Research Article | Volume 11, Issue 1, January, 2023

Field treatment of three wheat varieties with Trichoderma harzianum bioagent to control Anguina tritici

Nawres Abdulelah Sadeq Alkuwaiti Ammar Amjad Aish Saad Tareq Abdulmalak Tariq A. Kareem Mohammed Mahmood Sulaiman   

Open Access   

Published:  Nov 22, 2022

DOI: 10.7324/JABB.2023.110128
Abstract

A field experiment was performed to assess the susceptibility of Triticum aestivum L. var. Cham 6, Aras, and Baraka wheat local varieties, treated with Trichoderma harzianum Rifai bioagent, against seed gall infection. Anguina tritici identification was confirmed based on PCR amplification and sequence comparison of 18S small subunit ribosomal DNA. Sequence analysis showed A. tritici isolated from Waset and Kirkuk provinces shared 100% maximum nucleotide sequence identity with the equivalent GenBank sequences from Mexico (AF363107) and India (JF826516), respectively, suggesting their common origin. Field experiment revealed that T. aestivum L. var. Aras was less susceptible to seed call infection when scored 28.9% infectivity percent followed by Baraka and Cham 6 varieties which scored 29.6 and 33.1% infectivity, respectively. T. harzianum root watering treatment could decrease the disease incidence when scored 15.4, 17.5, and 19.7% compared to spraying treatment which scored 19.3, 20.8, and 22.4% infectivity, for Aras, Baraka, and Cham 6 varieties, respectively. Besides, root watering treatment reduced seed gall disease up to 46.71% compared to 33.22% for foliar spraying treatment. Thus, T. harzianum bioagent can be used as an ecofriendly nematicide alternative to control seed gall disease in Iraq.


Keyword:     Phylogeny Eco-friendly pesticide Biocontrol rDNA


Citation:

Alkuwaiti NAS, Aish AA, Abdulmalak ST, Kareem TA, Sulaiman MM. Field treatment of three wheat varieties with Trichoderma harzianum bioagent to control Anguina tritici. J App Biol Biotech. 2023;11(1):200-204. https://doi.org/10.7324/JABB.2023.110128

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Skantar AM. Anguina tritici (Wheat Seed Gall Nematode). Invasive Species Compendium. Wallingford, UK: CABI; 2018. Available from: https://www.cabi.org/isc/datasheet/5388 [Last accessed on 2022 Apr 03].

2. Shewry PR. Wheat. J Exp Bot 2019;60:1537-53. https://doi.org/10.1093/jxb/erp058

3. Hirst KK. Wheat Domestication. Thought Co.; 2021. Available from: https://www.thoughtco.com/wheat-domestication-the-history-170669 [Last accessed on 2022 May 16].

4. FAOSTAT, Crops and Livestock Products. Available from: https://www.fao.org/faostat/en/#data/QCL [Last accessed on 2022 May 16].

5. Wheat Atlas. Available from: http://wheatatlas.org [Last accessed on 2022 May 16].

6. Dababat AA, Muminjanov H, Smiley R. Nematodes of small grain cereals current status and research. In: 5th International Cereal Nematode Initiative Workshop, 12-15 September 2015. Ankara, Turkey: Food and Agriculture Organization of the United Nations, Ankara, Turkey, 2015.

7. Rao RS. A Preliminary List of Insect Pest of Iraq. Bombay: Times Press; 1921.

8. Ami SN, Taher IE, Hussen FS, Ahmed AI. First molecular identification of wheat seed gall nematode Anguina tritici races parasitized on wheat in Iraq. Acta Univ Sapientiae Agric Environ 2019;11:5-15. https://doi.org/10.2478/ausae-2019-0001

9. Stephan ZA, Antoon BG. Biotypes of ear cockle nematode Anguina tritici in Iraq. Curr Nematol 1990;1:85-8.

10. Ami SN, Taher IE. Survey, races identification and host range of wheat seed gall nematode Anguina tritici Duhok Province, Kurdistan region Iraq. J Agric Vet Sci 2014;7:44-8. https://doi.org/10.9790/2380-07524448

11. Ami SN, Mustafa SA. Susceptibility of certain wheat and barley cultivars to seed gall nematode Anguina tritici (Steinbech,1979) Filipjev, 1936. Mesopotamia J Agric 2012;40:217-23. https://doi.org/10.33899/magrj.2012.60621

12. Hassan AA, Hindi YK. Integrated control of Anguina tritici by some nematodacides and Trichoderma harzianum isolated from wheat fields in Salah Aldin governorate. Tikrit J Agric Sci 2015;15:85-98.

13. Al-Taie AH, Al-Zubaidi NK. Interaction efficiency of Trichoderma spp. and some plant extracts against ear-cockle disease. J Appl Biol Biotechnol 2022;10:102-7.

14. Fattah FA, Al-Assas K. Histopathological comparison of galls induced by Anguina tritici with galls subsequently colonised by Rathayibacter tritici in wheat. Nematol Mediterr 2010;109:195-8.

15. Szalanski AL, Sui DD, Harris TS, Powers TO. Identification of cyst nematodes of agronomic and regulatory concern by PCR-RFLP of ITS1. J Nematol 1997;29:255-67.

16. Cherry T, Szalanski AL, Todd TC, Powers TO. The internal transcribed spacer region of Belonolaimus (Nemata: Belonolaimidae). J Nematol 1997;29:23-9.

17. Vrain TC, Wakarchuk AC, Levesque AC, Hamilton RI. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundam Appl Nematol 1992;15:563-73.

18. Sambrook JF, Russell D. Condensed Protocols: From Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 2006. https://doi.org/10.1101/pdb.prot3919

19. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021;38:3022-7. https://doi.org/10.1093/molbev/msab120

20. Muhire BM, Varsani A, Martin DP. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 2014;9:e108277. https://doi.org/10.1371/journal.pone.0108277

21. Carta LK, Li S. Improved 18S small subunit rDNA primers for problematic nematode amplification. J Nematol 2018;50:533-42. https://doi.org/10.21307/jofnem-2018-051

22. Lambert K, Bekal S. Introduction to plant-parasitic nematodes. Plant Health Instr 2002;10:1094-1218. https://doi.org/10.1094/PHI-I-2002-1218-01

23. Montarry J, Mimee B, Danchin EG, Koutsovoulos GD, Ste-Croix DT, Grenier E. Recent advances in population genomics of plant-parasitic nematodes. Phytopathology 2021;111:40-8. https://doi.org/10.1094/PHYTO-09-20-0418-RVW

24. Poveda J, Abril-Urias P, Escobar C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic Fungi. Front Microbiol 2020;11:992. https://doi.org/10.3389/fmicb.2020.00992

25. TariqJaveed M, Farooq T, Al-Hazmi AS, Hussain MD, Rehman AU. Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. J Invertebr Pathol 2021;183:107626. https://doi.org/10.1016/j.jip.2021.107626

26. Mackesy DZ, Sullivan M. CPHST Pest Datasheet for Anguina tritici. USDA-APHISPPQ-CPHST; 2016.

27. AL-Jobouri M, AL-Jobouri A, AL.Qaissi E. Susceptibility of bread wheat cultivars to wheat gall nematode and a study some of the gene action of infection percentage. Kirkuk Univ J Sci Stud 2010;5:112-21. https://doi.org/10.32894/kujss.2010.41468

28. Qassem NE, AL-Taae HH, Thanoon AH. Screening of some varieties of wheat for infestation by the seed gall nematode Anguina tritici. Plant Cell Biotechnol Mol Biol 2021;22:94-105.

29. AL-Jobouri J, AL-Jobouri R, Alsaedy H. Varietal and biological resistance for nematode no des of wheat Anguina tritici in genotypesof bread wheat Triticum aestivum L. Kirkuk Univ J Sci Stud 2021;11:96-111.

30. B?aszczyk L, Siwulski M, Sobieralski K, Lisiecka J, J?dryczka M. Trichoderma spp. application and prospects for use in organic farming and industry. J Plant Prot Res 2014;54:309-17. https://doi.org/10.2478/jppr-2014-0047

Article Metrics

3 Absract views 12 PDF Downloads 15 Total views

Related Search

By author names

Citiaion Alert By Google Scholar