Genomic and functional characterization of Bacillus sp. B.PNR2 from extinct volcanic soil in Buriram province, Thailand
Bacillus species are renowned for producing diverse secondary metabolites with antimicrobial and plant growth-promoting (PGP) activities. This study presents a genomic and functional characterization of Bacillus stercoris B.PNR2, isolated from nutrient-limited volcanic soil in Buriram Province, Northeastern Thailand. The strain exhibited antifungal activity against Fusarium oxysporum and Colletotrichum spp., along with PGP traits such as indole-3-acetic acid (IAA) production and phosphate solubilization. Whole-genome sequencing revealed a 4.11 Mb genome containing 4,283 coding sequences, 60 tRNA genes, and 5 rRNA operons, with a G+C content of 43.83%. Genome analysis identified 7 genes associated with IAA biosynthesis, 5 genes involved in phosphate solubilization (including alkaline phosphatase and phytase), 6 genes for siderophore biosynthesis and transport (bacillibactin cluster), and 9 genes related to nitrogen metabolism (nitrate/nitrite reductases, glutamine synthetase, ammonium transporters). AntiSMASH identified 13 biosynthetic gene clusters, including fengycin, bacillaene, surfactin, bacilysin, bacillibactin, and subtilosin A, with several showing low similarity to known clusters, suggesting potential for novel metabolite production. Phylogenomic analysis placed B.PNR2 within the B. stercoris clade. The genome also encoded 41 antimicrobial resistance genes and 322 transporter genes, indicating adaptive and defensive capabilities. The integration of genomic and functional traits supports B. stercoris B.PNR2 as a promising biofertilizer and biocontrol agent.
Kawicha P, Sangdee K, Thanyasiriwat T, Pengproh R, Somtrakoon K, Sangdee A. Genomic and functional characterization of Bacillus sp. B.PNR2 from extinct volcanic soil in Buriram province, Thailand. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2026.270804
1. Damalas CA, Koutroubas SD. Current status and recent developments in biopesticide use. Agriculture. 2018;8(1):13. https://doi.org/10.3390/agriculture8010013
2. Thomine E, Mumford J, Rusch A, Desneux N. Using crop diversity to lower pesticide use: Socio-ecological approaches. Sci Total Environ. 2022;804:150156. https://doi.org/10.1016/j.scitotenv.2021.150156
3. Chaudhary R, Nawaz A, Khattak Z, Butt MA, Fouillaud M, Dufossé L, et al. Microbial bio-control agents: A comprehensive analysis on sustainable pest management in agriculture. J Agric Food Res. 2024;18:101421. https://doi.org/10.1016/j.jafr.2024.101421
4. Tyagi A, Lama Tamang T, Kashtoh H, Mir RA, Mir ZA, Manzoor S, et al. A review on biocontrol agents as sustainable approach for crop disease management: Applications, production, and future perspectives. Horticulturae. 2024;10(8):805. https://doi.org/10.3390/horticulturae10080805
5. Pengproh R, Thanyasiriwat T, Sangdee K, Saengprajak J, Kawicha P, Sangdee A. Evaluation and genome mining of Bacillus stercoris isolate B. PNR1 as potential agent for fusarium wilt control and growth promotion of tomato. Plant Pathol J.2023;39(5):430. https://doi.org/10.5423/PPJ.OA.01.2023.0018
6. Rios-Reyes A, Gonzalez-Lozano K, Cabral-Miramontes J, Hernandez-Gonzalez J, Rios-Sosa A, Alvarez-Gutierrez P, et al. Exploration of plant and microbial life at “El Chichonal” volcano with sustainable agriculture prospection. Microb Ecol. 2025;88(1):67. https://doi.org/10.1007/s00248-025-02567-4
7. Miljakovi? D, Marinkovi? J, Baleševi?-Tubi? S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms. 2020;8(7):1037. https://doi.org/10.3390/microorganisms8071037
8. Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari DK, editor. Bacteria in Agrobiology: Plant Growth Responses. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 41-76. https://doi.org/10.1007/978-3-642-20332-93
9. Beneduzi A, Ambrosini A, Passaglia LM. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol. 2012;35(4 (suppl)):1044-51. https://doi.org/10.1590/S1415-47572012000600020
10. Fatima A, Abbas M, Nawaz S, Rehman Y, ur Rehman S, Sajid I. Whole genome sequencing (WGS) and genome mining of Streptomyces sp. AFD10 for antibiotics and bioactive secondary metabolites biosynthetic gene clusters (BGCs). Gene Rep. 2024;37:102050. https://doi.org/10.1016/j.genrep.2024.102050
11. Palazzotto E, Weber T. Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol. 2018;45:109-16. https://doi.org/10.1016/j.mib.2018.03.004
12. Zhang Z, Yin L, Li X, Zhang C, Zou H, Liu C, et al. Analyses of the complete genome sequence of the strain Bacillus pumilus ZB201701 isolated from rhizosphere soil of maize under drought and salt stress. Microbes Environ. 2019;34(3):310-5. https://doi.org/10.1264/jsme2.ME18096
13. Li Z, Song C, Yi Y, Kuipers OP. Characterization of plant growth-promoting rhizobacteria from perennial ryegrass and genome mining of novel antimicrobial gene clusters. BMC Genomics. 2020;21(1):157. https://doi.org/10.1186/s12864-020-6563-7
14. Iqbal S, Vollmers J, Janjua HA. Genome mining and comparative genome analysis revealed niche-specific genome expansion in antibacterial Bacillus pumilus strain SF-4. Genes. 2021;12(7):1060. https://doi.org/10.3390/genes12071060
15. Ribeiro ID, Bach E, da Silva Moreira F, Müller AR, Rangel CP, Wilhelm CM, et al. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Microbiol Res. 2021;248:126754. https://doi.org/10.1016/j.micres.2021.126754
16. Biessy A, Filion M. Complete genome sequence of Bacillus pumilus LBUM494, a plant-beneficial strain isolated from the rhizosphere of a strawberry plant. Microbiol Resour Announc. 2024;13(10):e0082524. https://doi.org/10.1128/mra.00825-24
17. Dushku E, Kotzamanidis C, Kargas A, Maria-Eleni FL, Giantzi V, Krystallidou E, et al. Unveiling the genetic basis of biochemical pathways of plant growth promotion in Bacillus pumilus and the first genomic insights into B. pseudomycoides as a biostimulant. Curr Res Microb Sci. 2025:100419. https://doi.org/10.1016/j.crmicr.2025.100419
18. Chen J, Xu D, Xiao Q, Zheng Y, Liu H, Li X, et al. Responses of soil microbial diversity, network complexity and multifunctionality to environments changes in volcanic ecosystems. J Environ Chem Eng. 2024;12(5):113334. https://doi.org/10.1016/j.jece.2024.113334
19. Fagorzi C, Del Duca S, Venturi S, Chiellini C, Bacci G, Fani R, et al. Bacterial communities from extreme environments: Vulcano Island. Diversity. 2019;11(8):140. https://doi.org/10.3390/d11080140
20. Li SJ, Hua ZS, Huang LN, Li J, Shi SH, Chen LX, et al. Microbial communities evolve faster in extreme environments. Sci Rep. 2014;4(1):6205. https://doi.org/10.1038/srep06205
21. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK. Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Plant-Microbe Interactions in Agro-Ecological Perspectives: Microbial Interactions and Agro-Ecological Impacts. Vol. 2. Springer; 2017. p. 543-80. https://doi.org/10.1007/978-981-10-6593-4_22
22. Somtrakoon K, Prasertsom P, Sangdee A, Pengproh R, Chouychai W. Potential of Bacillus stercoris B. PNR2 to stimulate growth of rice and waxy corn under atrazine-contaminated soil. J Arid Agric. 2024;10:20-7. https://doi.org/10.25081/jaa.2024.v10.8614
23. Sangdee A, Plaikan S, Chayapat T, Kawicha P, Somtrakoon K. Plant growth-promoting gene expression in Bacillus stercoris under atrazine contamination and their ability to stimulate growth of mung bean seedlings. N Z J Crop Hortic Sci. 2025;53:2165-87. https://doi.org/10.1080/01140671.2025.2455048
24. Boottanun P, Potisap C, Hurdle JG, Sermswan RW. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express. 2017;7(1):16. https://doi.org/10.1186/s13568-016-0302-0
25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77. https://doi.org/10.1089/cmb.2012.0021
26. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10(1):2182. https://doi.org/10.1038/s41467-019-10210-3
27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14(1):60. https://doi.org/10.1186/1471-2105-14-60
28. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50(D1):D801-7. https://doi.org/10.1093/nar/gkab902
29. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32(10):2798-800. https://doi.org/10.1093/molbev/msv150
30. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat. 1972;106(951):645-68.
31. Kreft ?, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: A phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics. 2017;33(18):2946-7. https://doi.org/10.1093/bioinformatics/btx324
32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J.JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32(6):929-31. https://doi.org/10.1093/bioinformatics/btv681
33. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5(1):8365. https://doi.org/10.1038/srep08365
34. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. https://doi.org/10.1093/nar/28.1.27
35. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9. https://doi.org/10.1038/75556
36. Committee of the International Union of Biochemistry 1978: Recommendations of the Nomenclature Committee of the International Union of Biochemistry on the Nomenclature and Classification of Enzymes. United States: Academic Press; 1979.
37. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, et al. BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Res. 2004;32(suppl_1):D431-3. https://doi.org/10.1093/nar/gkh081
38. Antonopoulos DA, Assaf R, Aziz RK, Brettin T, Bun C, Conrad N, et al. PATRIC as a unique resource for studying antimicrobial resistance. Brief Bioinform. 2019;20(4):1094-102. https://doi.org/10.1093/bib/bbx083
39. Blin K, Shaw S, Vader L, Szenei J, Reitz ZL, Augustijn HE, et al. antiSMASH 8.0: extended gene cluster detection capabilities and analyses of chemistry, enzymology, and regulation. Nucleic Acids Res. 2025;53:gkaf334. https://doi.org/10.1093/nar/gkaf334
40. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 2023;51(D1):D690-9. https://doi.org/10.1093/nar/gkac920
41. Florensa AF, Kaas RS, Clausen P, Aytan-Aktug D, Aarestrup FM. ResFinder -an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb Genom. 2022;8(1):000748. https://doi.org/10.1099/mgen.0.000748
42. Mao C, Abraham D, Wattam AR, Wilson MJ, Shukla M, Yoo HS, et al. Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics. 2015;31(2):252-8. https://doi.org/10.1093/bioinformatics/btu631
43. The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2016;45(D1):D158-69. https://doi.org/10.1093/nar/gkw1099
44. Saleem MH, Noreen S, Ishaq I, Saleem A, Khan KA, Ercisli S, et al. Omics technologies: Unraveling abiotic stress tolerance mechanisms for sustainable crop improvement. J Plant Growth Regul. 2025;44:4165-87. https://doi.org/10.1007/s00344-025-11674-y
45. Taheri P, Puopolo G, Santoyo G. Plant growth-promoting microorganisms: New insights and the way forward. Microbiol Res. 2025;297:128168. https://doi.org/10.1016/j.micres.2025.128168
46. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68(1):461-6. https://doi.org/10.1099/ijsem.0.002516
47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106(45):19126-31. https://doi.org/10.1073/pnas.0906412106
48. Xiang L, Zhou Z, Wang X, Jiang G, Cheng J, Hu Y, et al. Surfactin, bacillibactin and bacilysin are the main antibacterial substances of Bacillus subtilis JSHY-K3 that inhibited the growth of VpAHPND (the main pathogen of acute hepatopancreatic necrosis disease in shrimp). Aquac Rep. 2025;42:102745. https://doi.org/10.1016/j.aqrep.2025.102745
49. Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J.Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994;60(6):2023-30. https://doi.org/10.1128/aem.60.6.2023-2030.1994
50. Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J.Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol. 1998;37(1):6-11. https://doi.org/10.1007/s002849900328
51. Rogers EW, Dalisay DS, Molinski TF. (+)-Zwittermicin A: assignment of its complete configuration by total synthesis of the enantiomer and implication of D-serine in its biosynthesis. Angew Chem Int Ed. 2008;47(42):8086-9. https://doi.org/10.1002/anie.200801561
52. Kevany BM, Rasko DA, Thomas MG. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol. 2009;75(4):1144-55. https://doi.org/10.1128/AEM.02518-08
53. Broderick NA, Goodman RM, Handelsman J, Raffa KF. Effect of host diet and insect source on synergy of gypsy moth (Lepidoptera: Lymantriidae) Mortality to Bacillus thuringiensis subsp. kurstaki by Zwittermicin A. Environ Entomol. 2003;32(2):387-91. https://doi.org/10.1603/0046-225X-32.2.387
54. Vahidinasab M, Lilge L, Reinfurt A, Pfannstiel J, Henkel M, Morabbi Heravi K, et al. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microb Cell Fact. 2020;19(1):205. https://doi.org/10.1186/s12934-020-01468-0
55. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: Past, present, and future. Antimicrob Agents Chemother. 2011;55(11):4943-60. https://doi.org/10.1128/aac.00296-11
56. Deng A, Wang T, Wang J, Li L, Wang X, Liu L, et al. Adaptive mechanisms of Bacillus to near space extreme environments. Sci Total Environ. 2023;886:163952. https://doi.org/10.1016/j.scitotenv.2023.163952
57. Valencia-Marin MF, Chávez-Avila S, Guzmán-Guzmán P, del Carmen Orozco-Mosqueda M, de Los Santos-Villalobos S, Glick BR, et al. Survival strategies of Bacillus spp. in saline soils: Key factors to promote plant growth and health. Biotechnol Adv. 2024;70:108303. https://doi.org/10.1016/j.biotechadv.2023.108303
58. Sur S, Romo TD, Grossfield A. Selectivity and mechanism of fengycin, an antimicrobial lipopeptide, from molecular dynamics. J Phys Chem B. 2018;122(8):2219-26. https://doi.org/10.1021/acs. jpcb.7b11889
59. Patel PS, Huang S, Fisher S, Pirnik D, Aklonis C, Dean L, et al. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: Production, taxonomy, isolation, physico-chemical characterization and biological activity. J Antibiot. 1995;48(9):997-1003. https://doi.org/10.7164/antibiotics.48.997
60. Shelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J Antimicrob Chemother. 2007;59(2):297-300. https://doi.org/10.1093/jac/dkl495
61. Chakraborty K, Kizhakkekalam VK, Joy M, Chakraborty RD. Bacillibactin class of siderophore antibiotics from a marine symbiotic Bacillus as promising antibacterial agents. Appl Microbiol Biotechnol. 2022;106(1):329-40. https://doi.org/10.1007/s00253-021-11632-0
62. Tichy E, Luisi B, Salmond G. Crystal structure of the carbapenem intrinsic resistance protein CarG. J Mol Biol. 2014;426(9):1958-70. https://doi.org/10.1016/j.jmb.2014.02.016
63. Das P, Mukherjee S, Sen R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol. 2008;104(6):1675-84. https://doi.org/10.1111/j.1365-2672.2007.03701.x
64. Zhen C, Ge XF, Lu YT, Liu WZ. Chemical structure, properties and potential applications of surfactin, as well as advanced strategies for improving its microbial production. AIMS Microbiol. 2023;9(2):195. https://doi.org/10.3934/microbiol.2023012
Year
Month
A review on the biological properties of Trichoderma spp. as a prospective biocontrol agent and biofertilizer
Abdul Muizz Al-Azim Abdul-Halim, Pooja Shivanand, Sarayu Krishnamoorthy, Hussein TahaGenome mining and AntiSMASH analysis of an Endophytic Talaromyces sp. reveal biosynthetic pathway gene clusters for novel bioactive compounds
Priyanka N. Shenoy, Sneha Bhaskar, M. Manu, M. P. Likitha, N. Geetha, Shailasree Sekhar, K Ramachandra Kini