Corn is an economic crop. Nowadays, plant diseases such as Fusarium stalk rot have been found in corn cultivation. Chemical fungicides are widely used to inhibit this fungus. However, using biological controls is one of the approaches for preventing and solving the problem of plant diseases. Soil samples were collected from corn planting soils using random sampling techniques. The morphological characteristics of the 17 isolated bacteria were studied under a microscope. Isolate SCFPSU17 was evaluated for its ability to inhibit Fusarium moniliforme that cause stalk rot disease in corn. After identification, the results revealed that DNA sequencing of SCFPSU17 was similar to Bacillus sp. with percentage similarity of 99.86%. The culture filtrate of Bacillus sp. showed the best inhibition of F. moniliforme at 38.63%. Then, the optimal conditions of Bacillus sp. isolated SCFPSU17 were tested, including the optimal medium, optimal pH of medium, and optimal temperature of culture and cultivation time. The result found that Bacillus sp. isolated SCFPSU17 in nutrient broth pH 8 at 30°C for 36 hours demonstrated the most effective inhibition of F. moniliforme, up to 70%. From this result, bioactive agents from Bacillus sp. for inhibiting plant fungal pathogens may be an important discovery to develop bioactive compounds production for sustainable agriculture in the future.
Dangsawat O, Permpoonpattana P, Maitong S, Piwdee P, Sueamak W, Sowanpreecha R. Isolation and optimization of Bacillus sp. from corn planting soil to inhibit Fusarium moniliforme causing stalk rot disease in corn. J Appl Biol Biotech. 2025;13(Suppl 1):45–52. https://doi.org/10.7324/JABB.2025.226532
1. Rubatzky VE, Yamaguchi M. Sweet corn, Zea mays L. In: World vegetables. Springer, Boston, MA, 1997; doi: https://doi.org/10.1007/978-1-4615-6015-9_15
2. Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna BM. Global maize production, consumption and trade: trends and R&D implications. Food Secur 2022;14(5):1295–319; doi: https://doi.org/10.1007/s12571-022-01288-7
3. Siriyod T, Natthanan T, Sukasem L, Chairerk T, Nalinthip K, Tanaworakit O. Risk factor analysis for enhancing Thai sweet corn supply chain efficiency for export. Kasetsart Business Appl J 2023;17(27):21–43.
4. Patel R, Mehta K, Prajapat, J, Shukla A, Parmar P, Goswami D, et al. An anecdote of mechanics for Fusarium biocontrol by plant growth promoting microbes. Bio Control 2022;174:105012; doi: https://doi.org/10.1016/j.biocontrol.2022.105012
5. Xu W, Wang K, Wang H, Liu Z, Shi Y, Gao Z, et al. Evaluation of the biocontrol potential of Bacillus sp. WB against Fusarium oxysporum f. sp. niveum. BioControl 2020; 147:104288; doi: https://doi.org/10.1016/j.biocontrol.2020.104288
6. Zhou F, Wang Y, Liu P, Ma W, He R, Cao H, et al. Function of zmbt2a gene in resistance to pathogen infection in maize. Phytopathol Res 2024;6(1):43; doi: https://doi.org/10.1186/s42483-024-00263-8
7. Maitong S, Permpoonpattana P, Sowanpreecha R. Optimal conditions of Bacillus sp. from mangrove soil against plant pathogenic fungi. Khon Kaen Agr J 2021;49(Suppl. 1):272–78.
8. Blacutt AA, Gold SE, Voss KA, Gao M, Glenn AE. Fusarium verticillioides: advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathol 2018;108:312–26.
9. Omotayo OP, Babalola OO. Fusarium verticillioides of maize plant: potentials of propitious phytomicrobiome as biocontrol agents. Front Fungal Biol 2023;4:1095765; doi: https://doi.org/10.3389/ffunb.2023.1095765
10. Mohialden YM, Hussien NM, Salman SA, Ahmed Bahaaulddin AA, Mumtaz A. Enhancing agriculture crop classification with deep learning. BJAI 2024;20–26; doi: https://doi.org/10.58496/bjai/2024/004
11. Lebsing P, Wongcharoen A, Saepaisan S. Control of tomato seed disease caused by Fusarium oxysporum sp. lycopersici using fungicides and antagonistic fungi. Khon Kaen Agr J 2021;49(4):956–66.
12. Kongtragoul P, Ishikawa K, Ishii H. Metalaxyl resistance of phytophthora palmivora causing durian diseases in Thailand. Hortic 2021;7(10):375; doi: https://doi.org/10.3390/horticulturae7100375
13. Sidorova TM, Asaturova, AM, Homyak AI, Zhevnova NA, Shternshis MV, Tomashevich NS. Optimization of laboratory cultivation conditions for the synthesis of antifungal metabolites by Bacillus subtilis strains. Saudi J Biol Sci 2020;27(7):1879–85; doi: https://doi.org/10.1016/j.sjbs.2020.05.002
14. Helisto P, Aktuganov G, Galimzianova N, Melentjev A, Korpela T. Lytic enzyme complex of antagonistic Bacillus sp. X-b: isolation and purification of components. J Chromatogr B Biomed 2001;758:197– 205; doi: https://doi.org/10.1016/s0378-4347(01)00181-5
15. Kloepper JW, Ryu CM, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol 2004;94(11):1259–66. https://doi.org/10.1094/PHYTO.2004.94.11.1259
16. Jino S, Chairat S, Supakitthanakarn S, Ruangwong O. In vitro efficiency of Bacillus subtilis S93 and Bacillus siamensis RFCD306 in controlling Fusarium oxysporum causing chrysanthemum wilt disease. Khon Kaen Agr J 2022;50(Suppl. 1):184–90.
17. Ragavendran C, Natarajan D. Serratia marcescens (Enterobacteriaceae): an alternate biocontrol agent for mosquito vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). PTB Rep 2017;3(1):14–20.
18. Foysal MJ, Lisa AK. Isolation and characterization of Bacillus sp. strain BC01 from soil displaying potent antagonistic activity against plant and fish pathogenic fungi and bacteria. J Genet Eng Biotechnol 2018;16(2):387–92. https://doi.org/10.1016/j.jgeb.2018.01.005
19. Noppakuadrittidej P, Charlermroj R, Makornwattana M, Kaew- Amdee S, Waditee-Sirisattha R, Vilaivan T, et al. Development of peptide nucleic acid-based bead array technology for Bacillus cereus detection. Sci Rep 2023;13(1):12482; doi: https://doi.org/10.1038/s41598-023-38877-1
20. Duan Y, Pang Z, Yin S, Xiao W, Hu H, Xie J. Screening and analysis of antifungal strains Bacillus subtilis JF-4 and B. amylum JF-5 for the biological control of fusarium wilt of banana. J Fungi 2023;9(9):886; doi:
21. Sowanpreecha R, Kanchanabanca C, Sangvanish P, Rerngsamran P. Bacillus subtilis N3 as a biocontrol agent for Culvalaria lunata and its antifungal protein propoties. Int J Agric Biol 2018;20:531–8; doi: https://doi.org/10.17957/ijab/15.0511
22. Tipsing S, Sathit P, Jaran P, Ratchanu M. Efficiency of Bacillus spp. from ant-hill soils against Pestalotiopsis sp. causing fruit rot disease in guava. Veridian E-J Sci Technol Silpakorn Univ 2019;6(2):1–14.
23. Ketkhiao T, Phonwichai R, Taktuen S. Isolation and evaluation potential efficacy of bacteria from durian orchard soils against fungal pathogen growth on durian leaves. Senior project, Bachelor Degree, Major Program of Agricultural Science and Technology, Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand, 2021.
24. Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, et al. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol 2018;9:2363; doi: https://doi.org/10.3389/fmicb.2018.02363
25. Chen PH, Chen RY, Chou JY. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on Strawberry Fruits. Mycobiology 2018;46(1):33–46; doi: https://doi.org/10.1080/12298093.2018.1454013
26. Duan Y, Chen R, Zhang R, Jiang W, Chen X, Yin C, et al. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Front Microbiol 2021;12:746799; doi: https://doi.org/10.3389/fmicb.2021.746799
27. Duan Y, Chen R, Zhang R, Jiang W, Chen X, Yin C, et al. Isolation and identification of Bacillus Vallismortis HSB-2 and its biocontrol potential against apple replant disease. Bio Control 2022;170:104921; doi: https://doi.org/10.1016/j.biocontrol.2022.104921
28. Bressan W, Fontes Figueiredo JE. Chitinolytic Bacillus spp. isolates antagonistic to Fusarium moniliforme in maize. J Plant Pathol 2010;92(2):343–7.
29. Srikhong P, Lertmongkonthum K, Sowanpreecha R, Rerngsamran P. Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici. BioControl 2018;63(6):833–42; doi: https://doi.org/10.1007/s10526-018-9902-8
30. Ashwini N, Srividya S. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3Biotech 2014;4(2):127–36; doi: https://doi.org/10.1007/s13205-013-0134-4
31. Akeed Y, Atrash F, Naffaa W. Partial purification and characterization of chitinase produced by Bacillus licheniformis B307. Heliyon 2020;6(5):e03858; doi: https://doi.org/10.1016/j.heliyon.2020.e03858
32. El-Housseiny G, Shams G, Ghobashi Z, Mamdouh R, Almaqsod I, Saleh S. Optimization of antifungal activity by Bacillus subtilis isolate CCASU 2021-4 using response surface methodology. Arch Pharm Sci Ain Shams Univ 2021;5(1):171–83; doi: https://doi.org/10.21608/aps.2021.80383.1063
33. Motamedi H, Zahedi E, Abadi AZ. Optimizing conditions for the production of antifungal agents using the native Bacillus cereus SB15. Feyz Med Sci J 2017;21(1):9–18.
34. Lee HA, Kim JH. Isolation of Bacillus amyloliquefaciens strains with antifungal activities from Meju. Prev Nutr Food Sci 2012;17(1):64– 70; doi: https://doi.org/10.3746/pnf.2012.17.1.064
35. Ragavendran C, Manigandan V, Kamaraj C, Balasubramani G, Prakash JS, Perumal P, et al. Larvicidal, histopathological, antibacterial activity of indigenous fungus Penicillium sp. against Aedes aegypti L and Culex quinquefasciatus (say) (Diptera: Culicidae) and its acetylcholinesterase inhibition and toxicity assessment of zebrafish (Danio rerio). Front Microbiol 2019;10:427; doi: https://doi.org/10.3389/fmicb.2019.00427
36. Khazaal SM, Haitham M. Predicting coronary artery disease utilizing support vector machines: optimizing predictive model. MJAIH 2023;2023:21–26; doi: https://doi.org/10.58496/mjaih/2023/004
37. Zhu H, Zhou X, Shen C, Ao Z, Cao X, Song C, et al. Bacillus licheniformis-based intensive fermentation of Tibetan tea improved its bioactive compounds and reinforced the intestinal barrier in mice. Front Microbiol 2024;15:1376757; doi: https://doi.org/10.3389/fmicb.2024.1376757
38. Kim PI, Ryu J, Kim YH, Chi YT. Production of biosurfactant Lipopeptides Iturin A, fengycin and surfactin a from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 2010;20(1):138–45; doi: https://doi.org/10.4014/jmb.0905.05007
39. Yang L, Quan X, Xue B, Goodwin PH, Lu S, Wang J, et al. Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biol Control 2015;8:52–8.
40. Zhu J, Tan T, Shen A, Yang X, Yu Y, Gao C, et al. Biocontrol potential of Bacillus subtilis IBFCBF-4 against fusarium wilt of watermelon. J Plant Pathol 2020;102(2):433–41; doi: https://doi.org/10.1007/s42161-019-00457-6
41. Zhou S, Xia Y, Zhu C, Chu W. Isolation of marine Bacillus sp. with antagonistic and organic-substances-degrading activities and its potential application as a fish probiotic. Marine Drugs 2018;16(6):196; doi: https://doi.org/10.3390/md16060196
Year
Month
Isolation and optimization of alkaline protease producing Bacteria from undisturbed soil of NE-region of India falling under Indo-Burma biodiversity hotspots
Onkar Nath Tiwari, Thiyam Bidyababy Devi, Kangjam Sarabati Devi, Gunapati Oinam, Thingujam Indrama, Keithellakpam Ojit, Oinam Avijeet, Lakreiphy NingshenProduction and Characterization of Alkaline Phosphatase Produced by Bacillus Species
Suganya Kannaiyram, Ravikumar Vedhachalam, Murugan ThanigaimalaiCharacterization of extracellular amylase from Bacillus sp. strain RU1
Aleem Basha Pinjari, Vijayalakshmi KotariScreening and identification of amylase producing strains of Bacillus
Kumar Pranay, Shree Ram Padmadeo, Vijay Jha, Birendra PrasadBacillus species for sustainable management of heavy metals in soil: Current research and future challenges
Diyashree Karmakar, Shanu Magotra, Rajeshwari Negi, Sanjeev Kumar, Sarvesh Rustagi, Sangram Singh, Ashutosh Kumar Rai, Divjot Kour, Ajar Nath Yadav,Chitinolytic efficacy and secretion of cell wall degrading enzymes from Trichoderma spp. in response to phyto-pathological fungi
Dinesh K Khatri, Durgesh Nandini Tiwari, Himanshu S BariyaInteractive potential of Pseudomonas species with plants
Suhana Shaikh,, Nutan Yadav, Anoop R. Markande,Field treatment of three wheat varieties with Trichoderma harzianum bioagent to control Anguina tritici
Nawres Abdulelah Sadeq Alkuwaiti, Ammar Amjad Aish, Saad Tareq Abdulmalak, Tariq A. Kareem, Mohammed Mahmood SulaimanA review on the biological properties of Trichoderma spp. as a prospective biocontrol agent and biofertilizer
Abdul Muizz Al-Azim Abdul-Halim, Pooja Shivanand, Sarayu Krishnamoorthy, Hussein TahaBeneficial fungal communities for sustainable development: Present scenario and future challenges
Divjot Kour, Sofia Sharief Khan, Seema Ramniwas, Sanjeev Kumar, Ashutosh Kumar Rai, Sarvesh Rustagi, Kundan Kumar Chaubey, Sangram Singh, Ajar Nath Yadav,, Amrik Singh AhluwaliaEfficacy of bacteriophage L522 against bacterial leaf blight of rice in Vietnam
Pham D.T. My,, Le T.T. Tien,, Le P. Nga,, To H. Ngoc,, Vo T. Phuc,, Hoang A. Hoang,Streptomyces as endomicrobiome: Potential bioinoculants for agricultural sustainability
Rangasamy Kirubakaran, Nowsheen Shameem, Elumalai Saranya, Krishnan Meenambigai, Ramu Dhanasekar, Javid Ahmad Parray, Neelam Yadav,, Sangram Singh, Sarvesh Rustagi, Paridhi Puri, Babita Sharma, Rajeshwari Negi, Ajar Nath Yadav