Antifungal potential of Streptomyces sp. CNXK31.2 against strawberry leaf spot pathogen Mucor sp. MD7

Ngoc An Nguyen Be Bay Thi Quach Hanh Thi Dieu Nguyen Tan Viet Pham   

Open Access   

Published:  Feb 11, 2025

DOI: 10.7324/JABB.2025.203243
Abstract

Control of fungal plant diseases using antagonistic microorganisms is a promising strategy. This study aimed to identify and characterize an antagonistic microorganism effective against Mucor sp. MD7, a newly confirmed causative agent of leaf spot disease in strawberry in Da Lat, Vietnam. Koch’s postulate was used to confirm Mucor sp. MD7 as the causative agent. Antifungal activity screening was conducted through co-culture of 30 actinomycete strains with Mucor sp. MD7. The most potent strain was identified using macroscopic and microscopic characteristics, and 16S rRNA sequencing. Enzyme production, antifungal activity under various conditions, and in situ tests on strawberry leaves were performed to evaluate the antagonistic potential. Eighteen out of 30 tested actinomycete strains showed antagonistic activity, with Actinomycete CNXK31.2 being the most potent. This strain was identified as Streptomyces sp. CNXK31.2, showing 100% identity to Streptomyces fungicidicus. It produced chitinase, protease, and cellulase, causing swelling and degradation of Mucor sp. MD7 mycelia. The culture supernatant maintained antifungal activity at up to 80°C and pH 3.0–10.0. In situ tests demonstrated effective control of leaf spot disease. The findings of this study not only highlight the potential of Streptomyces sp. CNXK31.2 as an effective biocontrol agent but also contribute to achieving sustainable development objectives by promoting eco-friendly agricultural practices, safeguarding biodiversity, and enhancing food security.


Keyword:     Actinomyces antifungal leaf spot disease Mucor strawberry Streptomyces


Citation:

Nguyen NA, Quach BBT, Nguyen HTD, Pham TV. Antifungal potential of Streptomyces sp. CNXK31.2 against strawberry leaf spot pathogen Mucor sp. MD7. J Appl Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.203243

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. FAOSTAT. Food and Agriculture Organization of the United Nations statistics division. FAO, Rome, Italy, 2023. Available via https://www.fao.org/faostat/en/#data

2. Garrido C, Carbú M, Fernández-Acero FJ, González-Rodríguez VE, Cantoral JM. New insights in the study of strawberry fungal pathogens. G3 Genes Genomes Genetics 2011;5(1):24–39.

3. Tang Z, Lou J, Mo J, He L, Chen Y, Wu H, et al. First worldwide report of Exserohilum rostratum causing leaf spot on strawberry (Fragaria x ananassa Duch.). Plant Dis 2023;83(6); doi: https://doi.org/10.1094/PDIS-07-22-1724-PDN

4. Lo PH, Lai YT, Ko YT, Kuo CC, Chung WH. First report of target spot disease of strawberry caused by Corynespora cassiicola in Taiwan. Plant Dis 2023; doi: http://doi.org/10.1094/PDIS-09-22- 2048-PDN

5. Hua HMT, Le TVH, Do MNH, Nguyen VQ, Tran QV, Nguyen ND, et al. Screening of antagonistic bacteria strains against Pilidium sp. MD1 causing strawberry (Fragaria ananassa) leaf spot. IUH J Sci Technol 2022;55(1):134–41; doi: http://doi.org/10.46242/jstiuh. v55i01.4266

6. Rebollar-Alviter A, Silva-Rojas HV, Fuentes-Aragon D, Acosta- Gonzalez U, Martinez-Ruiz M, Parra-Robles BE. An emerging strawberry fungal disease associated with root rot, crown rot and leaf spot caused by Neopestalotiopsis rosae in Mexico. Plant Dis 2020;104(8):2054–9; doi: http://doi.org/10.1094/PDIS-11-19-2493- SC

7. Garay-Serrano E, Cruz-Esteban S, Pavia SPF, Alvarado GR, Gómez- Dorantes N. Pathogenic microorganisms infecting berries in Mexico. Int J Agric Biol 2021;25(5):1007–15; doi: http://doi.org/10.17957/IJAB/15.1758

8. Rajnish K, Gautam H. Prevalence and management of pestalotia leaf spot (Pestalotia sp.) of strawberry. Int J Econ Plants 2022;9(3):250–4.

9. Amrutha P, Vijayaraghavan R. Evaluation of fungicides and biocontrol agents against Neopestalotiopsis clavispora causing leaf blight of strawberry (Fragaria x ananassa Duch.). Int J Curr Microbiol Appl Sci 2018;7(8):622–8; doi: http://doi.org/10.20546/ijcmas.2018.708.067

10. Orellana C, Mattos L. Characterization and control of the causal agent of leaf spot in strawberry (Fragaria ananassa) under greenhouse conditions. Peruv J Agron 2019;3(2):57–67; doi: http://doi.org/10.21704/pja.v3i2.1315

11. Es-Soufi R, Tahiri H, Azaroual L, El Oualkadi A, Martin P, Badoc A, et al. Biocontrol potential of Bacillus amyloliquefaciens BC2 and Trichoderma harzianum TR against strawberry anthracnose under laboratory and field conditions. Agric Sci 2020;11(3):260–77; doi: http://doi.org/10.4236/as.2020.113017

12. Morales-Mora LA, Andrade-Hoyos P, Angeles IV-dM, Romero- Arenas O, Silva-Rojas HV, Contreras-Paredes CA. Characterization of strawberry associated fungi and in vitro antagonistic effect of Trichoderma harzianum. Rev Mex Fitopatol 2020;38(3):434–49; doi: http://doi.org/10.18781/R.MEX.FIT.2005-7

13. Tsai SH, Chen YT, Yang YL, Lee BY, Huang CJ, Chen CY. The potential biocontrol agent Paenibacillus polymyxa TP3 produces fusaricidin-type compounds involved in the antagonism against gray mold pathogen Botrytis cinerea. Phytopathology 2022;112(4):775– 83; doi: http://doi.org/10.1094/PHYTO-04-21-0178-R

14. Chen PH, Chen RY, Chou JY. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology 2018;46(1):33–46; doi: http://doi.org/10.1080/12298093.2018.1454013

15. Elshafie HS, Camele I. Rhizospheric actinomycetes revealed antifungal and plant-growth-promoting activities under controlled environment. Plants (Basel) 2022;11(14):1872; doi: http://doi.org/10.3390/plants11141872

16. Yong D, Li Y, Gong K, Yu Y, Zhao S, Duan Q, et al. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Front Microbiol 2022;13:1051730; doi: http://doi.org/10.3389/fmicb.2022.1051730

17. Hua HMT, Duong TV, Nguyen MT, Duong TTT, Ma TAT, Huynh XV, et al. Identification of fungal pathogens causing leaf spot disease on strawberry in Da Lat. IUH J Sci Technol 2023;68(2):28–35; doi: http://doi.org/10.46242/jstiuh.v68i02.5073

18. Pugliese M, Gilardi G, Guarnaccia V, Garibaldi A, Gullino ML. First report of Gnomoniopsis fragariae causing leaf spots on strawberry in Italy. Plant Dis 2023;107(9):2850.

19. Solans M, Scervino JM, Messuti MI, Vobis G, Wall LG. Potential biocontrol actinobacteria: rhizospheric isolates from the Argentine Pampas lowlands legumes. J Basic Microbiol 2016;56(11):1289–98; doi: http://doi.org/10.1002/jobm.201600323

http://doi.org/10.1002/jobm.201600323

20. Zhang J, He Z, Xu J, Song S, Zhu Q, Wu G, et al. Semi-rational mutagenesis of an industrial Streptomyces fungicidicus strain for improved enduracidin productivity. Appl Microbiol Biotechnol 2020;104(8):3459–71; doi: http://doi.org/10.1007/s00253-020- 10488-0

21. Li Y, He F, Guo Q, Feng Z, Zhang M, Ji C, et al. Compositional and functional comparison on the rhizosphere microbial community between healthy and Sclerotium rolfsii-infected monkshood (Aconitum carmichaelii) revealed the biocontrol potential of healthy monkshood rhizosphere microorganisms. Biol Control 2022;165:104790; doi: http://doi.org/10.1016/j.biocontrol.2021.104790

22. Liu H, An M, Si H, Shan Y, Xu C, Hu G, et al. Identification of cyclic dipeptides and a new compound (6-(5-hydroxy-6-methylheptyl)-5, 6-dihydro-2 H-pyran-2-one) produced by Streptomyces fungicidicus against Alternaria solani. Molecules 2022;27(17):5649; doi: http://doi.org/10.3390/molecules27175649

23. Choub V, Ajuna HB, Won SJ, Moon JH, Choi SI, Maung CEH, et al. Antifungal activity of Bacillus velezensis CE 100 against anthracnose disease (Colletotrichum gloeosporioides) and growth promotion of walnut (Juglans regia L.) trees. Int J Mol Sci 2021;22(19):10438; doi: http://doi.org/10.3390/ijms221910438

24. Hassan EA, Mostafa YS, Alamri S, Hashem M, Nafady NA. Biosafe management of Botrytis grey mold of strawberry fruit by novel bioagents. Plants (Basel) 2021;10(12):2737; doi: http://doi.org/10.3390/plants10122737

25. Lee SY, Tindwa H, Lee YS, Naing KW, Hong SH, Nam Y, et al. Biocontrol of anthracnose in pepper using chitinase, beta-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J Microbiol Biotechnol 2012;22(10):1359–66; doi: http://doi.org/10.4014/jmb.1203.02056

26. Andargie M, Li J. Antifungal activity against plant pathogens by compounds from Streptoverticillium morookaense. J Plant Pathol 2019;101(3):547–58; doi: http://doi.org/10.1007/s42161-018- 00234-x

27. Ruangwong OU, Kunasakdakul K, Chankaew S, Pitija K, Sunpapao A. A rhizobacterium, Streptomyces albulus Z1-04-02, displays antifungal activity against Sclerotium Rot in mungbean. Plants (Basel) 2022;11(19):2607; doi: http://doi.org/10.3390/plants11192607

28. Phan THT, Nguyen VML, Nguyen THL, Nguyen VH. Biological characteristics and antimicrobial activity of endophytic Streptomyces sp. TQR12-4 isolated from elite citrus nobilis cultivar Ham Yen of Vietnam. Int J Microbiol 2016;2016:1–7; doi: http://doi.org/10.1155/2016/7207818

29. Iqbal M, Andreasson E, Stenberg JA. Biological control of strawberry diseases by Aureobasidium pullulans and sugar beet extract under field conditions. J Plant Pathol 2023;105:933–41; doi: http://doi.org/10.1007/s42161-023-01408-y

30. Lyu A, Liu H, Che H, Yang L, Zhang J, Wu M, et al. Reveromycins A and B from Streptomyces sp. 3-10: antifungal activity against plant pathogenic fungi in vitro and in a strawberry food model system. Front Microbiol 2017;8:550; doi: http://doi.org/10.3389/fmicb.2017.00550

Article Metrics
37 Views 18 Downloads 55 Total

Year

Month

Related Search

By author names

Similar Articles

Study of endophytic Bacillus amyloliquefaciens CC09 and its antifungal cyclic lipopeptides

Cai Xun-Chao,Li Hui,Xue Ya-Rong,Liu Chang-Hong

Determination of phytochemical, antioxidant, antimicrobial, and protein binding qualities of hydroethanolic extract of Celastrus paniculatus

Vijay Kumar¥, Simranjeet Singh¥, Arjun Singh¥, Amit Kumar Dixit¥, Bhavana Shrivastava, Sapna Avinash Kondalkar, Joginder Singh, Ravindra Singh, Gurpreet Kaur Sidhu, Rajesh Partap Singh, Varanasi Subhose, Om Prakash

Phytochemical analysis, antimicrobial and antioxidant activities of Aidia borneensis leaf extracts

Zulhamizan Awang-Jamil, Aida Maryam Basri, Norhayati Ahmad, Hussein Taha

Role of medicinal plants in the treatment of eumycetoma: A review

Shashank M. Patil, S. Jagadeep Chandra, M. K. Jayanthi, Prithvi S. Shirahatti, Ramith Ramu

Antifungal effects of Kurthia gibsonii Mb 126 chitinase as a seed treatment on seed-borne fungi of rice seed on germination percentage and seedling vigor

Mini K. Paul, K. D. Mini, Jyothis Mathew

Use of the amphotericin B, miconazole, and sodium hypochlorite to control the growth of the robust Aspergillus flavus and Aspergillus fumigatus biofilms on polyethylene support

Camila Guedes Francisco, Gilberto Bida Leite Braga, Luis Henrique Souza Guimarães

Investigation on the antifungal activity of Aspergillus giganteus in different culture conditions

S. Karthiga, R. Ramya, K. Ramya, S. Jothinayaki, D. Kavitha

Evaluation of the antifungal effect of medicinal plants against Panama wilt of Banana caused by Fusarium oxysporum f. sp. cubense

Basavanapura Linganna Kiran,, Kallahally Nagaraj Nayana, Koteshwar Anandrao Raveesha,

Silver nanoparticles decorated natural products doped polyaniline hybrid materials for biomedical applications

K. Satish, K. Sumangala Bhat, Y. S. Ravikumar, M. N. K. Harish

Surveillance of upper aerodigestive candidiasis and their antifungal susceptibility study at tertiary care hospital: A prospective study

Priyanka Debta, Santosh Kumar Swain, Debasmita Dubey, Smrutipragnya Samal, Fakir Mohan Debta, Smarita Lenka

Green synthetic photo-irradiated chitin-silver nanoparticles for antimicrobial applications

Navya Kumari Tenkayala,, Laxman Vamshi Krishna Kandala, Roopkumar Sangubotla, Rambabu Gundla, Subramani Devaraju

Evaluation and characterization of endophytic bacteria from Capparis decidua (Forssk.) Edgew. for their antifungal and antioxidant activities

Sudesh Kumari, Prity Gulia, Pooja Choudhary, Ritu Pasrija, Mehak Dangi, Anil Kumar Chhillar

Fungal pellets as potential tools to control water pollution: Strategic approach for the pelletization and subsequent microcystin-LR uptake by Mucor hiemalis

Evelyn Balsanoa, Maranda Esterhuizen-Londta, Enamul Hoquec, Stephan Pflugmachera b

Inulinase production in shake-flask fermentations from Mucor circinelloides BGPUP-9

Ram Sarup Singh, Kanika Chauhan, Randeep Kaur, Ramanpreet Kaur

The linkage between the second wave of COVID-19 and the severity of mucormycosis in India

Kshama Wamanrao Murarkar, Shilpa Prakash Mankar

Chemical and antibacterial properties of chitosan derived from Mucor spp., Rhizopus. Oryzae and Hermetia illucens

Muhammad Yusuf Abduh,, Tri Ramadianti Shafitri,, Maryam Jamilah, Mochamad Firmansyah,, Robert Manurung

Improvement in productivity of strawberry (Fragaria X ananassa Duch.) under vertical farming system

Pallvi Verma, Gurpreet Singh, Shailesh Kumar Singh, Anis Ahmad Mirza, Manish Bakshi, Anmol, Lakshya Bishnoi