Plant growth-promoting Pseudomonas spp. from jasmine rhizosphere as a sustainable alternative to agrochemicals

Ramya Rai Mundala Raghavendra Rao Badkillaya   

Open Access   

Published:  Nov 06, 2025

DOI: 10.7324/JABB.2025.252029
Abstract

The global jasmine flower market has grown significantly over the decades, often relying heavily on synthetic agrochemicals to meet the increasing demand. However, growing concerns about the environmental impact of chemical-based floriculture have shifted attention towards green alternatives. Microbial plant growth promoters (PGP) offer promising bio-based and safe solutions. The present study focused on six PGP isolates belonging to the genus Pseudomonas, isolated from the rhizosphere soils of the geographical indication tagged Udupi Jasmine cultivated in Karnataka, India. This study involved isolation and functional characterization, followed by evaluation using bioassays and pot culture experiments. The isolates exhibited multiple beneficial traits. The green gram seeds treated with strains NPS-18 and NPS-6 exhibited 100% germination compared to only 6.66 ± 0.28% in the untreated control after 17 h. All isolates produced key phytohormones, including indole acetic acid and gibberellic acid, improving plant growth indices. The pot culture experiment showed that isolate NPS-18 was the most promising strain in terms of growth enhancement. This strain was identified as Pseudomonas aeruginosa using 16S rRNA gene sequencing. Overall, the versatile functional properties of the native PGP strains demonstrate their potential for use in sustainable jasmine cultivation.


Keyword:     Floriculture Bioinoculant Phytohormones Siderophores Seed germination Eco-friendly


Citation:

Mundala RR, Badkillaya RR. Plant growth-promoting Pseudomonas spp. from jasmine rhizosphere as a sustainable alternative to agrochemicals. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2025.252029

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Anumala NV, Kumar R. Floriculture sector in India: Current status and export potential. J Hortic Sci Biotechnol. 2021;96(5):673-80. https://doi.org/10.1080/14620316.2021.1902863

2. Lu Z, Wang X, Lin X, Mostafa S, Bao H, Ren S, et al. Genome-wide identification and characterization of long non-coding RNAs associated with floral scent formation in Jasmine (Jasminum sambac). Biomolecules. 2023;14(1):45. https://doi.org/10.3390/biom14010045

3. Chaitanya HS, Nataraja S, Vikram HC, Jayalakshmi NH. Review on production techniques of GI Crop, Udupi Mallige (Jasminum sambac (L.) Aiton). J Pharmacogn Phytochem. 2018;3:50-2.

4. Handy F, Cnaan RA, Bhat G, Meijs LC. Jasmine growers of coastal Karnataka: Grassroots sustainable community-based enterprise in India. Entrep Reg Dev. 2011;23(5-6):405-17. https://doi.org/10.1080/08985626.2011.580166

5. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne- Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 2013;4:356. https://doi.org/10.3389/fpls.2013.00356

6. Zboralski A, Filion M. Pseudomonas spp. can help plants face climate change. Front Microbiol. 2023;14:1198131. https://doi.org/10.3389/fmicb.2023.1198131

7. Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol 2012;35(4 Suppl):1044-51. https://doi.org/10.1590/s1415-47572012000600020

8. Zhang H, Zheng D, Hu C, Cheng W, Lei P, Xu H, et al. Certain tomato root exudates induced by Pseudomonas stutzeri NRCB010 enhance its rhizosphere colonization capability. Metabolites. 2023;13(5):664. https://doi.org/10.3390/metabo13050664

9. Singh P, Singh RK, Zhou Y, Wang J, Jiang Y, Shen N, et al. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: A review. J Plant Interact. 2022;17(1):220-38. https://doi.org/10.1080/17429145.2022.2029963

10. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. Transl Res. 1954;44(2):301-7.

11. DeBritto ST, Gajbar D, Satapute P, Sundaram L, Lakshmikantha RY, Jogaiah S, et al. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci Rep. 2020;10(1):1-12. https://doi.org/10.1038/s41598-020-58335-6

12. Aneja KR. Experiments in Microbiology, Plant Pathology and Biotechnology. 6th ed. New Delhi: New Age International; 2022.

13. Ramya Rai M, Rao RB. Isolation of phosphate solubilizing microorganisms from geographical indication tagged Shankarpura jasmine [Jasminum sambac (L.) Aiton] and their plausible role in plant growth promotion. Bioscene. 2024;21(3):856-74.

14. Kotasthane AS, Agrawal T, Zaidi NW, Singh US. Identification of siderophore producing and cyanogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential biocontrol agent for collar rot of chickpea. 3 Biotech. 2017;7(2):137. https://doi.org/10.1007/s13205-017-0761-2

15. Krishnaraj PU. Genetic Characterization of Mineral Phosphate Solubilization in Pseudomonas sp. [Ph.D. Thesis]. New Delhi: Indian Institute of Agricultural Sciences; 1996.

16. Gang S, Sharma S, Saraf M, Buck J, Schumacher J. Production in Klebsiella by LC-MS/MS and the Salkowski method. Bio Protoc. 2019;9(9):3230. https://doi.org/10.21769/bioprotoc.3230

17. Berríos J, Illanes A, Aroca G. Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotechnol Lett. 2004;26:67-70.

18. Nathan Vinod Kumar K, Rajam S, Rani ME. Plant growth promotion efficacy of indole acetic acid (IAA) produced by a mangrove associated fungi Trichoderma viride VKF3. Int J Curr Microbiol Appl Sci. 2017;6(11):2692-701.

19. Bhagobaty RK, Joshi SR. Promotion of seed germination of green gram and chickpea by Penicillium verruculosum RS7PF, a root endophytic fungus of Potentilla fulgens L. Adv Biotech. 2009;8:16-8.

20. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:gkn180. https://doi.org/10.1093/nar/gkn180

21. Gopinath PP, Prasad R, Joseph B, Adarsh VS. Collection of shiny apps for data analysis in agriculture grapesAgri1. J Open Source Softw. 2021;6(63):3437. https://doi.org/10.21105/joss.03437

22. Sah S, Krishnani S, Singh R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr Res Microb Sci. 2021;2:100084. https://doi.org/10.1016/j.crmicr.2021.100084

23. Gutierrez-Albanchez E, García-Villaraco AJ, Lucas I, Horche B, Ramos-Solano E, Gutierrez-Mañero FJ. Pseudomonas palmensis sp. nov., a novel bacterium isolated from Nicotiana glauca microbiome: Draft genome analysis and biological potential for agriculture. Front Microbiol 2021;12:672751. https://doi.org/10.3389/fmicb.2021.672751

24. Domínguez-Bello MG, Reyes N, Teppa-Garrán A, Romero R. Interference of Pseudomonas strains in the identification of Helicobacter pylori. J Clin Microbiol. 2000;38(2):937. https://doi.org/10.1128/jcm.38.2.937-937.2000

25. Dodd CER. Pseudomonas - introduction. In: Batt CA, Tortorello ML, editors. Encyclopedia of Food Microbiology. 2nd ed. New York: Elsevier; 2014. p. 244-7.

26. Ou K, He X, Cai K, Zhao W, Jiang X, Ai W, et al. Phosphate-solubilizing Pseudomonas sp. strain WS32 rhizosphere colonization-induced expression changes in wheat roots. Front Microbiol. 2022;13:927889. https://doi.org/10.3389/fmicb.2022.927889

27. Yadav AN. Phosphate-solubilizing microorganisms for agricultural sustainability. J Appl Biol Biotechnol. 2022;10(3):1-6. https://doi.org/10.7324/jabb.2022.103ed

28. Bakki M, Banane B, Marhane O, Esmaeel Q, Hatimi A, Barka EA, et al. Phosphate solubilizing Pseudomonas and Bacillus combined with rock phosphates promoting tomato growth and reducing bacterial canker disease. Front Microbiol. 2024;15:1289466. https://doi.org/10.3389/fmicb.2024.1289466

29. Orozco-Mosqueda MD, Santoyo G, Glick BR. Recent advances in the bacterial phytohormone modulation of plant growth. Plants. 2023;12(3):606. https://doi.org/10.3390/plants12030606

30. Zhang T, Jian Q, Yao X, Guan L, Li L, Liu F, et al. Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon. 2024;10(10):e31553.

31. Khoso MA, Wagan S, Alam I, Hussain A, Ali Q, Saha S, et al. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress. 2024;11:100341. https://doi.org/10.1016/j.stress.2023.100341

32. Singh TB, Sahai V, Ali A, Prasad M, Yadav A, Shrivastav P, et al. Screening and evaluation of PGPR strains having multiple PGP traits from the hilly terrain. J Appl Biol Biotech. 2020;8(4):38-44. https://doi.org/10.7324/jabb.2020.80406

33. Sharma S, Sharma A, Kaur M. Extraction and evaluation of gibberellic acid from Pseudomonas sp.: plant growth promoting rhizobacteria. J Pharmacogn Phytochem. 2018;7(1):2790-5.

34. Lata DL, Abdie O, Rezene Y. IAA-producing bacteria from the rhizosphere of chickpea (Cicer arietinum L.): Isolation, characterization, and their effects on plant growth performance. Heliyon. 2024;10(21):e39702. https://doi.org/10.1016/j.heliyon.2024.e39702

35. Hasan A, Tabassum B, Hashim M, Khan N. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria. 2024;3(2):59-75. https://doi.org/10.3390/bacteria3020005

36. Alybayev S, Smekenov I, Kuanbay A, Sarbassov D, Bissenbaev A. Gibberellic-acid-dependent expression of α-amylase in wheat aleurone cells is mediated by target of rapamycin (TOR) signaling. Curr Plant Biol. 2024;37:100312. https://doi.org/10.1016/j. cpb.2023.100312

37. Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. The alpha-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol. 2002;128(4):1264-70. https://doi.org/10.1104/pp.010785

38. Meliani A, Bensoltane A, Benidire L, Oufdou K. Plant growth promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Res Rev J Bot Sci. 2017;6(2):16-24.

39. Tsukanova KA, Chebotar VK, Meyer JJ, Bibikova TN. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis. S Afr J Bot. 2017;113:91-102. https://doi.org/10.1016/j.sajb.2017.07.007

40. Fatima T, Arora NK. Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiol Res. 2021;244:126671. https://doi.org/10.1016/j.micres.2020.126671

41. Xie H, Pasternak JJ, Glick BR. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol. 1996;32:67-71. https://doi.org/10.1007/s002849900012

42. Gupta R, Chakrabarty SK. Gibberellic acid in plant: Still a mystery unresolved. Plant Signal Behav. 2013;8(9):e25504. https://doi.org/10.4161/psb.25504

43. Qessaoui R, Bouharroud R, Furze JN, El Aalaoui M, Akroud H, Amarraque A, et al. Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci Rep. 2019;9:12832. https://doi.org/10.1038/s41598-019-49216-8

44. Jakubowska Z, Gradowski M, Dobrzy?ski J. Role of plant growth-promoting bacteria (PGPB) in enhancing phenolic compounds biosynthesis and its relevance to abiotic stress tolerance in plants: A review. Antonie van Leeuwenhoek. 2025;118(9):123. https://doi.org/10.1007/s10482-025-02130-8

45. Zhang S, Deng Z, Borham A, Ma Y, Wang Y, Hu J, et al. Significance of soil siderophore-producing bacteria in evaluation and elevation of crop yield. Horticulturae. 2023;9(3):370. https://doi.org/10.3390/horticulturae9030370

46. Bhavyashree P, Rao RB, Bhat P. A study on plant growth promotional and antagonistic properties of lactic acid bacteria. J Adv Sci Res. 2021;2020(CSTSS):1-10. Available from: https://sciensage.info/index.php/JASR/article/view/1637

47. Ashritha, Rao RB, Rai MR, Nagaraj P, Visweswara P. Characterization of phosphate solubilising bacteria isolated from rhizosphere soils of Piper nigrum L. Biotechnol. 2021;20(1):15-21. https://doi.org/10.3923/biotech.2021.15.21

48. Ramya Rai M, Rao RB. Identification of native Trichoderma for augmentation of plant growth in geographical indication tagged fragrant Shankarpura jasmine [Jasminum sambac (L.) Aiton]. J Biol Control. 2024;38(4):389-97.

49. Zameer F, Meghashri S, Gopal S, Rao BR. Chemical and microbial dynamics during composting of herbal pharmaceutical industrial waste. J Chem. 2010;7(1):143-8. https://doi.org/10.1155/2010/645978

50. Kavya H, Akki AJ, Rao RB, Goveas SW, Sridhar KR. Plant growth-promotion and antipathogenic fungal activity of four rhizosphere isolates of Trichoderma from southwest India. Plant Fungal Res 2025;8(1):6. https://doi.org/10.30546/2664-5297.2025.8.1.06

51. Chopra A, Bobate S, Rahi P, Banpurkar A, Mazumder PB, Satpute S. Pseudomonas aeruginosa RTE4: A tea rhizobacterium with potential for plant growth promotion and biosurfactant production. Front Bioeng Biotechnol. 2020;8:861. https://doi.org/10.3389/fbioe.2020.00861

52. Ghadamgahi F, Tarighi S, Taheri P, Saripella GV, Anzalone A, Kalyandurg PB, et al. Plant growth-promoting activity of Pseudomonas aeruginosa FG106 and its ability to act as a biocontrol agent against potato, tomato and taro pathogens. Biology. 2022;11(1):140. https://doi.org/10.3390/biology11010140

53. Krishnan Kutty S, Skandasamy N, Padma Devi R, Djearamane S, Tey LH, Wong LS, et al. Field trial to correlate mineral solubilization activity of Pseudomonas aeruginosa and biochemical content of groundnut plants. Open Life Sci. 2025;20:20221008. https://doi.org/10.1515/biol-2022-1008

54. Katiyar P, Pandey N, Varghese B, Sahu KK. Biopriming of Pseudomonas aeruginosa abates fluoride toxicity in Oryza sativa L. by restricting fluoride accumulation, enhancing antioxidative system, and boosting activities of rhizospheric enzymes. Plants. 2025;14(8):1223. https://doi.org/10.3390/plants14081223

55. Thakker JN, Rathod K, Patel K, Pandya J, Badrakia J, Dhandhukia P. Blue-green partnership: Unravelling potential of marine Pseudomonas aeruginosa OG as a biocontrol agent against Fusarium oxysporum f. sp. vasinfectum. Discov Oceans. 2025;2(1):13. https://doi.org/10.1007/s44289-025-00052-x

56. ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM). Technologies for Sustainable Agriculture: Compilation of Technologies Developed by ICAR-NBAIM. Mau: ICAR-NBAIM; 2022. Available from: https://icar.org.in/sites/default/files/2022-06/technologies-compilation_nbaim.pdf

57. Zameer F, Rukmangada MS, Chauhan JB, Khanum SA, Kumar P, Devi AT, et al. Evaluation of adhesive and anti-adhesive properties of Pseudomonas aeruginosa biofilms and their inhibition by herbal plants. Iran J Microbiol. 2016;8(2):108-19.

58. Avinash MG, Aishwarya S, Zameer F, Gopal S. Pseudomonas aeruginosa bio-film and their molecular escape strategies. J App Biol Biotech. 2023;11(3):28-37. https://doi.org/10.7324/jabb.2023.36700

59. Morganal, Diggle SP, Whiteley M. Pseudomonas aeruginosa: Ecology, evolution, pathogenesis and antimicrobial susceptibility. Nat Rev Microbiol. 2025; Advance online publication. https://doi.org/10.1038/s41579-025-01193-8

60. Vidal-Cortés P, Campos-Fernández S, Cuenca-Fito E, Del Río- Carbajo L, Fernández-Ugidos P, López-Ciudad VJ, et al. Difficult-to-Treat Pseudomonas aeruginosa infections in critically Ill patients: A comprehensive review and treatment proposal. Antibiotics. 2025;14(2):178. https://doi.org/10.3390/antibiotics14020178

61. Vasco G, Martínez R, Noboa D, Vasco K, Trueba G. Physiological adaptations of clinical vs. indoor environmental strains of Pseudomonas aeruginosa in a hospital setting. FEMS Microbiol Lett 2025;372:fnaf027. https://doi.org/10.1093/femsle/fnaf027

62. Gao J, Zhuang S, Zhang W. Advances in plant auxin biology: Synthesis, metabolism, signaling, interaction with other hormones, and roles under abiotic stress. Plants. 2024;13(17):2523. https://doi.org/10.3390/plants13172523

63. Chebotar GO, Chebotar SV. Gibberellin-signaling pathways in plants. Cytol Genet. 2011;45(4):259-68. https://doi.org/10.3103/s0095452711040037

64. Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, et al. Mechanistic insights and potential use of side rophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front Microbiol. 2022;13:898979. https://doi.org/10.3389/fmicb.2022.898979

Article Metrics
3 Views 1 Downloads 4 Total

Year

Month

Related Search

By author names

Similar Articles

Structural and functional diversity of plant growth promoting microbiomes for agricultural sustainability

Tanvir Kaur, Divjot Kour, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Ashok Yadav, Shashank Mishra, Manish Kumar, Ashutosh Kumar Rai, Ajar Nath Yadav

Endophytic microbiomes for agricultural sustainability

Ajar Nath Yadav

Applications of bacterial endophytes and their advanced identification methodologies

R. Renugadevi, M. P. Ayyappadas, V. Subha Priya, M. Flory Shobana, K. Vivekanandhan

Assessing the role of temperature as an elicitor for indole-3-acetic acid production in cyanobacterial species

Priyanka Behera, Dhanesh Kumar,, Shubhashree Mahalik

Screening and evaluation of PGPR strains having multiple PGP traits from hilly terrain

Teg Bahadur Singh, Vikram Sahai, Akbar Ali, Mrinalini Prasad, Arti Yadav, Preksha Shrivastav, Deepika Goyal, Prem Kumar Dantu

Klebsiella pneumoniae VRE36 as a PGPR isolated from Saccharum officinarum cultivar Co99004

Gurvesh Bhardwaj, Rushabh Shah, Bhrugesh Joshi, Prittesh Patel

Effect of GA3 treatments and sowing conditions on ex situ seed germination of Oroxylum indicum (L) Benth. Ex Kurz: A threatened high value medicinal plant

Aseesh Pandey , Ngalengshim Ngashangva , Sushma Tamta

Antifungal effects of Kurthia gibsonii Mb 126 chitinase as a seed treatment on seed-borne fungi of rice seed on germination percentage and seedling vigor

Mini K. Paul, K. D. Mini, Jyothis Mathew

Impacts of multi-walled carbon-nanotubes on the growth of pearl millet

Akash Sharma, S. L. Kothari, Sumita Kachhwaha

Gibberellic acid treatment improves seed germination and seedling establishment in Tinospora cordifolia (Willd.) Hook. F. and Thoms

Moitri Bhadra, Sumita Mondal,, Adwaita Das, Abhijit Bandyopadhyay