Review Article | Volume 10, Supplement 2, July, 2022

Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches

Varsha Yadav Saveena Dhanger Jaigopal Sharma   

Open Access   

Published:  Jun 20, 2022

DOI: 10.7324/JABB.2022.10s204
Abstract

Decades ago, microplastic presence was corroborated in aquatic ecosystem, but revelations from current studies indicate microplastics (MPs) as ubiquitous environmental concern and demonstrate our plasticized life, because of microplastic existent in food, air, water, and soil. Existence of MPs in terrestrial ecosystem is long recognized now and additionally, all the evidence that has been found for microplastic entering the farm soils indicated that they are gradually accumulating in the agricultural soil. While previous studies focused extensively on marine systems, the increasing toxicity of MPs in agricultural cultivated soils and the aspects of MPs being accumulated causing bio-toxification are being looked upon presently. They potentially damage the yield of crop plants making their roots unable to uptake water and nutrients from the soil by accumulating near the roots. MPs have already invaded the terrestrial food chain and they have been detected in excreta of livestock animals along with earthworms and crop plants. MPs are abundant in farm soil that has interacted with sewage-sludge, plastic mulching sheets, organic fertilizers, and vermicompost for a long duration. This review focuses on current evidence of microplastic accumulation in farm soil, thereby enlightening the potential damages to crop plants, soil properties, soil microbes while ultimately reaching humans via the food chain. It also covers the recent advances for soil microplastic extraction, treatment, and possible bioremediation strategies.


Keyword:     Bioremediation Extraction Microplastics Nano plastics Plastic mulching Soil pollution


Citation:

Yadav V, Dhanger S, Sharma J. Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches. J App Biol Biotech. 2022;10(Suppl 2):38-47.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun 2019;5:1-11. https://doi.org/10.1057/s41599-018-0212-7

2. Zhang S, Han B, Sun Y, Wang F. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J Hazard Mater 2020;388:121775. https://doi.org/10.1016/j.jhazmat.2019.121775

3. Piehl S, Leibner A, Löder MG, Dris R, Bogner C, Laforsch C. Identification and quantification of macro-and microplastics on an agricultural farmland. Sci Rep 2018;8:1-9. https://doi.org/10.1038/s41598-018-36172-y

4. Sintim HY, Bary AI, Hayes DG, English ME, Schaeffer SM, MilesCA, et al. Release of micro-and nanoparticles from biodegradable plastic during in situ composting. Sci Total Environ 2019;675:686-93. https://doi.org/10.1016/j.scitotenv.2019.04.179

5. Zhang L, Xie Y, Liu J, Zhong S, Qian Y, Gao P. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environ Sci Technol 2020;54:4248-55. https://doi.org/10.1021/acs.est.9b07905

6. Zhou B, Wang J, Zhang H, Shi H, Fei Y, Huang S, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. J Hazard Mater 2020;388:121814. https://doi.org/10.1016/j.jhazmat.2019.121814

7. Gao H, Yan C, Liu Q, Ding W, Chen B, Li Z. Effects of plastic mulching and plastic residue on agricultural production: A metaanalysis. Sci Total Environ 2019;651:484-92. https://doi.org/10.1016/j.scitotenv.2018.09.105

8. Beriot N, Peek J, Zornoza R, Geissen V, Lwanga EH. Low densitymicroplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci Total Environ 2021;755:142653. https://doi.org/10.1016/j.scitotenv.2020.142653

9. Wu RT, Cai YF, Chen YX, Yang YW, Xing SC, Di LX. Occurrence of microplastic in livestock and poultry manure in South China. Environ Pollut 2021;277:116790. https://doi.org/10.1016/j.envpol.2021.116790

10. Chai B, Wei Q, She Y, Lu G, Dang Z, Yin H. Soil microplastic pollution in an e-waste dismantling zone of China. Waste Manag 2020;118:291-301. https://doi.org/10.1016/j.wasman.2020.08.048

11. Blöcker L, Watson C, Wichern F. Living in the plastic age-different short-term microbial response to microplastics addition to arable soils with contrasting soil organic matter content and farm management legacy. Environ Pollut 2020;267:115468. https://doi.org/10.1016/j.envpol.2020.115468

12. Chen Y, Leng Y, Liu X, Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ Pollut 2020;257:113449. https://doi.org/10.1016/j.envpol.2019.113449

13. Li HZ, Zhu D, Lindhardt JH, Lin SM, Ke X, Cui L. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environ Sci Technol 2021;55:4658-68. https://doi.org/10.1021/acs.est.0c04849

14. Braun M, Mail M, Heyse R, Amelung W. Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. Sci Total Environ 2021;760:143335. https://doi.org/10.1016/j.scitotenv.2020.143335

15. Huerta Lwanga E, Mendoza Vega J, Ku Quej V, de Los AC, del Cid LS, Chi C, et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 2017;7:1-7. https://doi.org/10.1038/s41598-017-14588-2

16. El Hayany B, El Fels L, Quénéa K, Dignac MF, Rumpel C, Gupta VK, et al. Microplastics from lagooning sludge to composts as revealed by fluorescent staining-image analysis, Raman spectroscopy and pyrolysis-GC/MS. J Environ Manage 2020;275:111249. https://doi.org/10.1016/j.jenvman.2020.111249

17. Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ 2019;671:411-20. https://doi.org/10.1016/j.scitotenv.2019.03.368

18. Huang Y, Liu Q, Jia W, Yan C, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut 2020;260:114096. https://doi.org/10.1016/j.envpol.2020.114096

19. Veerasingam S, Mugilarasan M, Venkatachalapathy R, Vethamony P. Influence of 2015 flood on the distribution and occurrence of microplastic pellets along the Chennai coast, India. Mar Pollut Bull 2016;109:196-204. https://doi.org/10.1016/j.marpolbul.2016.05.082

20. Su Y, Zhang Z, Wu D, Zhan L, Shi H, Xie B. Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res 2019;164:114968. https://doi.org/10.1016/j.watres.2019.114968

21. Mortula MM, Atabay S, Fattah KP, Madbuly A. Leachability of microplastic from different plastic materials. J Environ Manage 2021;294:112995. https://doi.org/10.1016/j.jenvman.2021.112995

22. De Souza MacHado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, et al. Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 2018;52:9656-65. https://doi.org/10.1021/acs.est.8b02212

23. Qi Y, Beriot N, Gort G, Huerta Lwanga E, Gooren H, Yang X, et al. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ Pollut 2020;266:115097. https://doi.org/10.1016/j.envpol.2020.115097

24. Zhong H, Yang S, Zhu L, Liu C, Zhang Y, Zhang Y. Effect of microplastics in sludge impacts on the vermicomposting. Bioresour Technol 2021;326:124777. https://doi.org/10.1016/j.biortech.2021.124777

25. Kim SW, Jeong SW, An YJ. Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method. Chemosphere 2021;276:130178. https://doi.org/10.1016/j.chemosphere.2021.130178

26. Rillig MC, Leifheit E, Lehmann J. Microplastic effects on carbon cycling processes in soils. PLoS Biol 2021;19:1-9. https://doi.org/10.1371/journal.pbio.3001130

27. Li L, Luo Y, Peijnenburg WJ, Li R, Yang J, Zhou Q. Confocal measurement of microplastics uptake by plants. MethodsX 2020;7:100750. https://doi.org/10.1016/j.mex.2019.11.023

28. Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobu?ar G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 2019;250:831-8. https://doi.org/10.1016/j.envpol.2019.04.055

29. Sun XD, Yuan XZ, Jia Y, Feng LJ, Zhu FP, Dong SS, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol 2020;15:755-60. https://doi.org/10.1038/s41565-020-0707-4

30. Dong Y, Gao M, Song Z, Qiu W. Microplastic particles increase arsenic toxicity to rice seedlings. Environ Pollut 2020;259:113892. https://doi.org/10.1016/j.envpol.2019.113892

31. Li M, Wu D, Wu D, Guo H, Han S. Influence of polyethylenemicroplastic on environmental behaviors of metals in soil. Environ Sci Pollut Res 2021;28:28329-36. https://doi.org/10.1007/s11356-021-12718-y

32. Qi Y, Ossowicki A, Yang X, Huerta Lwanga E, Dini-Andreote F, Geissen V, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater 2020;387:121711. https://doi.org/10.1016/j.jhazmat.2019.121711

33. Li Z, Li Q, Li R, Zhou J, Wang G. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environ Sci Pollut Res 2021;28:16042-53. https://doi.org/10.1007/s11356-020-11702-2

34. Tiwari N, Garua B, Sharma JG. Microbial diversity, interactions, and biodegradation/biotransformation of organic and inorganic contaminants. In: Wastewater Treatment Reactors. Netherlands: Elsevier; 2021. p. 341-72. https://doi.org/10.1016/B978-0-12-823991-9.00001-0

35. Li Z, Li Q, Li R, Zhao Y, Geng J, Wang G. Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environ Sci Pollut Res 2020;27:30306-14. https://doi.org/10.1007/s11356-020-09349-0

36. Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019;226:774-81. https://doi.org/10.1016/j.chemosphere.2019.03.163

37. Hou J, Xu X, Lan L, Miao L, Xu Y, You G, et al. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors. Environ Pollut 2020;263:114499. https://doi.org/10.1016/j.envpol.2020.114499

38. Chen H, Wang Y, Sun X, Peng Y, Xiao L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 2020;243:125271. https://doi.org/10.1016/j.chemosphere.2019.125271

39. Zhao T, Lozano YM, Rillig MC. Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Front Environ Sci 2021;9:1-14. https://doi.org/10.3389/fenvs.2021.675803

40. Isari EA, Papaioannou D, Kalavrouziotis IK, Karapanagioti HK. Microplastics in agricultural soils: A case study in cultivation of watermelons and canning tomatoes. Water 2021;13:2168. https://doi.org/10.3390/w13162168

41. Wan Y, Wu C, Xue Q, Hui X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ 2019;654:576-82. https://doi.org/10.1016/j.scitotenv.2018.11.123

42. Lin D, Yang G, Dou P, Qian S, Zhao L, Yang Y, et al. Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Proc R Soc B Biol Sci 2020;287:20201268. https://doi.org/10.1098/rspb.2020.1268

43. Tympa LE, Katsara K, Moschou PN, Kenanakis G, Papadakis VM. Do microplastics enter our food chain via root vegetables? A raman based spectroscopic study on Raphanus sativus. Materials 2021;14:1-11. https://doi.org/10.3390/ma14092329

44. Prüst M, Meijer J, Westerink RH. The plastic brain: Neurotoxicity of micro-and nanoplastics. Part Fibre Toxicol 2020;17:1-16. https://doi.org/10.1186/s12989-020-00358-y

45. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ 2020;702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455

46. Arthur E, Moldrup P, Holmstrup M, Schjønning P, Winding A, Mayer P, et al. Soil microbial and physical properties and their relations along a steep copper gradient. Agric Ecosyst Environ 2012;159:9-18. https://doi.org/10.1016/j.agee.2012.06.021

47. Serrano-Ruiz H, Martin-Closas L, Pelacho AM. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci Total Environ 2021;750:141228. https://doi.org/10.1016/j.scitotenv.2020.141228

48. Zhang M, Zhao Y, Qin X, Jia W, Chai L, Huang M, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci Total Environ 2019;688:470-8. https://doi.org/10.1016/j.scitotenv.2019.06.108

49. Tiwari N, Santhiya D, Sharma JG. Microbial remediation of micronano plastics: Current knowledge and future trends. Environ Pollut 2020;265:115044. https://doi.org/10.1016/j.envpol.2020.115044

50. Yang L, Zhang Y, Kang S, Wang Z, Wu C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci Total Environ 2021;780:146546. https://doi.org/10.1016/j.scitotenv.2021.146546

51. Scopetani C, Chelazzi D, Mikola J, Leiniö V, Heikkinen R, Cincinelli A, et al. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Sci Total Environ 2020;733:139338. https://doi.org/10.1016/j.scitotenv.2020.139338

52. Du C, Liang H, Li Z, Gong J. Pollution characteristics of microplastics in soils in southeastern suburbs of Baoding city, China. Int J Environ Res Public Health 2020;17:845. https://doi.org/10.3390/ijerph17030845

53. Hurley RR, Lusher AL, Olsen M, Nizzetto L. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environ Sci Technol 2018;52:7409-17. https://doi.org/10.1021/acs.est.8b01517

54. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ Sci Technol 2012;46:3060-75. https://doi.org/10.1021/es2031505

55. Han X, Lu X, Vogt RD. An optimized density-based approach for extracting microplastics from soil and sediment samples. Environ Pollut 2019;254:113009. https://doi.org/10.1016/j.envpol.2019.113009

56. Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils. Environ Sci Technol 2018;52:3591-8. https://doi.org/10.1021/acs.est.7b06003

57. Li Q, Wu J, Zhao X, Gu X, Ji R. Separation and identification of microplastics from soil and sewage sludge. Environ Pollut 2019;254:113076. https://doi.org/10.1016/j.envpol.2019.113076

58. Möller JN, Löder MG, Laforsch C. Finding microplastics in soils: A review of analytical methods. Environ Sci Technol 2020;54:2078-90. https://doi.org/10.1021/acs.est.9b04618

59. Wu P, Tang Y, Cao G, Li J, Wang S, Chang X, et al. Determination of environmental micro(nano)plastics by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Chem 2020;92:14346-56. https://doi.org/10.1021/acs.analchem.0c01928

60. Li J, Song Y, Cai Y. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environ Pollut 2020;257:113570. https://doi.org/10.1016/j.envpol.2019.113570

61. Garua B, Sharma JG. Accumulation of plastics in terrestrial crop plants and its impact on the plant growth. J Appl Biol Biotechnol 2021;9:25-33. https://doi.org/10.7324/JABB.2021.9603

62. Padervand M, Lichtfouse E, Robert D, Wang C. Removal of microplastics from the environment. A review. Environ Chem Lett 2020;18:807-28. https://doi.org/10.1007/s10311-020-00983-1

63. Muhonja CN, Magoma G, Imbuga M, Makonde HM. Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. Int J Microbiol 2018;2018:4167845. https://doi.org/10.1155/2018/4167845

64. Vimala PP, Mathew L. Biodegradation of polyethylene using Bacillus subtilis. Proc Technol 2016;24:232-9. https://doi.org/10.1016/j.protcy.2016.05.031

65. Espinosa MJ, Blanco AC, Schmidgall T, Atanasoff-Kardjalieff AK, Kappelmeyer U, Tischler D, et al. Toward biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front Microbiol 2020;11:4. https://doi.org/10.3389/fmicb.2020.00404

66. Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment. Vol. 759. Netherlands: Elsevier; 2021. p. 143536. https://doi.org/10.1016/j.scitotenv.2020.143536

67. da Luz JM, de Cássia Soares da Silva M, Ferreira dos Santos L, Catarina Megumi Kasuya M. Plastics Polymers Degradation by Fungi. Microorganisms. India: IntechOpen; 2020. p. 1-13.

68. Gan Z, Zhang H. PMBD: A comprehensive plastics microbial biodegradation database. Database (Oxford) 2019;2019:1-11. https://doi.org/10.1093/database/baz119

69. Yoshida S, Hiraga K, Taniguchi I, Oda K. Ideonella sakaiensis, PETase, and MHETase: From identification of microbial pet degradation to enzyme characterization. In: Methods in Enzymology. 1st ed. Vol. 648. Netherlands: Elsevier Inc.; 2021. p. 187-205. https://doi.org/10.1016/bs.mie.2020.12.007

70. Kitadokoro K, Thumarat U, Nakamura R, Nishimura K, Karatani H, Suzuki H, et al. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym Degrad Stab 2012;97:771-5. https://doi.org/10.1016/j.polymdegradstab.2012.02.003

71. Li J, Kim HR, Lee HM, Yu HC, Jeon E, Lee S, et al. Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. Sci Total Environ 2020;720:137616. https://doi.org/10.1016/j.scitotenv.2020.137616

72. Jia H, Zhang M, Weng Y, Li C. Degradation of polylactic acid/polybutylene adipate-co-terephthalate by coculture of Pseudomonas mendocina and Actinomucor elegans. J Hazard Mater 2021;403:123679. https://doi.org/10.1016/j.jhazmat.2020.123679

73. Decorosi F, Exana ML, Pini F, Adessi A, Messini A, Giovannetti L, et al. The degradative capabilities of new Amycolatopsis isolates on polylactic acid. Microorganisms 2019;7:1-18. https://doi.org/10.1016/j.jhazmat.2020.123679

74. Tiwari N, Bansal M, Sharma JG. Metagenomics: A powerful lens viewing the microbial world. In: Wastewater Treatment Reactors. Netherlands: Elsevier; 2021. p. 309-39. https://doi.org/10.1016/B978-0-12-823991-9.00015-0

Article Metrics

14 Absract views 249 PDF Downloads 263 Total views

Related Search

By author names

Citiaion Alert By Google Scholar


Similar Articles

Anti-candidal activities of some Myrtus communis L. extracts obtained using accelerated solvent extraction (ASE)

Elif Ayse Erdogan, Gulden Goksen, Ayse Everest

Mild Acid Hydrolysis-related Release of Water-soluble Sunscreen Pigments from the Exopolysaccharide Matrix of Edible Terrestrial Cyanobacteria

Wen Liu, Haiyan Xu, Xiang Gao

Comparative analyses of genomic DNA extracted from freshwater fish tissues preserved in formaldehyde and alcohol in different periods of time

R. K. Garg, Khushboo Sengar, R. K. Singh

Phytoextraction of Heavy Metals and Risk Associated with Vegetables Grown from Soil Irrigated with Refinery Wastewater

A. Y. Ugya, A. M. Ahmad, H. I. Adamu, S. M. Giwa, T. S. Imam

Application of guava leaves extract on jelly candy to inhibit Streptococcus mutans

Yuniwaty Halim, Raphael Dimas Tri Nugroho, Hardoko,, Ratna Handayani

Effect of extraction techniques on anthocyanin from butterfly pea flowers (Clitoria ternatea L.) cultivated in Vietnam

Nguyen Minh Thuy, Tran Chi Ben, Vo Quang Minh, Ngo Van Tai

Optimization of extraction conditions of phytochemical compounds in “Xiem” banana peel powder using response surface methodology

Ngo Van Tai, Mai Nhat Linh, Nguyen Minh Thuy

Pseudomonas gessardii—A novel pathogenic bacterium associated with the cases of corneal ulcers and producing virulent pyoverdine pigment

Deepika Jain

Effect of extraction methods and temperature preservation on total anthocyanins compounds of Peristrophe bivalvis L. Merr leaf

Nguyen Minh Thuy, Dao Huynh Ngoc Han, Vo Quang Minh, Ngo Van Tai

Optimization of stirring-assisted extraction of anthocyanins from purple roselle (Hibiscus sabdariffa L.) calyces as pharmaceutical and food colorants

Kartika Nurul Yulianda Setyawan, Kartini Kartini

Optimization of enzyme-assisted extraction conditions for gamma-aminobutyric acid and polyphenols in germinated mung beans (Vigna radiata L.)

Anh Thuy Vu, Tuyen Chan Kha, Huan Tai Phan

Accumulation of plastics in terrestrial crop plants and its impact on the plant growth

Bhavika Garua, Jai Gopal Sharma

Emerging microplastic contamination in ecosystem: An urge for environmental sustainability

Akanksha Saini, Jai Gopal Sharma

Detrimental effects of microplastics in aquatic fauna on marine and freshwater environments – A comprehensive review

Irene Monica Jaikumar, Majesh Tomson, Manikantan Pappuswamy, Krishnakumar V, Anushka Shitut, Arun Meyyazhagan, Balamuralikrishnan Balasubramnaian, Vijaya Anand Arumugam