Streptomyces as endomicrobiome: Potential bioinoculants for agricultural sustainability

Rangasamy Kirubakaran Nowsheen Shameem Elumalai Saranya Krishnan Meenambigai Ramu Dhanasekar Javid Ahmad Parray Neelam Yadav Sangram Singh Sarvesh Rustagi Paridhi Puri Babita Sharma Rajeshwari Negi Ajar Nath Yadav   

Open Access   

Published:  Nov 07, 2024

DOI: 10.7324/JABB.2025.202260
Abstract

The need for chemical-free farming methods is becoming more important due to the detrimental impacts of chemicals on human health and the environment. Finding innovative ways for the establishment of sustainable agriculture is crucial that may avoid the overuse of chemical fertilizers and pesticides as a means of increasing output. Microorganisms that promote plant development and act as biocontrol agents have become safe substitutes for chemical fertilizers in the agriculture sector. Endophytic microorganisms or microorganisms associated with plants, have become a vital and promising tool for sustainable agriculture. Endophytic Streptomyces act as the alternative for preventing disease-causing microorganisms and help to regulate plant growth. Bacteria belonging to the genus Streptomyces are well-known producers of secondary metabolites, which can be potentially utilized to replace chemical fertilizers and pesticides. The current status of endophytic Streptomyces in sustainable agriculture is employed as safe biocontrol and plant growth-promoting (PGP). This review emphasizes the biocontrol and PGP benefits of the endophytic Streptomyces. Additionally, their ability to enhance plant growth has been confirmed in a number of crops, thus encouraging the wide use of streptomycetes as biofertilizers to increase plant productivity.


Keyword:     Biofertilizers biocontrol bioformulation endophytes Streptomyces


Citation:

Kirubakaran R, Shameem N, Saranya E, Meenambigai K, Dhanasekar R, Parray JA, Yadav N, Singh S, Rustagi S, Puri P, Sharma B, Negi R, Yadav AN. Streptomyces as endomicrobiome: Potential bioinoculants for agricultural sustainability. J Appl Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2025.189424

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Nongkhlaw FMW, Joshi SR. Distribution pattern analysis of epiphytic bacteria on ethnomedicinal plant surfaces: a micrographical and molecular approach. J Microsc Ultrastruct 2014;2:34-40. https://doi.org/10.1016/j.jmau.2014.02.003

2. del Orozco-Mosqueda C, Santoyo G. Plant-microbial endophytes interactions: scrutinizing their beneficial mechanisms from genomic explorations. Curr Plant Biol 2021;25:100189. https://doi.org/10.1016/j.cpb.2020.100189

3. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 2012;7:e48479. https://doi.org/10.1371/journal.pone.0048479

4. Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res 2016;183:92-9. https://doi.org/10.1016/j.micres.2015.11.008

5. Ayswaria R, Vasu V, Krishna R. Diverse endophytic Streptomyces species with dynamic metabolites and their meritorious applications: a critical review. Crit Rev Microbiol 2020;46:750-8. https://doi.org/10.1080/1040841X.2020.1828816

6. Kirubakaran R, Murugan A, Parray JA. Molecular and enzymatic mechanism pathways of degradation of pesticides pollutants. In: Javid AP, Mahmoud AHAE, Sayyed R (eds.). Soil bioremediation: an approach towards sustainable technology, John Wiley & Sons, Hoboken, NJ, pp 257-84, 2021. https://doi.org/10.1002/9781119547976.ch11

7. Kirubakaran R, Murugan A, Chinnathambi P, Parray J. Influence of residual pesticide on plant growth promoting bacteria isolated from agriculture field. J Basic Appl Plant Sci 2017;1:110.

8. Enquist LW. Characterization of deoxyribonucleic acid from actinomycetes [Thesis]. Faculty of the Graduate School of Virginia, Commonwealth University, Health Sciences Division, Richmond, VA; 1971.

9. Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, et al. The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. SpringerPlus 2015;4:31. https://doi.org/10.1186/s40064-015-0811-3

10. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol 2013;14:209. https://doi.org/10.1186/gb-2013-14-6-209

11. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol 2015;206:1196-206. https://doi.org/10.1111/nph.13312

12. Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, et al. Production of 'hybrid' antibiotics by genetic engineering. Nature 1985;314:642-4. https://doi.org/10.1038/314642a0

13. Vurukonda SSKP, Giovanardi D, Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 2018;19:952. https://doi.org/10.3390/ijms19040952

14. Ardanov P, Sessitsch A, Häggman H, Kozyrovska N, Pirttilä AM. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 2012;7(10):e46802. https://doi.org/10.1371/journal.pone.0046802

15. Ardanov P, Lyastchenko S, Karppinen K, Häggman H, Kozyrovska N, Pirttilä AM. Effects of Methylobacterium sp. on emergence, yield, and disease prevalence in three cultivars of potato (Solanum tuberosum L.) were associated with the shift in endophytic microbial community. Plant Soil 2016;405:299-310. https://doi.org/10.1007/s11104-015-2500-y

16. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson N, James KD, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 2002;417: 141-7. https://doi.org/10.1038/417141a

17. Xu J, Wang Y, Xie SJ, Xu J, Xiao J, Ruan JS. Streptomyces xiamenensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2009;59:472-6. https://doi.org/10.1099/ijs.0.000497-0

18. Abdallah ME, Haroun SA, Gomah AA, El-Naggar NE, Badr HH. Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Arch Phytopathol Plant Protect 2013;46:1797-808. https://doi.org/10.1080/03235408.2013.778451

19. El-Tarabily KA. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane- 1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 2008;308:161-74. https://doi.org/10.1007/s11104-008-9616-2

20. Khamna S, Yokota A, Peberdy JF, Lumyong S. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. Eur Asian J Bio Sci 2010;4:23-32. https://doi.org/10.5053/ejobios.2010.4.0.4

21. Verma V, Singh S, Prakash S. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 2011;51:550-6. https://doi.org/10.1002/jobm.201000155

22. Lin L, Xu X. Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 2013;67:209-17. https://doi.org/10.1007/s00284-013-0348-z

23. Tsavkelova E, Klimova SY, Cherdyntseva T, Netrusov A. Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 2006;42:117-26. https://doi.org/10.1134/S0003683806020013

24. Nascimento FX, Rossi MJ, Soares CR, McConkey BJ, Glick BR. New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 2014;9:e99168. https://doi.org/10.1371/journal.pone.0099168

25. Goudjal Y, Zamoum M, Meklat A, Sabaou N, Mathieu F, Zitouni A. Plant-growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles (Terfezia leonis Tul.) of the Algerian Sahara. Ann Microbiol 2016;66:91-100. https://doi.org/10.1007/s13213-015-1085-2

26. Pimentel-Elardo SM, Scheuermayer M, Kozytska S, Hentschel U. Streptomyces axinellae sp. nov., isolated from the mediterranean sponge Axinella polypoides (Porifera). Int J Syst Evol Microbiol 2009;59:1433-7. https://doi.org/10.1099/ijs.0.007856-0

27. Waksman SA. Streptomycin: background, isolation, properties, and utilization. Science 1953;118:259-66. https://doi.org/10.1126/science.118.3062.259

28. Phongsopitanun W, Thawai C, Suwanborirux K, Kudo T, Ohkuma M, Tanasupawat S. Streptomyces chumphonensis sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 2014;64:2605-10. https://doi.org/10.1099/ijs.0.062992-0

29. Srivastava S, Patel JS, Singh HB, Sinha A, Sarma BK. Streptomyces rochei SM 3 induces stress tolerance in chickpea against Sclerotinia sclerotiorum and NaCl. J Phytopathol 2015;163:583-92. https://doi.org/10.1111/jph.12358

30. Li J, Tian XP, Zhu TJ, Yang LL, Li WJ. Streptomyces fildesensis sp. nov., a novel streptomycete isolated from Antarctic soil. Antonie van Leeuwenhoek 2011;100:537-43. https://doi.org/10.1007/s10482-011-9609-7

31. Lambert D, Loria R. Streptomyces scabies sp. nov., nom. rev. Int J Syst Evol Microbiol 1989;39:387-92. https://doi.org/10.1099/00207713-39-4-387

32. Mingma R, Duangmal K, Thamchaipenet A, Trakulnaleamsai S, Matsumoto A, Takahashi Y. Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant. J Antibiot 2015;68:368-72. https://doi.org/10.1038/ja.2014.166

33. de Oliveira LG, Tormet Gonzalez GD, Samborsky M, Marcon J, Araujo WL, de Azevedo JL. Genome sequence of Streptomyces wadayamensis strain A23, an endophytic actinobacterium from Citrus reticulata. Genome Announc 2014;2:e00625-14. https://doi.org/10.1128/genomeA.00625-14

34. Sarmin NIM, Tan GYA, Franco CM, Edrada-Ebel R, Latip J, Zin NM. Streptomyces kebangsaanensis sp. nov., an endophytic actinomycete isolated from an ethnomedicinal plant, which produces phenazine-1- carboxylic acid. Int J Syst Evol Microbiol 2013;63:3733-8. https://doi.org/10.1099/ijs.0.047878-0

35. Bian GK, Qin S, Yuan B, Zhang YJ, Xing K, Ju XY, et al. Streptomyces phytohabitans sp. nov., a novel endophytic actinomycete isolated from medicinal plant Curcuma phaeocaulis. Antonie van Leeuwenhoek 2012;102:289-96. https://doi.org/10.1007/s10482-012-9737-8

36. Patel JK, Archana G. Diverse culturable diazotrophic endophytic bacteria from poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 2017;417:99-116. https://doi.org/10.1007/s11104-017-3244-7

37. Coombs JT, Franco CM. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 2003;69:5603-8. https://doi.org/10.1128/AEM.69.9.5603-5608.2003

38. Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea JM. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 2010;45:209-17. https://doi.org/10.1016/j.apsoil.2010.04.007

39. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, et al. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 2002;68:2161-71. https://doi.org/10.1128/AEM.68.5.2161-2171.2002

40. Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 2012;102:463-72. https://doi.org/10.1007/s10482-012-9778-z

41. Nimnoi P, Pongsilp N, Lumyong S. Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant nutrition. J Plant Nutr 2014;37:432-46. https://doi.org/10.1080/01904167.2013.864308

42. Harikrishnan H, Shanmugaiah V, Balasubramanian N. Optimization for production of Indole acetic acid (IAA) by plant growth promoting Streptomyces sp VSMGT1014 isolated from rice rhizosphere. Int J Curr Microbiol Appl Sci 2014;3:158-71.

43. Igarashi Y, Iida T, Yoshida R, Furumai T. Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot 2002;55:764-7. https://doi.org/10.7164/antibiotics.55.764

44. El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 2009;106:13-26. https://doi.org/10.1111/j.1365-2672.2008.03926.x

45. Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B. Effect of plant growth-promoting Streptomyces sp. on growth promotion and grain yield in chickpea (Cicer arietinum L). 3 Biotech 2015;5:799-806. https://doi.org/10.1007/s13205-015-0283-8

46. Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney RK. Evaluation of broad-spectrum Streptomyces sp. for plant growth promotion traits in chickpea (Cicer arietinum L.). Philip Agric Sci 2015;98:270-8.

47. Zhu Z, Tian Z, Li J. A Streptomyces morookaensis strain promotes plant growth and suppresses fusarium wilt of banana. Tropic Plant Pathol 2021;46:175-85. https://doi.org/10.1007/s40858-020-00396-z

48. Verma VC, Gond SK, Kumar A, Kharwar RN, Boulanger LA, Strobel GA. Endophytic fungal flora from roots and fruits of an indian neem plant Azadirachta indica A. Juss., and impact of culture media on their isolation. Indian J Microbiol 2011;51:469-76. https://doi.org/10.1007/s12088-011-0121-6

49. Nikolic B, Schwab H, Sessitsch A. Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 2011;193:665-76. https://doi.org/10.1007/s00203-011-0703-z

50. Araújo WL, Marcon J, Maccheroni Jr W, Van Elsas JD, Van Vuurde JW, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 2002;68:4906-14. https://doi.org/10.1128/AEM.68.10.4906-4914.2002

51. Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y. Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing. Biochimie 2013;95: 743-50. https://doi.org/10.1016/j.biochi.2012.10.025

52. Rossi M, Trupiano D, Tamburro M, Ripabelli G, Montagnoli A, Chiatante D, et al. MicroRNAs expression patterns in the response of poplar woody root to bending stress. Planta 2015;242:339-51. https://doi.org/10.1007/s00425-015-2311-7

53. Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH. Bacterial sRNAs: regulation in stress. Int J Med Microbiol 2013;303:217-29. https://doi.org/10.1016/j.ijmm.2013.04.002

54. Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, et al. Characterization of drought- and heat-responsive microRNAs in switchgrass. Plant Sci 2016;242:214-23. https://doi.org/10.1016/j.plantsci.2015.07.018

55. Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009;136: 615-28. https://doi.org/10.1016/j.cell.2009.01.043

56. Tian W, Ge Y, Liu X, Dou G, Ma Y. Identification and characterization of Populus microRNAs in response to plant growth-promoting endophytic Streptomyces sp. SSD49. World J Microbiol Biotechnol 2019;35:97. https://doi.org/10.1007/s11274-019-2671-4

57. Harfouche L, Haichar Fe Z, Achouak W. Small regulatory RNA s and the fine-tuning of plant-bacteria interactions. New Phytol 2015;206:98-106. https://doi.org/10.1111/nph.13195

58. Shuai P, Liang D, Zhang Z, Yin W, Xia X. Identification of drought-responsive and novel Populus trichocarpamicroRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genom 2013;14:233. https://doi.org/10.1186/1471-2164-14-233

59. Sathya A, Vijayabharathi R, Gopalakrishnan S. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 2017;7:102. https://doi.org/10.1007/s13205-017-0736-3

60. Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze- Lefert P. Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol 2013;64:807-38. https://doi.org/10.1146/annurev-arplant-050312-120106

61. Massalha H, Korenblum E, Tholl D, Aharoni A. Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 2017;90(4):788-807. https://doi.org/10.1111/tpj.13543

62. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 2006;57:233-66. https://doi.org/10.1146/annurev.arplant.57.032905.105159

63. Jog R, Nareshkumar G, Rajkumar S. Enhancing soil health and plant growth promotion by Actinomycetes. In: Subramaniam G, Arumugam S, Rajendran V (eds.). Plant growth promoting actinobacteria: a new avenue for enhancing the productivity and soil fertility of grain legumes, Springere, Singapore, pp 33-45, 2016. https://doi.org/10.1007/978-981-10-0707-1_3

64. Gómez-Godínez LJ, Aguirre-Noyola JL, Martínez-Romero E, Arteaga-Garibay RI, Ireta-Moreno J, Ruvalcaba-Gómez JM. A look at plant growth promoting bacteria. Plants 2023;12:1668. https://doi.org/10.3390/plants12081668

65. Bano SA, Iqbal SM. Biological nitrogen fixation to improve plant growth and productivity. Int J Agric Innov Res 2016;4;597-9.

66. Souza Rd, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 2015;38:401-19. https://doi.org/10.1590/S1415-475738420150053

67. Rana KL, Kour D, Kaur T, Negi R, Devi R, Yadav N, et al. Endophytic nitrogen-fixing bacteria: untapped treasurer for agricultural sustainability. J Appl Biol Biotechnol 2023;11:75-93. https://doi.org/10.7324/JABB.2023.110207

68. Zhang H, Bai X, Han Y, Han L. Stress-resistance and growth-promoting characteristics and effects on vegetable seed germination of Streptomyces sp. strains isolated from wetland plant rhizospheres. Curr Microbiol 2023;80:190. https://doi.org/10.1007/s00284-023-03297-x

69. Niu Z, Yue Y, Su D, Ma S, Hu L, Hou X, et al. The characterization of Streptomyces alfalfae strain 11F and its effect on seed germination and growth promotion in switchgrass. Biomass Bioenerg 2022;158:106360. https://doi.org/10.1016/j.biombioe.2022.106360

70. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013;2:587. https://doi.org/10.1186/2193-1801-2-587

71. Urrutia O, Erro J, Guardado I, San Francisco S, Mandado M, Baigorri R, et al. Physico-chemical characterization of humic-metal-phosphate complexes and their potential application to the manufacture of new types of phosphate-based fertilizers. J Plant Nutr Soil Sci 2014;177:128-36. https://doi.org/10.1002/jpln.201200651

72. Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS, Zaidi A, Musarrat JB (eds.). Microbial strategies for crop improvement, Springer, Berlin, Heidelberg, pp 23-50, 2009. https://doi.org/10.1007/978-3-642-01979-1_2

73. Illmer P, Barbato A, Schinner F. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 1995;27:265-70. https://doi.org/10.1016/0038-0717(94)00205-F

74. Balakrishna G, Shiva Shanker A, Pindi PK. Isolation of phosphate solubilizing Actinomycetes from forest soils of mahabubnagar district. IOSR J Pharm 2012;2:271-5. https://doi.org/10.9790/3013-0220271275

75. Chouyia FE, Romano I, Fechtali T, Fagnano M, Fiorentino N, Visconti D, et al. P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Front Plant Sci 2020;11:1137. https://doi.org/10.3389/fpls.2020.01137

76. Aallam Y, Dhiba D, Rasafi TE, Abbas Y, Haddioui A, Tarkka M, et al. Assessment of two endemic rock phosphate solubilizing Streptomyces spp. on sugar beet (Beta vulgaris L.) growth under field conditions. Sci Hortic 2023;316:112033. https://doi.org/10.1016/j.scienta.2023.112033

77. Ghorbani Nasrabadi R, Greiner R, Mayer-miebach E, Menezes- Blackburn D. Phosphate solubilizing and phytate degrading Streptomyces isolates stimulate the growth and p accumulation of maize (Zea mays) fertilized with different phosphorus sources. Geomicrobiol J 2023;40:325-36. https://doi.org/10.1080/01490451.2023.2168799

78. Etesami H, Emami S, Alikhani HA. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects a review. J Soil Sci Plant Nutr 2017;17:897-911. https://doi.org/10.4067/S0718-95162017000400005

79. Sharma R, Sindhu SS, Glick BR. Potassium solubilizing microorganisms as potential biofertilizer: a sustainable climate-resilient approach to improve soil fertility and crop production in agriculture. J Plant Growth Regul 2024;43:2503-35. https://doi.org/10.1007/s00344-024-11297-9

80. Singh A, Singh B, Chinna GS, Chahal HS, Devi R. Revitalization of potassium solubilizing microbes in food production system: an overview. Agric Rev 2023;44:311-9. https://doi.org/10.18805/ag.R-2196

81. Ahmad M, Nadeem SM, Naveed M, Zahir ZA. Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds.). Potassium solubilizing microorganisms for sustainable agriculture, Springer, New Delhi, India, pp 293-313, 2016. https://doi.org/10.1007/978-81-322-2776-2_21

82. Soumare A, Sarr D, DiÉDhiou AG. Potassium sources, microorganisms and plant nutrition: challenges and future research directions. Pedosphere 2023;33:105-15. https://doi.org/10.1016/j.pedsph.2022.06.025

83. Aallam Y, Dhiba D, El Rasafi T, Lemriss S, Haddioui A, Tarkka M, et al. Growth promotion and protection against root rot of sugar beet (Beta vulgaris L.) by two rock phosphate and potassium solubilizing Streptomyces spp. under greenhouse conditions. Plant Soil 2022;472:407-20. https://doi.org/10.1007/s11104-021-05252-w

84. Kushwaha P, Kashyap PL, Pandiyan K, Bhardwaj AK. Zinc-solubilizing microbes for sustainable crop production: current understanding, opportunities, and challenges. In: Solanki MK, Kashyap PL, Kumari B (eds.). Phytobiomes: current insights and future vistas. Springer, Singapore, pp 281-98, 2020. https://doi.org/10.1007/978-981-15-3151-4_11

85. Swati Sindhu SS, Ruchi Sharma RS, Masih JC, Sunita Suneja SS. Prospects of zinc solubilizing bacteria as biofertilizer to promote growth of field crops. Ann Biol 2018;34(1):16-23.

86. Upadhayay VK, Singh AV, Khan A. Cross talk between zinc-solubilizing bacteria and plants: a short tale of bacterial-assisted zinc biofortification. Front Soil Sci 2022;1:788170. https://doi.org/10.3389/fsoil.2021.788170

87. Upadhayay VK, Singh AV, Khan A, Sharma A. Contemplating the role of zinc-solubilizing bacteria in crop biofortification: an approach for sustainable bioeconomy. Front Agron 2022;4:903321. https://doi.org/10.3389/fagro.2022.903321

88. Suriyachadkun C, Chunhachart O, Srithaworn M, Tangchitcharoenkhul R, Tangjitjareonkun J. Zinc-solubilizing Streptomyces spp. as bioinoculants for promoting the growth of soybean (Glycine max (L.) Merrill). J Microbiol Biotechnol 2022;32:1435-46. https://doi.org/10.4014/jmb.2206.06058

89. Patel KB, Thakker JN. Deliberating plant growth promoting and mineral-weathering proficiency of Streptomyces nanhaiensis strain YM4 for nutritional benefit of millet crop (Pennisetum glaucum). J Microbiol Biotechnol Food Sci 2020;9:721-6. https://doi.org/10.15414/jmbfs.2020.9.4.721-726

90. Postolaky OP, Baltsat K, Burtseva S, Maslobrod S. Effect of Streptomyces metabolites on some physiological parameters of maize seeds. Bull Univ Agric Sci Vet Med Cluj-Napoca Agric 2012;69:(1)2012. https://doi.org/10.15835/buasvmcn-agr:8649

91. Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 2017;8:2104. https://doi.org/10.3389/fmicb.2017.02104

92. Abd-Alla MH, El-Sayed E-SA, Rasmey A-HM. Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. J Biol Earth Sci 2013;3:182-93.

93. Sharma A, Kumar P, Pahal V, Kumar J, Pandey SS. Endophytic phytohormone production and utilization of functional traits in plant growth promotion. In: Chhabra S, Prasad R, Maddela NR, Tuteja N (eds.). Plant microbiome for plant productivity and sustainable agriculture, Springer Nature, Singapore, pp 365-85, 2023. https://doi.org/10.1007/978-981-19-5029-2_15

94. Manullang W, Chuang HW. Streptomyces sp. mitigates abiotic stress response and promotes plant growth. J Plant Protect Res 2020;60:263-74.

95. Villafañe DL, Maldonado RA, Bianchi JS, Kurth D, Gramajo H, Chiesa MA, et al. Streptomyces N2A, an endophytic actinobacteria that promotes soybean growth and increases yield and seed quality under field conditions. Plant Sci 2024;343:112073. https://doi.org/10.1016/j.plantsci.2024.112073

96. Ansari WA, Krishna R, Zeyad MT, Singh S, Yadav A. Endophytic actinomycetes-mediated modulation of defense and systemic resistance confers host plant fitness under biotic stress conditions. In: Singh RP, Manchanda G, Maurya IK, Wei Y (eds.). Microbial versatility in varied environments: microbes in sensitive environments, Springer, Singapore, pp 167-80, 2020. https://doi.org/10.1007/978-981-15-3028-9_10

97. Jacob J, Krishnan GV, Thankappan D, Kumar D, Nair B, Amma S. Endophytic bacterial strains induced systemic resistance in agriculturally important crop plants. In: Kumar A, Radhakrishnan EK (eds.). Microbial endophytes: functional biology and applications, Woodhead Publishing, Sawston, UK, Elsevier Inc, New York, NY, pp 75-105, 2020. https://doi.org/10.1016/B978-0-12-819654-0.00004-1

98. Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, et al. Plant growth-promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants 2021;10:76. https://doi.org/10.3390/plants10010076

99. Singh SP, Gaur R. Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biol Control 2017;104:44-56. https://doi.org/10.1016/j.biocontrol.2016.10.011

100. Tran TM, Ameye M, Devlieghere F, De Saeger S, Eeckhout M, Audenaert K. Streptomyces strains promote plant growth and induce resistance against Fusarium verticillioides via transient regulation of auxin signaling and archetypal defense pathways in maize plants. Front Plant Sci 2021;12:755733. https://doi.org/10.3389/fpls.2021.755733

101. Chen D, Ali MNHA, Kamran M, Magsi MA, Mora-Poblete F, Maldonado C, et al. The Streptomyces chromofuscus strain RFS-23 induces systemic resistance and activates plant defense responses against tomato yellow leaf curl virus infection. Agronomy 2022;12:2419. https://doi.org/10.3390/agronomy12102419

102. Olanrewaju OS, Babalola OO. Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 2019;103:1179-88. https://doi.org/10.1007/s00253-018-09577-y

103. Shrivastava N, Mahajan S, Varma A. Symbiotic soil microorganisms: biology and applications. Springer, International Publishing, Cham, Switzerland, 2021 https://doi.org/10.1007/978-3-030-51916-2

104. Anwar S, Ali B, Sajid I. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front Microbiol 2016;7:203732. https://doi.org/10.3389/fmicb.2016.01334

105. Omar AF, Abdelmageed AHA, Al-Turki A, Abdelhameid NM, Sayyed RZ, Rehan M. Exploring the plant growth-promotion of four Streptomyces strains from rhizosphere soil to enhance cucumber growth and yield. Plants 2022;11:3316. https://doi.org/10.3390/plants11233316

106. Maheshwari DK, Maheshwari R, Rinaudo. Endophytes: biology and biotechnology, vol 1. Springer, Berlin, Germany, 2017. https://doi.org/10.1007/978-3-319-66541-2

107. Dicko AH, Babana AH, Kassogué A, Fané R, Nantoumé D, Ouattara D, et al. A Malian native plant growth promoting actinomycetes based biofertilizer improves maize growth and yield. Symbiosis 2018;75:267-75. https://doi.org/10.1007/s13199-018-0555-2

108. Chouyia FE, Ventorino V, Pepe O. Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: a review. Front Plant Sci 2022;13:1035358. https://doi.org/10.3389/fpls.2022.1035358

109. Janati W, Mikou K, El Ghadraoui L, Errachidi F. Isolation and characterization of phosphate solubilizing bacteria naturally colonizing legumes rhizosphere in Morocco. Front Microbiol 2022;13:958300. https://doi.org/10.3389/fmicb.2022.958300

110. Htwe AZ, Moh SM, Soe KM, Moe K, Yamakawa T. Effects of biofertilizer produced from Bradyrhizobium and Streptomyces griseoflavus on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy 2019;9:77. https://doi.org/10.3390/agronomy9020077

111. Domínguez-González KG, Robledo-Medrano JJ, Valdez-Alarcón JJ, Hernández-Cristobal O, Martínez-Flores HE, Cerna-Cortés JF, et al. Streptomyces spp. biofilmed solid inoculant improves microbial survival and plant-growth efficiency of Triticum aestivum. Appl Sci 2022;12:11425. https://doi.org/10.3390/app122211425

112. Kaur S, Kalia A, Sharma S. Bioformulation of azotobacter and Streptomyces for improved growth and yield of wheat (Triticum aestivum L.): a field study. J Plant Growth Regul 2024;43(8):1-17. https://doi.org/10.1007/s00344-024-11282-2

113. Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 2013;29:1821-9. https://doi.org/10.1007/s11274-013-1344-y

114. Govindasamy V, George P, Ramesh SV, Sureshkumar P, Rane J, Minhas PS. Characterization of root-endophytic actinobacteria from cactus (Opuntia ficus-indica) for plant growth promoting traits. Arch Microbiol 2022;204:150. https://doi.org/10.1007/s00203-021-02671-2

115. Devi S, Sharma M, Manhas RK. Investigating the plant growth promoting and biocontrol potentiality of endophytic Streptomyces sp. SP5 against early blight in Solanum lycopersicum seedlings. BMC Microbiol 2022;22:285. https://doi.org/10.1186/s12866-022-02695-8

116. Arora NK, Bouizgarne B. Microbial BioTechnology for sustainable agriculture. Springer Nature, Berlin, Germany, 2022. https://doi.org/10.1007/978-981-16-4843-4

117. Nagendran S, Agrawal SS, Patwardhan AG. Eco-friendly association of plants and actinomycetes. In: Shrivastava N, Mahajan S, Varma A (eds.). Symbiotic soil microorganisms: biology and applications, Springer International Publishing, Cham, Switzerland, pp 99-116, 2021. https://doi.org/10.1007/978-3-030-51916-2_6

118. Tahvonen R. Preliminary experiments into the use of Streptomyces spp. isolated from peat in the biological control of soil and seed-borne diseases in peat culture. Agric Food Sci 1982;54:357-69. https://doi.org/10.23986/afsci.72116

119. Javed Z, Tripathi GD, Mishra M, Dashora K. Actinomycetes-the microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatal Agric Biotechnol 2021;31:101893. https://doi.org/10.1016/j.bcab.2020.101893

120. Wang Z, Solanki MK, Yu ZX, Anas M, Dong DF, Xing YX, et al. Genome characteristics reveal the biocontrol potential of actinobacteria isolated from sugarcane rhizosphere. Front Microbiol 2021;12:797889. https://doi.org/10.3389/fmicb.2021.797889

121. Pang F, Solanki MK, Wang Z. Streptomyces can be an excellent plant growth manager. World J Microbiol Biotechnol 2022;38:193. https://doi.org/10.1007/s11274-022-03380-8

122. Chaiharn M, Theantana T, Pathom-aree W. Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi. Pathogens 2020;9:126. https://doi.org/10.3390/pathogens9020126

123. Myo EM, Ge B, Ma J, Cui H, Liu B, Shi L, et al. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiol 2019;19:155. https://doi.org/10.1186/s12866-019-1528-1

124. Devi S, Manhas RK. Induction of systemic resistance in Solanum lycopersicum and Capsicum annum seedlings against fusarium wilt by Streptomyces bioformulations. Environl Sci Pollut Res 2023;30:109438-52. https://doi.org/10.1007/s11356-023-29973-w

125. Zamoum M, Allali K, Benadjila A, Zitouni A, Goudjal Y. Formulation of biofungicides based on Streptomyces caeruleatus strain ZL-2 spores and efficacy against Rhizoctonia solani damping-off of tomato seedlings. Arch Microbiol 2022;204:629. https://doi.org/10.1007/s00203-022-03251-8

126. Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, et al. Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Front Microbiol 2019;10:290. https://doi.org/10.3389/fmicb.2019.00290

127. Devi S, Diksha, Verma J, Sohal SK, Manhas RK. Insecticidal potential of endophytic Streptomyces sp. against Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) and biosafety evaluation. Toxicon 2023;233:107246. https://doi.org/10.1016/j.toxicon.2023.107246

128. Briceño G, Fuentes MS, Saez JM, Diez MC, Benimeli CS. Streptomyces genus as biotechnological tool for pesticide degradation in polluted systems. Crit Rev Environ Sci Technol 2018;48:773-805. https://doi.org/10.1080/10643389.2018.1476958

129. Moraga NB, Amoroso MJ, Rajal VB. Streptomyces from soils contaminated with boron compounds. In: Amoroso, MJ, Benimeli, CS, Cuozzo SA (eds.). Actinobacteria application in bioremediation and production of industrial enzymes. CRC Press, Boca Raton, FL, pp 136-64, 2013.

130. Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, et al. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017;166:41-62. https://doi.org/10.1016/j.chemosphere.2016.09.070

131. Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ. Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. Int Biodeterior Biodegrad 2014;88:48-55. https://doi.org/10.1016/j.ibiod.2013.12.004

132. Goudjal Y, Zamoum M, Sabaou N, Mathieu F, Zitouni A. Potential of endophytic Streptomyces spp. for biocontrol of fusarium root rot disease and growth promotion of tomato seedlings. Biocont Sci Technol 2016;26:1691-705. https://doi.org/10.1080/09583157.2016.1234584

133. Zheng X, Wang J, Chen Z, Zhang H, Wang Z, Zhu Y, et al. A Streptomyces sp. strain: isolation, identification, and potential as a biocontrol agent against soilborne diseases of tomato plants. Biol Control 2019;136:104004. https://doi.org/10.1016/j.biocontrol.2019.104004

134. Pushpalatha HG, Naveen J, Geetha N, Hithamani G, Shetty HS. Plant growth promotion and biological control of Sclerospora graminicola in pearl millet by endophytic Streptomyces spp. Indian Phytopathol 2023;76:521-30. https://doi.org/10.1007/s42360-023-00616-x

135. Kadaikunnan S, Alharbi NS, Khaled JM, Alobaidi AS. Biocontrol property of Streptomyces parvulus VRR3 in green gram plant (Vigna radiata L.) against Fusarium solani in greenhouse. Physiol Mol Plant Pathol 2023;128:102128. https://doi.org/10.1016/j.pmpp.2023.102128

136. Zamoum M, Goudjal Y, Sabaou N, Barakate M, Mathieu F, Zitouni A. Biocontrol capacities and plant growth-promoting traits of endophytic actinobacteria isolated from native plants of Algerian Sahara. J Plant Dis Protect 2015;122:215-23. https://doi.org/10.1007/BF03356555

137. Lin L, Ge HM, Yan T, Qin YH, Tan RX. Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 2012;236:1849-61. https://doi.org/10.1007/s00425-012-1741-8

138. Marian M, Ohno T, Suzuki H, Kitamura H, Kuroda K, Shimizu M. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiol Res 2020;234:126428. https://doi.org/10.1016/j.micres.2020.126428

139. Passari AK, Mishra VK, Gupta VK, Yadav MK, Saikia R, Singh BP. In vitro and in vivo plant growth promoting activities and dna fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLoS One 2015;10:e0139468. https://doi.org/10.1371/journal.pone.0139468

140. Alblooshi AA, Purayil GP, Saeed EE, Ramadan GA, Tariq S, Altaee AS, et al. Biocontrol potential of endophytic actinobacteria against Fusarium solani, the causal agent of sudden decline syndrome on date palm in the UAE. J Fungi 2022;8:8. https://doi.org/10.3390/jof8010008

141. Gao C, Wang Z, Wang C, Yang J, Du R, Bing H, et al. Endophytic Streptomyces sp. NEAU-DD186 from Moss with broad-spectrum antimicrobial activity: biocontrol potential against soilborne diseases and bioactive components. Phytopathology® 2024;114:340-7. https://doi.org/10.1094/PHYTO-06-23-0204-R

142. Zhuang X, Gao C, Peng C, Wang Z, Zhao J, Shen Y, et al. Characterization of a novel endophytic actinomycete, Streptomyces physcomitrii sp. nov., and its biocontrol potential against Ralstonia solanacearum on tomato. Microorganisms 2020;8:2025. https://doi.org/10.3390/microorganisms8122025

143. Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A. Positive role of 1-aminocyclopropane-1-carboxylate deaminase-producing endophytic Streptomyces sp. GMKU 336 on flooding resistance of mung bean. Agric Nat Resour 2018;52:330-4. https://doi.org/10.1016/j.anres.2018.09.008

144. Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A. Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 2018;8:1950. https://doi.org/10.1038/s41598-018-19799-9

145. Rastogi M, Nandal M, Khosla B. Microbes as vital additives for solid waste composting. Heliyon 2020;6:e03343. https://doi.org/10.1016/j.heliyon.2020.e03343

146. Zhao Y, Lu Q, Wei Y, Cui H, Zhang X, Wang X, et al. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis. Bioresour Technol 2016;219:196-203. https://doi.org/10.1016/j.biortech.2016.07.117

147. Karnchanawong S, Nissaikla S. Effects of microbial inoculation on composting of household organic waste using passive aeration bin. Int J Recycl Org Waste Agric 2014;3:113-9. https://doi.org/10.1007/s40093-014-0072-0

148. Jurado MM, Suárez-Estrella F, Vargas-García MC, López MJ, López-González JA, Moreno J. Increasing native microbiota in lignocellulosic waste composting: effects on process efficiency and final product maturity. Process Biochem 2014;49:1958-69. https://doi.org/10.1016/j.procbio.2014.08.003

149. Xi B, He X, Dang Q, Yang T, Li M, Wang X, et al. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting. Bioresour Technol 2015;196:399-405. https://doi.org/10.1016/j.biortech.2015.07.069

150. Xu J, Jiang Z, Li M, Li Q. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. Environ Manag 2019;243:240-9. https://doi.org/10.1016/j.jenvman.2019.05.008

151. Jusoh MLC, Manaf LA, Latiff PA. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian J Environ Health Sci Eng 2013;10:17. https://doi.org/10.1186/1735-2746-10-17

152. Rybarczyk P. Removal of volatile organic compounds (vocs) from air: focus on biotrickling filtration and process modeling. Processes 2022;10:2531. https://doi.org/10.3390/pr10122531

153. Zainudin MHM, Zulkarnain A, Azmi AS, Muniandy S, Sakai K, Shirai Y, et al. Enhancement of agro-industrial waste composting process via the microbial inoculation: a brief review. Agronomy 2022;12:198. https://doi.org/10.3390/agronomy12010198

154. Chen L, Li W, Zhao Y, Zhang S, Meng L. Evaluation of bacterial agent/nitrate coupling on enhancing sulfur conversion and bacterial community succession during aerobic composting. Bioresour Technol 2022;362:127848. https://doi.org/10.1016/j.biortech.2022.127848

155. Iutynska G, Biliavska L, Kozyritska VY. Development strategy for the new environmentally friendly multifunctional bioformulations based on soil streptomycetes. Microbiol J 2017;79(1):22-33. https://doi.org/10.15407/microbiolj79.01.022

156. Abdullah N, Chin NL, Mokhtar MN, Taip FS. Effects of bulking agents, load size or starter cultures in kitchen-waste composting. Int J Recycl Org Waste Agric 2013;2:3. https://doi.org/10.1186/2251-7715-2-3

157. Wei Y, Wu D, Wei D, Zhao Y, Wu J, Xie X, et al. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour Technol 2019;271:66-74. https://doi.org/10.1016/j.biortech.2018.09.081

158. Hidalgo D, Corona F, Martín-Marroquín JM. Manure biostabilization by effective microorganisms as a way to improve its agronomic value. Biomass Convers Bior 2022;12:4649-64. https://doi.org/10.1007/s13399-022-02428-x

159. Khaliq A, Abbasi MK, Hussain T. Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresour Technol 2006;97:967-72. https://doi.org/10.1016/j.biortech.2005.05.002

160. Echarrafi K, El Harhouri H, Abbou MB, Rais Z, El Hassani I, El Haji M. Mixture design formulation for optimized composting with the perspective of using artificial intelligence optimization algorithms. J Appl Sci Environ Stud 2018;1:1-2.

161. Mahdavi M, Vera D. Importance of renewable energy sources and agricultural biomass in providing primary energy demand for Morocco. Int J Hydrogen Energy 2023;48:34575-98. https://doi.org/10.1016/j.ijhydene.2023.05.246

162. Epule TE, Chehbouni A, Chfadi T, Ongoma V, Er-Raki S, Khabba S, et al. A systematic national stocktake of crop models in morocco. Ecol Modell 2022;470:110036. https://doi.org/10.1016/j.ecolmodel.2022.110036

163. Adusei-Gyamfi J, Boateng KS, Sulemana A, Hogarh JN. Post COVID-19 recovery: challenges and opportunities for solid waste management in Africa. Environ Chall 2022;6:100442. https://doi.org/10.1016/j.envc.2022.100442

164. Policastro G, Cesaro A. Composting of organic solid waste of municipal origin: the role of research in enhancing its sustainability. Int J Environ Res Public Health 2023;20:312. https://doi.org/10.3390/ijerph20010312

165. Pirttilä AM, Mohammad Parast Tabas H, Baruah N, Koskimäki JJ. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 2021;9:817. https://doi.org/10.3390/microorganisms9040817

166. Kloepper JW, Ryu C-M, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 2004;94:1259-66. https://doi.org/10.1094/PHYTO.2004.94.11.1259

167. Adesemoye A, Torbert H, Kloepper J. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 2008;54:876-86. https://doi.org/10.1139/W08-081

168. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 2015;51:403-15. https://doi.org/10.1007/s00374-015-0996-1

169. Adesemoye AO, Kloepper JW. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 2009;85:1-12. https://doi.org/10.1007/s00253-009-2196-0

170. Paterson J, Jahanshah G, Li Y, Wang Q, Mehnaz S, Gross H. The contribution of genome mining strategies to the understanding of active principles of PGPR strains. FEMS Microbial Ecol 2017;93:fiw249. https://doi.org/10.1093/femsec/fiw249

171. M?cik M, Gryta A, Fr?c M. Chapter two-biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. In: Sparks DL (ed.). Advances in agronomy. Academic Press, Cambridge, MA, pp 31-87, 2020. https://doi.org/10.1016/bs.agron.2020.02.001

Article Metrics
67 Views 24 Downloads 91 Total

Year

Month

Related Search

By author names

Similar Articles

Chitinolytic efficacy and secretion of cell wall degrading enzymes from Trichoderma spp. in response to phyto-pathological fungi

Dinesh K Khatri, Durgesh Nandini Tiwari, Himanshu S Bariya

Interactive potential of Pseudomonas species with plants

Suhana Shaikh,, Nutan Yadav, Anoop R. Markande,

Field treatment of three wheat varieties with Trichoderma harzianum bioagent to control Anguina tritici

Nawres Abdulelah Sadeq Alkuwaiti, Ammar Amjad Aish, Saad Tareq Abdulmalak, Tariq A. Kareem, Mohammed Mahmood Sulaiman

A review on the biological properties of Trichoderma spp. as a prospective biocontrol agent and biofertilizer

Abdul Muizz Al-Azim Abdul-Halim, Pooja Shivanand, Sarayu Krishnamoorthy, Hussein Taha

Beneficial fungal communities for sustainable development: Present scenario and future challenges

Divjot Kour, Sofia Sharief Khan, Seema Ramniwas, Sanjeev Kumar, Ashutosh Kumar Rai, Sarvesh Rustagi, Kundan Kumar Chaubey, Sangram Singh, Ajar Nath Yadav,, Amrik Singh Ahluwalia

Efficacy of bacteriophage L522 against bacterial leaf blight of rice in Vietnam

Pham D.T. My,, Le T.T. Tien,, Le P. Nga,, To H. Ngoc,, Vo T. Phuc,, Hoang A. Hoang,

Influence of growth conditions on production of poly(3-hydroxybutyrate) by Bacillus cereus HAL 03 endophytic to Helianthus annuus L.

Rituparna Das, Agnijita Dey, Arundhati Pal, A. K. Paul

Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants

Rajat Maheshwari, Namita Bhutani, Pooja Suneja

Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.)

Kusam Lata Rana, Divjot Kour, Tanvir Kaur, Rubee Devi, Ashok Yadav, Ajar Nath Yadav

Identification and bioactivities of endophytic fungi from Lagenandra toxicaria Dalz. and Kaempferia rotunda L.

Praveen Krishnakumar, Mable Varghese, Maria Grace Joe, Asha Rajagopal, Leyon Varghese

Applications of bacterial endophytes and their advanced identification methodologies

R. Renugadevi, M. P. Ayyappadas, V. Subha Priya, M. Flory Shobana, K. Vivekanandhan

Rice crop loss due to major pathogens and the potential of endophytic microbes for their control and management

Shubhransu Nayak, Soma Samanta, Chandan Sengupta, Soumya Sephalika Swain

Phytomicrobiomes for agro-environmental sustainability

Ajar Nath Yadav

A comprehensive review on global research trends on Aerides genus with reference to Aerides odorata species

Vivek Kumar Paraste, Surendra Sarsaiya,, Umesh C. Mishra, Pragya Sourabh

Beneficial microorganisms for healthy soils, healthy plants and healthy humans

Ajar Nath Yadav, Divjot Kour, Neelam Yadav

The medicinal plant Berberis aristata and its endophytes for pharmacological applications: Current research and future challenges

Sheetal Sharma, M. V. N. L. Chaitanya, Sarika Sharma, Sanjeev Kumar, Sarvesh Rustagi, Sangram Singh, Sheikh Shreaz, Ashutosh Kumar Rai, Rajeshwari Negi, Ajar Nath Yadav,

Omics technologies for understanding the plant–fungal endophyte interactions: crop improvement for future security

Tanvir Kaur, Rajeshwari Negi, Babita Sharma, Simranjeet Kaur, Sofia Sharief Khan, Divjot Kour, Sangram Singh, Sarvesh Rustagi, Sheikh Shreaz, Neelam Yadav, Manish Kumar, Ashutosh Kumar Rai, Ajar Nath Yadav

Evaluation and characterization of endophytic bacteria from Capparis decidua (Forssk.) Edgew. for their antifungal and antioxidant activities

Sudesh Kumari, Prity Gulia, Pooja Choudhary, Ritu Pasrija, Mehak Dangi, Anil Kumar Chhillar

Endophytic microbiomes for agricultural sustainability

Ajar Nath Yadav