.foodchem.2017.11.037 | |
8. Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-López J, et al. Resistant starch as prebiotic: a review. Starch-Stärke 2011;63:406-15. https://doi.org/10.1002/star.201000099 | |
9. Varadharajan KS, Thomas T, Kurpad AV. Poverty and the state of nutrition in India. Asia Pac J Clin Nutr 2013;22:326-39. | |
10. Nithiyanantham S, Kalaiselvi P, Mahomoodally MF, Zengin G, Abirami A, Srinivasan G. Nutritional and functional roles of millets: a review. J Food Biochem 2019;7:e12859. https://doi.org/10.1111/jfbc.12859 | |
11. Bandyopadhyay T, Muthamilarasan M, Prasad M. Millets for next generation climate-smart agriculture. Front Plant Sci 2017;8:1266. https://doi.org/10.3389/fpls.2017.01266 | |
12. Annor GA, Tyl C, Marcone M, Ragaee S, Marti A. Why do millets have slower starch and protein digestibility than other cereals? Trends Food Sci 2017;66:73-83. https://doi.org/10.1016/j.tifs.2017.05.012 | |
13. El Khoury D, Cuda C, Luhovyy B, Anderson G. Beta glucan: health benefits in obesity and metabolic syndrome. J Nutr Metab 2012;2012:1-28. https://doi.org/10.1155/2012/851362 | |
14. Serna Saldivar SO, Espinosa Ramirez J. Grain structure and grain chemical composition. In: Taylor JRN, Duodu KG (eds.). Sorghum and millets: chemistry, technology and nutritional attributes. 2nd edition, Elsevier, Amsterdam, The Netherlands, pp 85-130, 2019. https://doi.org/10.1016/B978-0-12-811527-5.00005-8 | |
15. Vanga SK, Singh A, Orsat V, Raghavan V. Annex 2.5: nutritional comparison of millets with other super foods. McGill University, Quebec, Canada, 2018. Available via http://hdl.handle. net/10625/57034 | |
16. Liu RH. Whole grain phytochemicals and health. J Cereal Sci 2007;46:207-19. https://doi.org/10.1016/j.jcs.2007.06.010 | |
17. Sarita ES, Singh E. Potential of millets: nutrients composition and health benefits. World J Innov Res 2016;5:46-50. https://doi.org/10.31254/jsir.2016.5204 | |
18. Balasubramanian S. Processing of millets. In Paper presented National Seminar on Recent Advances in processing, utilization and nutritional impact of small millets. Madurai Symposium, Thamukkam Grounds, Madurai, Vol. 13, 2013. | |
19. Himanshu K, Sonawane SK, Arya S. Nutritional and nutraceutical properties of millets: a review. Clin J Nutr Diet 2018;1:1-10. | |
20. Bean SR, Zhu L, Smith BM, Wilson JD, Ioerger BP, Tilley M. Starch and protein chemistry and functional properties. Sorghum Millets 2019;1:131-70. https://doi.org/10.1016/B978-0-12-811527-5.00006-X | |
21. Shobana S, Krishnaswamy K, Sudha V, Malleshi N, Anjana R, Palaniappan L, et al. Finger millet (Ragi, Eleusine coracana L.): a review of its nutritional properties, processing, and plausible health benefits. Adv Food Nutr Res 2013;69:1-39. https://doi.org/10.1016/B978-0-12-410540-9.00001-6 | |
22. Slama A, Cherif A, Sakouhi F, Boukhchina S, Radhouane L. Fatty acids, phytochemical composition and antioxidant potential of pearl millet oil. J Consum Prot Food S 2020;15:145-51. https://doi.org/10.1007/s00003-019-01250-4 | |
23. Bora P, Ragaee S, Marcone M. Characterisation of several types of millets as functional food ingredients. Int J Food Sci Nutr 2019;70:714-24. https://doi.org/10.1080/09637486.2019.1570086 | |
24. Vali Pasha K, Ratnavathi CV, Ajani J, Raju D, Manoj Kumar S, Beedu SR. Proximate, mineral composition and antioxidant activity of traditional small millets cultivated and consumed in Rayalaseema region of south India. Sci Food Agric 2018;98:652-60. https://doi.org/10.1002/jsfa.8510 | |
25. Soetan K, Olaiya C, Oyewole O. The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 2010;4:200-22. | |
26. Saldivar S. Cereals: dietary importance. In: Caballero B, Trugo L, Finglas P (eds.). Encyclopedia of food sciences and nutrition, Academic Press, London, UK, pp 1027-33, 2003. https://doi.org/10.1016/B0-12-227055-X/00190-5 | |
27. Oghbaei M, Prakash J. Effect of primary processing of cereals and legumes on its nutritional quality: a comprehensive review. Cogent Food Agric 2016;2:1136015. https://doi.org/10.1080/23311932.2015.1136015 | |
28. Rasane P, Jha A, Kumar A, Sharma N. Reduction in phytic acid content and enhancement of antioxidant properties of nutricereals by processing for developing a fermented baby food. J Food Sci Technol 2015;52:3219-34. https://doi.org/10.1007/s13197-014-1375-x | |
29. Asharani V, Jayadeep A, Malleshi N. Natural antioxidants in edible flours of selected small millets. Int J Food Prop 2010;13:41-50. https://doi.org/10.1080/10942910802163105 | |
30. McDonough CM, Rooney LW, Saldivar S. The millets. In: Kulp K, Ponte Jr JG (eds.). Handbook of cereal science and technology, Marcel Dekker Inc., New York, NY, pp 177-95, 2000. | |
31. Chandel G, Meena RK, Dubey M, Kumar M. Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Curr Sci 2014;10:1109-11. | |
32. Prajapati MR, Patel V, Parekh T, Subhash R. Effect of in bio-processing on antioxidant activity of selected cereals. Asian J Plant Sci 2013;3(2):66-72. | |
33. Chuang SC, Norat T, Murphy N, Olsen A, Tjønneland A, Overvad K, et al. Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr 2012;96:164-74. https://doi.org/10.3945/ajcn.111.028415 | |
34. Liu X, Wu Y, Li F, Zhang D. Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis. Nutr Res 2015;35:753-8. https://doi.org/10.1016/j.nutres.2015.05.021 | |
35. Miki T, Eguchi M, Kurotani K, Kochi T, Kuwahara K, Ito R, et al. Dietary fiber intake and depressive symptoms in Japanese employees: the Furukawa Nutrition and Health Study. Nutrition 2016;32:584-9. https://doi.org/10.1016/j.nut.2015.11.014 | |
36. Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: a meta-analysis of prospective cohort studies. Arch Cardiovasc Dis 2016;109:39-54. https://doi.org/10.1016/j.acvd.2015.09.005 | |
37. Salar RK, Purewal SS. Improvement of DNA damage protection and antioxidant activity of biotransformed pearl millet (Pennisetum glaucum) cultivar PUSA-415 using Aspergillus oryzae MTCC 3107. Biocatal Agric Biotechnol 2016;8:221-7. https://doi.org/10.1016/j.bcab.2016.10.005 | |
38. Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 2015;6:157. https://doi.org/10.3389/fpls.2015.00157 | |
39. Gupta N, Gupta AK, Gaur VS, Kumar A. Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs. Sci World J 2012;2012:625731.https://doi.org/10.1100/2012/625731 | |
40. Mkamilo G, Bedigian D. Sesamum indicum L. record from PROTA4U. In: van der Vossen HAM, Mkamilo GS (eds.). PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), PROTA Programme, Wageningen, The Netherlands, vol. 11(30), 2007. Available via http://database.prota.org/search.htm | |
41. Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 2014;51:1021-40. https://doi.org/10.1007/s13197-011-0584-9 | |
42. Maharajan T, Ceasar SA, Ajeesh Krishna TP. Finger millet (Eleusine coracana (L.) Gaertn): nutritional importance and nutrient transporters. Crit Rev Plant Sci 2022;41(1):1-31. https://doi.org/10.1080/07352689.2022.2037834 | |
43. Krishnan R, Dharmaraj U, Malleshi NG. Influence of decortication, popping and malting on bioaccessibility of calcium, iron and zinc in finger millet. LWT - Food Sci Technol 2012;48:169-74. https://doi.org/10.1016/j.lwt.2012.03.003 | |
44. Ambati K, Sucharitha K. Millets-review on nutritional profiles and health benefits. Int J Recent Sci Res 2019;10:33943-8. | |
45. Austin DF. Fox-tail millets (Setaria: Poaceae) abandoned food in two hemispheres. Economic botany. Int J Recent Sci Res 2006;60: 143-58. https://doi.org/10.1663/0013-0001(2006)60[143:FMSPFI]2.0.CO;2 | |
46. Krishna KR. Agroecosystems: soils, climate, crops, nutrient dynamics and productivity. 1st edition, Apple Academic Press, Oakville, Canada, CRC Press, Boca Raton, FL, 2013. https://doi.org/10.1201/b16300 | |
47. Yang XS, Wang LL, Zhou XR, Shuang SM, Zhu ZH, Li N, et al. Determination of protein, fat, starch, and amino acids in foxtail millet [Setaria italica (L.) Beauv.] by fourier transform near-infrared reflectance spectroscopy. Food Sci Biotechnol 2013;22:1495-500. https://doi.org/10.1007/s10068-013-0243-1 | |
48. Habiyaremye C, Matanguihan JB, D’Alpoim Guedes J, Ganjyal GM, Whiteman MR, Kidwell KK, et al. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, US: a review. Front Plant Sci 2017;8:1961. https://doi.org/10.3389/fpls.2016.01961 | |
49. Upadhyaya H, Sharma S, Gowda C, Reddy VG, Singh S. Developing proso millet (Panicum miliaceum L.) core collection using geographic and morpho-agronomic data. Crop Pasture Sci 2011;62:383-9. https://doi.org/10.1071/CP10294 | |
50. Saxena R, Vanga SK, Wang J, Orsat V, Raghavan V. Millets for food security in the context of climate change: a review. Sustainability 2018;10:2228. https://doi.org/10.3390/su10072228 | |
51. Rajput SG, Plyler-Harveson T, Santra DK. Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am J Plant Sci 2014;5:2014. https://doi.org/10.4236/ajps.2014.51023 | |
52. Gomashe SS. Proso millet, Panicum miliaceum (L.): genetic improvement and research needs. In: Patil JV (ed). Millets and sorghum: biology and genetic improvement, Wiley, Chichester, UK, pp 150-69, 2017. https://doi.org/10.1002/9781119130765.ch5 | |
53. Kalinova J, Moudry J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr 2006;61:43-7. https://doi.org/10.1007/s11130-006-0013-9 | |
54. Saleh AS, Zhang Q, Chen J, Shen Q. Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 2013;12:281-95. https://doi.org/10.1111/1541-4337.12012 | |
55. Deshpande S, Mohapatra D, Tripathi M, Sadvatha R. Kodo millet-nutritional value and utilization in Indian foods. J Grain Process Storage 2015;2:16-23. | |
56. Ravi SB. Neglected millets that save the poor from starvation. Leisa India 2004;6:1-8. | |
57. Johnson M, Deshpande S, Vetriventhan M, Upadhyaya HD, Wallace JG. Genome-wide population structure analyses of three minor millets: kodo millet, little millet, and proso millet. Plant Genome 2019;12:190021. https://doi.org/10.3835/plantgenome2019.03.0021 | |
58. Patil KB, Chimmad BV, Itagi S. Glycemic index and quality evaluation of little millet (Panicum miliare) flakes with enhanced shelf life. J Food Sci Technol 2015;52:6078-82. https://doi.org/10.1007/s13197-014-1663-5 | |
59. Sharma R. Millets as potential nutri-cereals: a review of nutrient composition, phytochemical profile and techno-functionality. Int J Food Sci Tech 2021;56(8):3703-18. https://doi.org/10.1111/ijfs.15044 | |
60. Shahidi F, Chandrasekara A. Millet grain phenolics and their role in disease risk reduction and health promotion: a review. J Funct Foods 2013;5:570-81. https://doi.org/10.1016/j.jff.2013.02.004 | |
61. Romier B, Schneider YJ, Larondelle Y, During A. Dietary polyphenols can modulate the intestinal inflammatory response. Nutr Rev 2009;67:363-78. https://doi.org/10.1111/j.1753-4887.2009.00210.x | |
62. Lakshmi Kumari P, Sumathi S. Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods Hum Nutr 2002;57:205-13. https://doi.org/10.1023/A:1021805028738 | |
63. Czaja-Bulsa G. Non coeliac gluten sensitivity-a new disease with gluten intolerance. Clin Nutr 2015;34:189-94. https://doi.org/10.1016/j.clnu.2014.08.012 | |
64. Kumar A, Tomer V, Kaur A, Kumar V, Gupta K. Millets: a solution to agrarian and nutritional challenges. AgriC Food Secur 2018;7:1-15. https://doi.org/10.1186/s40066-018-0183-3 | |
65. Durairaj M, Gurumurthy G, Nachimuthu V, Muniappan K, Balasubramanian S. Dehulled small millets: the promising nutricereals for improving the nutrition of children. Matern Child Nutr 2019;15:e12791. https://doi.org/10.1111/mcn.12791 | |
66. Chandrasekara A, Naczk M, Shahidi F. Effect of processing on the antioxidant activity of millet grains. Food Chem 2012;133:1-9. https://doi.org/10.1016/j.foodchem.2011.09.043 | |
67. Hithamani G, Srinivasan K. Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Chem 2014;164:55-62. https://doi.org/10.1016/j.foodchem.2014.04.107 | |
68. Salar RK, Purewal SS, Bhatti MS. Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC- 548. Resour-Effic Technol 2016;2:148-57. https://doi.org/10.1016/j.reffit.2016.08.002 | |
69. Chethan S, Malleshi N. Finger millet polyphenols: characterization and their nutraceutical potential. Am J Food Technol 2007;2:582-92. https://doi.org/10.3923/ajft.2007.582.592 | |
70. Pradeep P, Sreerama YN. Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem 2015;169:455-63. https://doi.org/10.1016/j.foodchem.2014.08.010 | |
71. Dias-Martins AM, Pessanha KLF, Pacheco S, Rodrigues JAS, Carvalho CWP. Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: food security, processing, health benefits and nutritional products. Food Res Int 2018;109:175-86. https://doi.org/10.1016/j.foodres.2018.04.023 | |
72. Faostat F. Food and agriculture organization of the United Nations (FAO). 2016. Available via http://www.fao.org/faostat/en/-data/QC | |
73. Salar RK, Certik M, Brezova V. Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with Thamnidium elegans CCF 1456. Biotechnol Bioprocess Eng 2012;17:109-16. https://doi.org/10.1007/s12257-011-0455-2 | |
74. Dayakar RB, Bhaskarachary K, Arlene Christina GD, Sudha Devi G, Tonapi A. Nutritional and health benefits of millets. ICAR, Indian Institute of Millets Research (IIMR), Hyderabad, India, p 112, 2017. | |
75. Chandrasekara A, Shahidi F. Antioxidant phenolics of millet control lipid peroxidation in human LDL cholesterol and food systems. J Am Oil Chem 2012;89:275-85. https://doi.org/10.1007/s11746-011-1918-5 | |
76. Lee SH, Chung IM, Cha YS, Park Y. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr Res 2010;30:290-6. https://doi.org/10.1016/j.nutres.2010.04.007 | |
77. Pereira GA, Arruda HS, de Morais DR, Eberlin MN, Pastore GM. Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Res Int 2018;108:264-73. https://doi.org/10.1016/j.foodres.2018.03.046 | |
78. Nayak N. Advances in the novel and green-assisted techniques for extraction of bioactive compounds from millets: a comprehensive review. Heliyon 2024;10(10):e30921. | |
79. Jakopic J, Stampar F, Veberic R. The influence of exposure to light on the phenolic content of ‘Fuji’apple. Sci Hortic 2009;123:234-9. https://doi.org/10.1016/j.scienta.2009.09.004 | |
80. Hegde PS, Rajasekaran NS, Chandra T. Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutr Res 2005;25:1109-20. https://doi.org/10.1016/j.nutres.2005.09.020 | |
81. Hotz C, Gibson RS. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 2007;137:1097-100. https://doi.org/10.1093/jn/137.4.1097 | |
82. Gessaroli M, Frazzoni L, Sikandar U, Bronzetti G, Pession A, Zagari RM, et al. Nutrient intakes in adult and pediatric coeliac disease patients on gluten-free diet: a systematic review and meta-analysis. Eur J Clin Nutr 2023;77:784-93. https://doi.org/10.1038/s41430-023-01280-0 | |
83. Lestienne I, Buisson M, Lullien-Pellerin V, Picq C, Trèche S. Losses of nutrients and anti-nutritional factors during abrasive decortication of two pearl millet cultivars (Pennisetum glaucum). Food Chem 2007;100:1316-23. https://doi.org/10.1016/j.foodchem.2005.11.027 | |
84. Bangoura ML, Nsor-Atindana J, Ming ZH. Solvent optimization extraction of antioxidants from foxtail millet species’ insoluble fibers and their free radical scavenging properties. Food Chem 2013;141:736-44. https://doi.org/10.1016/j.foodchem.2013.03.029 | |
85. Viswanath V, Urooj A, Malleshi N. Evaluation of antioxidant and antimicrobial properties of finger millet polyphenols (Eleusine coracana). Food Chem 2009;114:340-6. https://doi.org/10.1016/j.foodchem.2008.09.053 | |
86. Suma PF, Urooj A. Antioxidant activity of extracts from foxtail millet (Setaria italica). J Food Sci Technol 2012;49:500-4. https://doi.org/10.1007/s13197-011-0300-9 | |
87. Okwudili UH, Gyebi DK, Obiefuna JAI. Finger millet bioactive compounds, bioaccessibility, and potential health effects-a review. Czech J Food Sci 2017;35:7-17. https://doi.org/10.17221/206/2016-CJFS | |
88. Verma V, Patel S. Nutritional security and value added products from finger millets (ragi). J Applicable Chem 2012;1:485-9. | |
89. Rao BD, Ganapathy K, Patil J. Sorghum/Millets: small grains, a big gain. Commodity of India, India, pp 1-6, 2013. | |
90. Chandrasekara A, Shahidi F. Bioactivities and antiradical properties of millet grains and hulls. J Agric Food Chem 2011;59:9563-71. https://doi.org/10.1021/jf201849d | |
91. Venkateswaran V, Vijayalakshmi G. Finger millet (Eleusine coracana) an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus. J Food Sci Technol 2010;47:426-31. https://doi.org/10.1007/s13197-010-0070-9 | |
92. Lei V, Friis H, Michaelsen KF. Spontaneously fermented millet product as a natural probiotic treatment for diarrhoea in young children: an intervention study in Northern Ghana. Int J Food Microbiol 2006;110:246-53. https://doi.org/10.1016/j.ijfoodmicro.2006.04.022 | |
93. Rajasekaran N, Nithya M, Rose C, Chandra T. The effect of finger millet feeding on the early responses during the process of wound healing in diabetic rats. Biochim Biophys Acta (BBA)-Mole Basis Dis 2004;1689:190-201. https://doi.org/10.1016/j.bbadis.2004.03.004 | |
94. Shobana S, Harsha MR, Platel K, Srinivasan K, Malleshi NG. Amelioration of hyperglycaemia and its associated complications by finger millet (Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats. Br J Nutr 2010;104:1787-95. https://doi.org/10.1017/S0007114510002977 | |
95. Pawar VD, Machewad GM. Processing of foxtail millet for improved nutrient availability. J Food Process 2006;30:269-79. https://doi.org/10.1111/j.1745-4549.2006.00064.x | |
96. Hassan AB, Ahmed IAM, Osman NM, Eltayeb MM, Osman GA, Babiker EE. Effect of processing treatments followed by fermentation on protein content and digestibility of pearl millet (Pennisetum typhoideum) cultivars. Pak J Nutr 2006;5:86-9. https://doi.org/10.3923/pjn.2006.86.89 | |
97. Zvauya R, Mygochi T, Parawira W. Microbial and biochemical changes occurring during production of masvusvu and mangisi, traditional Zimbabwean beverages. Plant Foods Hum Nutr 1997;51:43-51. https://doi.org/10.1023/A:1007972428849 | |
98. Dirar HA. Commentary: the fermented foods of the Sudan. Ecol Food Nutr 1994;32:3-4. https://doi.org/10.1080/03670244.1994.9991401 | |
99. Kubo R. The reason for the preferential use of finger millet (Eleusine coracana) in eastern African brewing. J Inst Brew 2016;122:175-80. https://doi.org/10.1002/jib.309 | |
100. Jan S. Effect of diverse fermentation treatments on nutritional composition, bioactive components, and anti-nutritional factors of finger millet (Eleusine coracana L.). J Appl Biol 2022;10(1):46-52. https://doi.org/10.7324/JABB.2022.10s107 | |
101. Mishra G, Joshi DC, Panda BK. Popping and puffing of cereal grains: a review. J Grain Process Storage 2014;1:34-46. | |
102. Kang R, Jain R, Mridula D. Impact of indigenous fiber rich premix supplementation on blood glucose levels in diabetics. Am J Food Technol 2008;3:50-5. https://doi.org/10.3923/ajft.2008.50.55 | |
103. Palanisamy BD, Rajendran V, Sathyaseelan S, Bhat R, Venkatesan BP. Enhancement of nutritional value of finger millet-based food (Indian dosa) by co-fermentation with horse gram flour. Int J Food Sci Nutr 2012;63:5-15. https://doi.org/10.3109/09637486.2011.591367 | |
104. Jaybhaye R, Pardeshi I, Vengaiah P, Srivastav P. Processing and technology for millet based food products: a review. J Ready Eat Food 2014;1:32-48. | |
105. Rao BD, Kalpana K, Srinivas K, Patil JV. Development and standardization of sorghum-rich multigrain flour and assessment of its storage stability with addition of TBHQ. J Food Process Preserv 2014;39:451-7. https://doi.org/10.1111/jfpp.12250 | |
106. Verma V, Patel S. Value added products from nutri-cereals: finger millet (Eleusine coracana). Emir J Food Agric 2013;25(3):169-76. https://doi.org/10.9755/ejfa.v25i3.10764 | |
107. Hema V. Millet food products. In: Rawson A, Sunil CK (eds.). Handbook of millets-processing, quality, and nutrition status, Springer, Berlin, Germany, pp 265-99, 2022. https://doi.org/10.1007/978-981-16-7224-8_12 | |
108. Singh P, Raghuvanshi RS. Finger millet for food and nutritional security. Afr J Food Sci 2012;6:77-84. https://doi.org/10.5897/AJFSX10.010 | |
109. Kumar S, Rekha SL, Sinha L. Verma V, Patel S. Evaluation of quality characteristics of soy based millet biscuits. Adv Appl Sci Res 2010;1:187-96. | |
110. Oyarekua M, Eleyinmi A. Comparative evaluation of the nutritional quality of corn, sorghum and millet ogi prepared by a modified traditional technique. J Food Agric Environ 2004;2:94-9. | |
111. Shah P. Opportunities and challenges in food entrepreneurship: in-depth qualitative investigation of millet entrepreneurs. J Bus Res 2023;155:113372. https://doi.org/10.1016/j.jbusres.2022.113372 | |
112. Malleshi NG. Decorticated finger millet (Eleusine coracana) and process for the preparation of decorticated finger millet. U.S. Patent 7,029,720, 2006 April 18. | |
113. Chen X, Mi H, Cui K, Zhou R, Tian S, Zhang L. Effects of diets containing finger millet straw and corn straw on growth performance, plasma metabolites, immune capacity, and carcass traits in fattening lambs. Animals 2020;10:1285. https://doi.org/10.3390/ani10081285 | |
114. Bappah M, Bradna J, Mala?ák J, Vaculík P. Viability of some African agricultural by-products as a feedstock for solid biofuel production. Res Agric Eng 2022;68:210-5. https://doi.org/10.17221/74/2021-RAE |
Year
Month