Evaluating cytochrome C oxidase subunit 1 and NADH dehydrogenase 1 mitochondrial genes for five Buthidae scorpions with maximum likelihood, Bayesian inference, and parsimony analyses
The Buthidae family is a widespread family of scorpions distributed worldwide. Most of the lethal scorpions belong to this family, which comprises Androctonus, Leiurus, and Buthacus scorpion genera. Although morphological characteristics have various unclear phylogenetic relationships and characteristic polarity assumptions among these scorpion species, the molecular markers method is preferred by many researchers to determine genetic relationships between family members due to the variability of geographic areas and environmental factors associated with different habitats. The DNA barcoding system has been used in species comparison by sequencing conserved DNA standard loci sequences. This phylogeny study covered scorpion species from the following countries: Algeria, Morocco, Egypt, Tunisia, Sudan, and Iran to have more information on molecular identification between Androctonus species (Androctonus crassicauda, Androctonus bicolor, and Androctonus amoreuxi), Buthus species (Buthacus arenicola), and Leiurus species (Leiurus quinquestriatus) using cytochrome C oxidase subunit 1 (CO1) and NADH dehydrogenase 1 (ND1). Our results indicate that CO1 as a mitochondrial marker is a more informative molecular marker and reflects partial but not identical evolutionary patterns with ND1 that yielded inconsistent phylogenetic groupings, exhibiting fast evolutionary rates, and moderate-to-severe substitution saturation; the concatenated sequences provided higher resolution and support values, which demonstrates the worth of multigene investigations in scorpion systematics.
Aldeyarbi S, Abu Almaaty AH, Hassan MK. Evaluating cytochrome C oxidase subunit 1 and NADH dehydrogenase 1 mitochondrial genes for five Buthidae scorpions with maximum likelihood, Bayesian inference, and parsimony analyses. J App Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2026.272599
1. Fet V. SWDLG, Braunwalder ME. Catalog of the Scorpions of the World (1758-1998). New York: The New York Entomological Society; 2000.
2. Fet V, Gantenbein B, Gromov A, Lowe G, Lourenco WR. The first molecular phylogeny of Buthidae (Scorpiones). Euscorpius. 2003;2003:1-2. https://doi.org/10.18590/euscorpius.2003.vol2003.iss4.1
3. Levy G, Amitai P. Fauna Palaestina. Arachnida I: Scorpiones. Israel: Israel Academy of Sciences and Humanities; 1980.
4. Lourenço WR. Scorpion incidents, misidentification cases and possible implications for the final interpretation of results. J Venom Anim Toxins Incl Trop Dis. 2016;22:1. https://doi.org/10.1186/s40409-016-0075-6
5. Coelho P, Sousa P, Harris DJ, van der Meijden A. Deep intraspecific divergences in the medically relevant fat-tailed scorpions (Androctonus, Scorpiones). Acta Trop. 2014;134:43-51.https://doi.org/10.1016/j.actatropica.2014.02.002
6. Ismail M, Abd-Elsalam MA, Al-Ahaidib MS. Androctonus crassicauda (Olivier), a dangerous and unduly neglected scorpion-I. Pharmacological and clinical studies. Toxicon. 1994;32:1599-618.https://doi.org/10.1016/0041-0101(94)90319-0
7. Lowe G, Ya?mur EA, Kova?ík F. A review of the genus Leiurus Ehrenberg, 1828 (Scorpiones: Buthidae) with description of four new species from the Arabian Peninsula. Euscorpius. 2014;191:1-129. https://doi.org/10.18590/euscorpius.2014.vol2014.iss191.1
8. Lourenço WR, Qi JX, Cloudsley-Thompson JL. The African species of the genus Leiurus Ehrenberg, 1828 (Scorpiones: Buthidae) with the description of a new species. Bol Soc Entomol Aragon. 2006;39:97-101.
9. Lourenço WR, Kourim ML, Sadine SE. Scorpions from the Region of Tamanrasset, Algeria. Part I. A New Species of Buthacus birula, 1908 (Scorpiones: Buthidae). Arachnida-Rivista Aracnol Ital. 2017;13: 31-41.
10. Fet V, Michael SE, Lowe G. A new trichobothrial character for the high-level systematics of Buthoidea (Scorpiones: Buthida). Euscorpius. 2005;2005:1-40. https://doi.org/10.18590/euscorpius.2005.vol2005.iss23.1
11. Salem ML, Shoukry NM, Teleb WK, Abdel-Daim MM, Abdel- Rahman MA. In Vitro and in Vivo Antitumor Effects of the Egyptian Scorpion Androctonus amoreuxi Venom in an Ehrlich Ascites Tumor Model. Berlin: Springerplus; 2016. p. 5. https://doi.org/10.1186/s40064-016-2269-3
12. Dehesa-Dávila M, Martin BM, Nobile M, Prestipino G, Possani LD. Isolation of a toxin from Centruroides infamatus infamatus Koch scorpion venom that modifies Na+ permeability on chick dorsal root ganglion cells. Toxicon. 1994;32:1487-93. https://doi.org/10.1016/0041-0101(94)90307-7
13. Sharma PP, Fernández R, Esposito LA, Gonzalez-Santillan E, Monod L. Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proc Biol Sci. 2015;282:20142953. https://doi.org/10.1098/rspb.2014.2953
14. Ozkan O, Ahmet C, Zafer K. A study on the genetic diversity of Androctonus crassicauda (olivier, 1807 Scorpiones: Buthidae) from Turkey. J Venom Anim Toxins Incl Trop Dis. 2010;16:599-606.https://doi.org/10.1590/S1678-91992010000400010
15. Mohamad IL, Elsayh KI, Mohammad HA, Saad K, Zahran AM, Abdallah AM, et al. Clinical characteristics and outcome of children stung by scorpion. Eur J Pediatr. 2014;173:815-8.https://doi.org/10.1007/s00431-013-2244-8
16. Santibáñez-López CE, Francke OF, Ureta C, Possani LD. Scorpions from Mexico: From species diversity to venom complexity. Toxins (Basel). 2015;8:2. https://doi.org/10.3390/toxins8010002
17. Fet V, El-Hennawy H, Braunwalder ME, Cloudsley-Thompson JL. The first observation on scorpion biogeography by Aristotle. Bol Soc Entomol Aragon. 2009;44:147-50.
18. El-Hennawy HK. Scorpions in ancient Egypt. Euscorpius. 2011;2011:1-12. https://doi.org/10.18590/euscorpius.2011.vol2011.iss119.1
19. Sarhan M, Badry A, Younes M, Saleh M. Genetic diversity within Leiurus quinquestriatus (Scorpiones: Buthidae) populations in Egypt as inferred from 16S mDNA sequence analysis. Zool Middle East. 2020;66:269-76. https://doi.org/10.1080/09397140.2020.1788256
20. Mirshamsi O, Sari A, Elahi E, Hosseinie S. Phylogenetic relationships of Mesobuthus eupeus (C.L. Koch, 1839) inferred from COI sequences (Scorpiones: Buthidae). J Nat Hist. 2010;44:2851-72.https://doi.org/10.1080/00222933.2010.512400
21. Fet V, Kova?ík F, Gantenbein B, Kaiser RC, Stewart AK, Graham MR. Revision of the Mesobuthus caucasicus complex from central Asia, with descriptions of six new species (Scorpiones: Buthidae). Euscorpius. 2018;255:1-77. https://doi.org/10.18590/euscorpius.2018.vol2018.iss255.1
22. Sadílek D, Nguyen P, Koç HL, Kova?ík F, Ya?mur EA, Stahlavsky F. Molecular cytogenetics of Androctonus scorpions: An oasis of calm in the turbulent karyotype evolution of the diverse family Buthidae. Biol J Linnean Soc. 2015;115:69-76. https://doi.org/10.1111/bij.12488
23. Sousa P, Froufe E, James Harris D, Alves PC, van der Meijden A. Genetic diversity of maghrebian Hottentotta (Scorpiones: Buthidae) scorpions based on CO1: New insights on the genus phylogeny and distribution. Afr Invertebr. 2011;52:135-43. https://doi.org/10.5733/afin.052.0106
24. Gantenbein B, Fet V, Gantenbein-Ritter IA, Balloux F. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proc Biol Sci. 2005;272:697-704.https://doi.org/10.1098/rspb.2004.3017
25. Ali ZB, Boursot P, Said K, Lagnel J, Chatti N, Navajas AM. Comparison of ribosomal ITS regions among Androctonus spp. Scorpions (Scorpionida: Buthidae) from Tunisia. J Med Entomol. 2000;37:787-90. https://doi.org/10.1603/0022-2585-37.6.787
26. Ben Othmen A, Said K, Mahamdallie SS, Testa JM, Haouas Z, Chatti N, et al. Phylogeography of Androctonus species (Scorpiones: Buthidae) in Tunisia: Diagnostic characters for linking species to scorpionism. Acta Trop. 2009;112:77-85. https://doi.org/10.1016/j.actatropica.2009.07.001
27. Alqahtani AR, Badry A. Genetic diversity among different species of the genus Leiurus (Scorpiones: Buthidae) in Saudi Arabia and the Middle East. Saudi J Biol Sci. 2020;27:3348-53.https://doi.org/10.1016/j.sjbs.2020.08.048
28. Galtier N, Nabholz B, Glémin S, Hurst GD. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol Ecol. 2009;18:4514-50. https://doi.org/10.1111/j.1365-294X.2009.04380.x
29. Soltan-Alinejad P, Rafinejad J, Dabiri F, Onorati P, Terenius O, Chavshin AR. Molecular analysis of the mitochondrial markers COI, 12S rDNA and 16S rDNA for six species of Iranian scorpions. BMC Res Notes. 2021;14:40. https://doi.org/10.1186/s13104-021-05449-3
30. Kartavtsev YP, Rozhkovan KV, Masalkova NA. Phylogeny based on two mtDNA genes (Co-1, Cyt-B) among Sculpins (Scorpaeniformes, Cottidae) and some other scorpionfish in the Russian Far East. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27:2225-40. https://doi.org/10.3109/19401736.2014.984164
31. Ghavami MB, Alibabaei Z, Ghavami F. Molecular survey of mitochondrial genes in different populations of the black fat-tailed scorpion, Androctonus crassicauda. J Arthropod Borne Dis. 2022;16:84-96. https://doi.org/10.18502/jad.v16i2.11799
32. Almaaty AA, Aldeyarbi S. COI-Based Molecular Phylogeny of Some Buthidae Scorpions from Egypt. J Biotech Res. 2022;13:18-25.
33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547-9. https://doi.org/10.1093/molbev/msy096
34. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947-8. https://doi.org/10.1093/bioinformatics/btm404
35. Swofford DL. Phylogenetic Analysis Using Parsimony. Sunderland: Sinauer Associates; 1998. p. d64.
36. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572-4. https://doi.org/10.1093/bioinformatics/btg180
37. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution (N Y). 1985;39:783-91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
38. Kolde R. pheatmap: Pretty Heatmaps. Version 1.0.13. R Package. CRAN; 2025. Available from: https://CRAN.R-project.org/package=pheatmap
39. Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289-90. https://doi.org/10.1093/bioinformatics/btg412
40. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Stevens MH, et al. The Vegan Package: Community Ecology Package, Version 1.13-1. R package; 2008. Available from: http://vegan.r-forge.r-project.org
41. Charif D, Lobry JR. SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. New York: Springer Verlag; 2007. 42. Schliep KP. Phangorn: Phylogenetic analysis in R. Bioinformatics. 2011;27:592-3. https://doi.org/10.1093/bioinformatics/btq706
43. Xia X, Xie Z, Salemi M, Chen L, Wang Y. An index of substitution saturation and its application. Mol Phylogenet Evol. 2003;26:1-7. https://doi.org/10.1016/S1055-7903(02)00326-3
44. Omran MA, McVean A. Intraspecific variation in scorpion Leiurus quinquestriatus venom collected from Egypt (Sinai and Aswan deserts). J Toxicol Toxin Rev. 2000;19:247-64.https://doi.org/10.1081/TXR-100102322
45. Pimenta AM, De Marco Almeida F, De Lima ME, Martin- Eauclaire MF, Bougis PE. Individual variability in Tityus serrulatus (Scorpiones, Buthidae) venom elicited by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:413-8. https://doi.org/10.1002/rcm.934
46. Borges A, García CC, Lugo E, Alfonzo MJ, Jowers MJ, Op Den Camp HJ. Diversity of long-chain toxins in Tityus zulianus and Tityus discrepans venoms (Scorpiones, Buthidae): Molecular, immunological, and mass spectral analyses. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142:240-52. https://doi.org/10.1016/j.cbpc.2005.10.011
47. Abdel-Rahman MA, Omran MA, Abdel-Nabi IM, Ueda H, McVean A. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. Toxicon. 2009;53:349-59. https://doi.org/10.1016/j.toxicon.2008.12.007
48. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585-95. https://doi.org/10.1093/genetics/123.3.585
49. Xu W, Zhang G, Xu T, He K, Wang J, Liu Z, et al. Comparative analysis of mitochondrial genomes from Buthidae (Scorpiones): Gene rearrangement and phylogenetic implications. Arthropod Syst Phylogeny. 2025;83:3-13. https://doi.org/10.3897/asp.83.e140421
50. Song SN, Tang P, Wei SJ, Chen XX. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Sci Rep. 2016;6:20972. https://doi.org/10.1038/srep20972
51. Santibáñez-López CE, Ojanguren-Affilastro AA, Graham MR, Sharma PP. Congruence between ultraconserved element-based matrices and phylotranscriptomic datasets in the scorpion Tree of Life. Cladistics. 2023;39:533-47. https://doi.org/10.1111/cla.12551
52. Badry A, Younes M, Sarhan MM, Saleh M. On the scorpion fauna of Egypt, with an identification key (Arachnida: Scorpiones). Zool Middle East. 2018;64:1414976. https://doi.org/10.1080/09397140.2017.1414976
53. Jafari H, Salabi F, Navidpour S, Forouzan A. Phylogenetic and morphological analyses of Androctonus crassicuda from khuzestan province, Iran (Scorpiones: Buthidae). Arch Razi Inst. 2020;75:405-12.
54. Bayatzadeh MA, Mirakabadi AZ, Babaei N, Doulah AH, Doosti A. Characterization, molecular modeling and phylogenetic analysis of a long mammalian neurotoxin from the venom of the Iranian scorpion Androctonus crassicauda. Biologia (Bratisl). 2020;75:1029-41. https://doi.org/10.2478/s11756-019-00400-1
55. Alqahtani AR, Badry A. Interspecific phylogenetic relationship among different species of the genus Buthacus (Scorpiones: Buthidae) inferred from 16S rRNA in Egypt and Saudi Arabia. Zool Middle East. 2020;66:178-85. https://doi.org/10.1080/09397140.2020.1742991
56. Alqahtani AR, Badry A, Aly H, Amer SA, Al Galil FM, Ahmed MA, et al. Genetic diversity and population structure of Androctonus crassicauda (Scorpiones: Buthidae) in different ecogeographical regions of Saudi Arabia and Iran. Zool Middle East. 2022;68:171-9. https://doi.org/10.1080/09397140.2022.2051915
57. Lourenço WR. Further considerations on the genus Buthacus Birula, 1908 (Scorpiones, Buthidae) with a description of one new species and two new subspecies. Bol SEA. 2006;38:59-70.
58. Salama WM, Sharshar KM. Surveillance study on scorpion species in Egypt and comparison of their crude venom protein profiles. J Basic Appl Zool. 2013;66:76-86. https://doi.org/10.1016/j.jobaz.2013.10.003
59. Folmer O, Hoeh WR, Black MB, Vrijenhoek RC. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294-9.
60. Hedin MC. Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Mol Biol Evol. 1997;14:309-24. https://doi.org/10.1093/oxfordjournals.molbev.a025766
Year
Month
Eisenia fetida and Eisenia andrei delimitation by Automated Barcode Gap Discovery and neighbor-joining analyses: A review
Rajesh Dhakane, Anant ShindeGenetic Structure and Phylogenetic Status of Rice Brown Plant Hopper (BPH), Nilaparvata lugens Isolated from Kerala, India
K. Mashhoor, K.V. Lazar, S. Shanas, N. RameshPhylogenetic analysis of some hard ticks from India using mitochondrial 16s rDNA
Harpreet Kaur, Shivani ChhillarMolecular Phylogeny of Balsams (Genus Impatiens) Based on ITS Regions of Nuclear Ribosomal DNA Implies Two Colonization Events in South India
P. P. Shajitha, N. R. Dhanesh, P. J. Ebin, Laly Joseph, Aneesha Devassy, Reshma John, Jomy Augustine, Linu MathewGenetic diversity and phylogenetic analyses of culturable extremely haloarchaea isolated from marine solar saltern pond in Mumbai, India
Dipak T. Nagrale , Renu, Priyanka DasIdentification of highest L-Methioninase enzyme producers among soil microbial isolates, with potential antioxidant and anticancer properties
D. Kavya, Varalakshmi Kilingar NadumaneField treatment of three wheat varieties with Trichoderma harzianum bioagent to control Anguina tritici
Nawres Abdulelah Sadeq Alkuwaiti, Ammar Amjad Aish, Saad Tareq Abdulmalak, Tariq A. Kareem, Mohammed Mahmood SulaimanAn exploration of the phylogeny and phylogeographic relationships of the subfamily Salacioideae
Shrisha Naik Bajpe, Kuppuru Mallikarjunaiah Marulasiddaswamy, Manu G, Abhijeeth S Badiger, Ramith Ramu, Maruthi Katenahally Rudrappa, Kukkundoor Ramachandra KiniComparative and evolutionary analyses of cyclophilins in Cucumis sativus, Phaseolus vulgaris, and Vitis vinifera
Neelam Yadav, Neha Bharill, Yashi Gautam, Rishiraj Raghuvanshi, Shikha Meda, Krishnan Hajela, Bhushan Dholakia, Aruna Tiwari, Prashanth Suravajhala, Milind B. RatnaparkheDetection of 3243 A/G and 3316 G/A mitochondrial DNA mutations in Nagpur population
Utpal Jagdish Dongre, Virendra Govindrao Meshram