Decades ago, microplastic presence was corroborated in aquatic ecosystem, but revelations from current studies indicate microplastics (MPs) as ubiquitous environmental concern and demonstrate our plasticized life, because of microplastic existent in food, air, water, and soil. Existence of MPs in terrestrial ecosystem is long recognized now and additionally, all the evidence that has been found for microplastic entering the farm soils indicated that they are gradually accumulating in the agricultural soil. While previous studies focused extensively on marine systems, the increasing toxicity of MPs in agricultural cultivated soils and the aspects of MPs being accumulated causing bio-toxification are being looked upon presently. They potentially damage the yield of crop plants making their roots unable to uptake water and nutrients from the soil by accumulating near the roots. MPs have already invaded the terrestrial food chain and they have been detected in excreta of livestock animals along with earthworms and crop plants. MPs are abundant in farm soil that has interacted with sewage-sludge, plastic mulching sheets, organic fertilizers, and vermicompost for a long duration. This review focuses on current evidence of microplastic accumulation in farm soil, thereby enlightening the potential damages to crop plants, soil properties, soil microbes while ultimately reaching humans via the food chain. It also covers the recent advances for soil microplastic extraction, treatment, and possible bioremediation strategies.
Yadav V, Dhanger S, Sharma J. Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches. J App Biol Biotech. 2022;10(Suppl 2):38-47.
1. Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun 2019;5:1-11. https://doi.org/10.1057/s41599-018-0212-7 | |
2. Zhang S, Han B, Sun Y, Wang F. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J Hazard Mater 2020;388:121775. https://doi.org/10.1016/j.jhazmat.2019.121775 | |
3. Piehl S, Leibner A, Löder MG, Dris R, Bogner C, Laforsch C. Identification and quantification of macro-and microplastics on an agricultural farmland. Sci Rep 2018;8:1-9. https://doi.org/10.1038/s41598-018-36172-y | |
4. Sintim HY, Bary AI, Hayes DG, English ME, Schaeffer SM, MilesCA, et al. Release of micro-and nanoparticles from biodegradable plastic during in situ composting. Sci Total Environ 2019;675:686-93. https://doi.org/10.1016/j.scitotenv.2019.04.179 | |
5. Zhang L, Xie Y, Liu J, Zhong S, Qian Y, Gao P. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environ Sci Technol 2020;54:4248-55. https://doi.org/10.1021/acs.est.9b07905 | |
6. Zhou B, Wang J, Zhang H, Shi H, Fei Y, Huang S, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. J Hazard Mater 2020;388:121814. https://doi.org/10.1016/j.jhazmat.2019.121814 | |
7. Gao H, Yan C, Liu Q, Ding W, Chen B, Li Z. Effects of plastic mulching and plastic residue on agricultural production: A metaanalysis. Sci Total Environ 2019;651:484-92. https://doi.org/10.1016/j.scitotenv.2018.09.105 | |
8. Beriot N, Peek J, Zornoza R, Geissen V, Lwanga EH. Low densitymicroplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci Total Environ 2021;755:142653. https://doi.org/10.1016/j.scitotenv.2020.142653 | |
9. Wu RT, Cai YF, Chen YX, Yang YW, Xing SC, Di LX. Occurrence of microplastic in livestock and poultry manure in South China. Environ Pollut 2021;277:116790. https://doi.org/10.1016/j.envpol.2021.116790 | |
10. Chai B, Wei Q, She Y, Lu G, Dang Z, Yin H. Soil microplastic pollution in an e-waste dismantling zone of China. Waste Manag 2020;118:291-301. https://doi.org/10.1016/j.wasman.2020.08.048 | |
11. Blöcker L, Watson C, Wichern F. Living in the plastic age-different short-term microbial response to microplastics addition to arable soils with contrasting soil organic matter content and farm management legacy. Environ Pollut 2020;267:115468. https://doi.org/10.1016/j.envpol.2020.115468 | |
12. Chen Y, Leng Y, Liu X, Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ Pollut 2020;257:113449. https://doi.org/10.1016/j.envpol.2019.113449 | |
13. Li HZ, Zhu D, Lindhardt JH, Lin SM, Ke X, Cui L. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environ Sci Technol 2021;55:4658-68. https://doi.org/10.1021/acs.est.0c04849 | |
14. Braun M, Mail M, Heyse R, Amelung W. Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. Sci Total Environ 2021;760:143335. https://doi.org/10.1016/j.scitotenv.2020.143335 | |
15. Huerta Lwanga E, Mendoza Vega J, Ku Quej V, de Los AC, del Cid LS, Chi C, et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 2017;7:1-7. https://doi.org/10.1038/s41598-017-14588-2 | |
16. El Hayany B, El Fels L, Quénéa K, Dignac MF, Rumpel C, Gupta VK, et al. Microplastics from lagooning sludge to composts as revealed by fluorescent staining-image analysis, Raman spectroscopy and pyrolysis-GC/MS. J Environ Manage 2020;275:111249. https://doi.org/10.1016/j.jenvman.2020.111249 | |
17. Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ 2019;671:411-20. https://doi.org/10.1016/j.scitotenv.2019.03.368 | |
18. Huang Y, Liu Q, Jia W, Yan C, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut 2020;260:114096. https://doi.org/10.1016/j.envpol.2020.114096 | |
19. Veerasingam S, Mugilarasan M, Venkatachalapathy R, Vethamony P. Influence of 2015 flood on the distribution and occurrence of microplastic pellets along the Chennai coast, India. Mar Pollut Bull 2016;109:196-204. https://doi.org/10.1016/j.marpolbul.2016.05.082 | |
20. Su Y, Zhang Z, Wu D, Zhan L, Shi H, Xie B. Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res 2019;164:114968. https://doi.org/10.1016/j.watres.2019.114968 | |
21. Mortula MM, Atabay S, Fattah KP, Madbuly A. Leachability of microplastic from different plastic materials. J Environ Manage 2021;294:112995. https://doi.org/10.1016/j.jenvman.2021.112995 | |
22. De Souza MacHado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, et al. Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 2018;52:9656-65. https://doi.org/10.1021/acs.est.8b02212 | |
23. Qi Y, Beriot N, Gort G, Huerta Lwanga E, Gooren H, Yang X, et al. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ Pollut 2020;266:115097. https://doi.org/10.1016/j.envpol.2020.115097 | |
24. Zhong H, Yang S, Zhu L, Liu C, Zhang Y, Zhang Y. Effect of microplastics in sludge impacts on the vermicomposting. Bioresour Technol 2021;326:124777. https://doi.org/10.1016/j.biortech.2021.124777 | |
25. Kim SW, Jeong SW, An YJ. Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method. Chemosphere 2021;276:130178. https://doi.org/10.1016/j.chemosphere.2021.130178 | |
26. Rillig MC, Leifheit E, Lehmann J. Microplastic effects on carbon cycling processes in soils. PLoS Biol 2021;19:1-9. https://doi.org/10.1371/journal.pbio.3001130 | |
27. Li L, Luo Y, Peijnenburg WJ, Li R, Yang J, Zhou Q. Confocal measurement of microplastics uptake by plants. MethodsX 2020;7:100750. https://doi.org/10.1016/j.mex.2019.11.023 | |
28. Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobu?ar G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 2019;250:831-8. https://doi.org/10.1016/j.envpol.2019.04.055 | |
29. Sun XD, Yuan XZ, Jia Y, Feng LJ, Zhu FP, Dong SS, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol 2020;15:755-60. https://doi.org/10.1038/s41565-020-0707-4 | |
30. Dong Y, Gao M, Song Z, Qiu W. Microplastic particles increase arsenic toxicity to rice seedlings. Environ Pollut 2020;259:113892. https://doi.org/10.1016/j.envpol.2019.113892 | |
31. Li M, Wu D, Wu D, Guo H, Han S. Influence of polyethylenemicroplastic on environmental behaviors of metals in soil. Environ Sci Pollut Res 2021;28:28329-36. https://doi.org/10.1007/s11356-021-12718-y | |
32. Qi Y, Ossowicki A, Yang X, Huerta Lwanga E, Dini-Andreote F, Geissen V, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater 2020;387:121711. https://doi.org/10.1016/j.jhazmat.2019.121711 | |
33. Li Z, Li Q, Li R, Zhou J, Wang G. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environ Sci Pollut Res 2021;28:16042-53. https://doi.org/10.1007/s11356-020-11702-2 | |
34. Tiwari N, Garua B, Sharma JG. Microbial diversity, interactions, and biodegradation/biotransformation of organic and inorganic contaminants. In: Wastewater Treatment Reactors. Netherlands: Elsevier; 2021. p. 341-72. https://doi.org/10.1016/B978-0-12-823991-9.00001-0 | |
35. Li Z, Li Q, Li R, Zhao Y, Geng J, Wang G. Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environ Sci Pollut Res 2020;27:30306-14. https://doi.org/10.1007/s11356-020-09349-0 | |
36. Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019;226:774-81. https://doi.org/10.1016/j.chemosphere.2019.03.163 | |
37. Hou J, Xu X, Lan L, Miao L, Xu Y, You G, et al. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors. Environ Pollut 2020;263:114499. https://doi.org/10.1016/j.envpol.2020.114499 | |
38. Chen H, Wang Y, Sun X, Peng Y, Xiao L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 2020;243:125271. https://doi.org/10.1016/j.chemosphere.2019.125271 | |
39. Zhao T, Lozano YM, Rillig MC. Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Front Environ Sci 2021;9:1-14. https://doi.org/10.3389/fenvs.2021.675803 | |
40. Isari EA, Papaioannou D, Kalavrouziotis IK, Karapanagioti HK. Microplastics in agricultural soils: A case study in cultivation of watermelons and canning tomatoes. Water 2021;13:2168. https://doi.org/10.3390/w13162168 | |
41. Wan Y, Wu C, Xue Q, Hui X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ 2019;654:576-82. https://doi.org/10.1016/j.scitotenv.2018.11.123 | |
42. Lin D, Yang G, Dou P, Qian S, Zhao L, Yang Y, et al. Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Proc R Soc B Biol Sci 2020;287:20201268. https://doi.org/10.1098/rspb.2020.1268 | |
43. Tympa LE, Katsara K, Moschou PN, Kenanakis G, Papadakis VM. Do microplastics enter our food chain via root vegetables? A raman based spectroscopic study on Raphanus sativus. Materials 2021;14:1-11. https://doi.org/10.3390/ma14092329 | |
44. Prüst M, Meijer J, Westerink RH. The plastic brain: Neurotoxicity of micro-and nanoplastics. Part Fibre Toxicol 2020;17:1-16. https://doi.org/10.1186/s12989-020-00358-y | |
45. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ 2020;702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455 | |
46. Arthur E, Moldrup P, Holmstrup M, Schjønning P, Winding A, Mayer P, et al. Soil microbial and physical properties and their relations along a steep copper gradient. Agric Ecosyst Environ 2012;159:9-18. https://doi.org/10.1016/j.agee.2012.06.021 | |
47. Serrano-Ruiz H, Martin-Closas L, Pelacho AM. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci Total Environ 2021;750:141228. https://doi.org/10.1016/j.scitotenv.2020.141228 | |
48. Zhang M, Zhao Y, Qin X, Jia W, Chai L, Huang M, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci Total Environ 2019;688:470-8. https://doi.org/10.1016/j.scitotenv.2019.06.108 | |
49. Tiwari N, Santhiya D, Sharma JG. Microbial remediation of micronano plastics: Current knowledge and future trends. Environ Pollut 2020;265:115044. https://doi.org/10.1016/j.envpol.2020.115044 | |
50. Yang L, Zhang Y, Kang S, Wang Z, Wu C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci Total Environ 2021;780:146546. https://doi.org/10.1016/j.scitotenv.2021.146546 | |
51. Scopetani C, Chelazzi D, Mikola J, Leiniö V, Heikkinen R, Cincinelli A, et al. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Sci Total Environ 2020;733:139338. https://doi.org/10.1016/j.scitotenv.2020.139338 | |
52. Du C, Liang H, Li Z, Gong J. Pollution characteristics of microplastics in soils in southeastern suburbs of Baoding city, China. Int J Environ Res Public Health 2020;17:845. https://doi.org/10.3390/ijerph17030845 | |
53. Hurley RR, Lusher AL, Olsen M, Nizzetto L. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environ Sci Technol 2018;52:7409-17. https://doi.org/10.1021/acs.est.8b01517 | |
54. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ Sci Technol 2012;46:3060-75. https://doi.org/10.1021/es2031505 | |
55. Han X, Lu X, Vogt RD. An optimized density-based approach for extracting microplastics from soil and sediment samples. Environ Pollut 2019;254:113009. https://doi.org/10.1016/j.envpol.2019.113009 | |
56. Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils. Environ Sci Technol 2018;52:3591-8. https://doi.org/10.1021/acs.est.7b06003 | |
57. Li Q, Wu J, Zhao X, Gu X, Ji R. Separation and identification of microplastics from soil and sewage sludge. Environ Pollut 2019;254:113076. https://doi.org/10.1016/j.envpol.2019.113076 | |
58. Möller JN, Löder MG, Laforsch C. Finding microplastics in soils: A review of analytical methods. Environ Sci Technol 2020;54:2078-90. https://doi.org/10.1021/acs.est.9b04618 | |
59. Wu P, Tang Y, Cao G, Li J, Wang S, Chang X, et al. Determination of environmental micro(nano)plastics by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Chem 2020;92:14346-56. https://doi.org/10.1021/acs.analchem.0c01928 | |
60. Li J, Song Y, Cai Y. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environ Pollut 2020;257:113570. https://doi.org/10.1016/j.envpol.2019.113570 | |
61. Garua B, Sharma JG. Accumulation of plastics in terrestrial crop plants and its impact on the plant growth. J Appl Biol Biotechnol 2021;9:25-33. https://doi.org/10.7324/JABB.2021.9603 | |
62. Padervand M, Lichtfouse E, Robert D, Wang C. Removal of microplastics from the environment. A review. Environ Chem Lett 2020;18:807-28. https://doi.org/10.1007/s10311-020-00983-1 | |
63. Muhonja CN, Magoma G, Imbuga M, Makonde HM. Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. Int J Microbiol 2018;2018:4167845. https://doi.org/10.1155/2018/4167845 | |
64. Vimala PP, Mathew L. Biodegradation of polyethylene using Bacillus subtilis. Proc Technol 2016;24:232-9. https://doi.org/10.1016/j.protcy.2016.05.031 | |
65. Espinosa MJ, Blanco AC, Schmidgall T, Atanasoff-Kardjalieff AK, Kappelmeyer U, Tischler D, et al. Toward biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front Microbiol 2020;11:4. https://doi.org/10.3389/fmicb.2020.00404 | |
66. Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment. Vol. 759. Netherlands: Elsevier; 2021. p. 143536. https://doi.org/10.1016/j.scitotenv.2020.143536 | |
67. da Luz JM, de Cássia Soares da Silva M, Ferreira dos Santos L, Catarina Megumi Kasuya M. Plastics Polymers Degradation by Fungi. Microorganisms. India: IntechOpen; 2020. p. 1-13. | |
68. Gan Z, Zhang H. PMBD: A comprehensive plastics microbial biodegradation database. Database (Oxford) 2019;2019:1-11. https://doi.org/10.1093/database/baz119 | |
69. Yoshida S, Hiraga K, Taniguchi I, Oda K. Ideonella sakaiensis, PETase, and MHETase: From identification of microbial pet degradation to enzyme characterization. In: Methods in Enzymology. 1st ed. Vol. 648. Netherlands: Elsevier Inc.; 2021. p. 187-205. https://doi.org/10.1016/bs.mie.2020.12.007 | |
70. Kitadokoro K, Thumarat U, Nakamura R, Nishimura K, Karatani H, Suzuki H, et al. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym Degrad Stab 2012;97:771-5. https://doi.org/10.1016/j.polymdegradstab.2012.02.003 | |
71. Li J, Kim HR, Lee HM, Yu HC, Jeon E, Lee S, et al. Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. Sci Total Environ 2020;720:137616. https://doi.org/10.1016/j.scitotenv.2020.137616 | |
72. Jia H, Zhang M, Weng Y, Li C. Degradation of polylactic acid/polybutylene adipate-co-terephthalate by coculture of Pseudomonas mendocina and Actinomucor elegans. J Hazard Mater 2021;403:123679. https://doi.org/10.1016/j.jhazmat.2020.123679 73. Decorosi F, Exana ML, Pini F, Adessi A, Messini A, Giovannetti L, et al. The degradative capabilities of new Amycolatopsis isolates on polylactic acid. Microorganisms 2019;7:1-18. https://doi.org/10.1016/j.jhazmat.2020.123679 | |
74. Tiwari N, Bansal M, Sharma JG. Metagenomics: A powerful lens viewing the microbial world. In: Wastewater Treatment Reactors. Netherlands: Elsevier; 2021. p. 309-39. https://doi.org/10.1016/B978-0-12-823991-9.00015-0 |
Year
Month
Anti-candidal activities of some Myrtus communis L. extracts obtained using accelerated solvent extraction (ASE)
Elif Ayse Erdogan, Gulden Goksen, Ayse EverestMild Acid Hydrolysis-related Release of Water-soluble Sunscreen Pigments from the Exopolysaccharide Matrix of Edible Terrestrial Cyanobacteria
Wen Liu, Haiyan Xu, Xiang GaoComparative analyses of genomic DNA extracted from freshwater fish tissues preserved in formaldehyde and alcohol in different periods of time
R. K. Garg, Khushboo Sengar, R. K. SinghPhytoextraction of Heavy Metals and Risk Associated with Vegetables Grown from Soil Irrigated with Refinery Wastewater
A. Y. Ugya, A. M. Ahmad, H. I. Adamu, S. M. Giwa, T. S. ImamApplication of guava leaves extract on jelly candy to inhibit Streptococcus mutans
Yuniwaty Halim, Raphael Dimas Tri Nugroho, Hardoko,, Ratna HandayaniEffect of extraction techniques on anthocyanin from butterfly pea flowers (Clitoria ternatea L.) cultivated in Vietnam
Nguyen Minh Thuy, Tran Chi Ben, Vo Quang Minh, Ngo Van TaiOptimization of extraction conditions of phytochemical compounds in “Xiem” banana peel powder using response surface methodology
Ngo Van Tai, Mai Nhat Linh, Nguyen Minh ThuyPseudomonas gessardii—A novel pathogenic bacterium associated with the cases of corneal ulcers and producing virulent pyoverdine pigment
Deepika JainEffect of extraction methods and temperature preservation on total anthocyanins compounds of Peristrophe bivalvis L. Merr leaf
Nguyen Minh Thuy, Dao Huynh Ngoc Han, Vo Quang Minh, Ngo Van TaiOptimization of stirring-assisted extraction of anthocyanins from purple roselle (Hibiscus sabdariffa L.) calyces as pharmaceutical and food colorants
Kartika Nurul Yulianda Setyawan, Kartini KartiniOptimization of enzyme-assisted extraction conditions for gamma-aminobutyric acid and polyphenols in germinated mung beans (Vigna radiata L.)
Anh Thuy Vu, Tuyen Chan Kha, Huan Tai PhanEffects of process parameters on the alcoholic fermentation of pomelo (Citrus grandis (L.) Osbeck) juice
Huynh Xuan Phong, Tran Thi Yen Nhi, Nguyen Ngoc Thanh, Le Dang TruongElucidation of antioxidant compounds recovery capacity from “Cam” purple rice bran by different sustainable extraction techniques
Le Thi Kim Loan, Bui The Vinh, Ngo Van TaiAn efficient method for extracting pure DNA from the oil seed crop Sesamum indicum L.
Anshuman Shah,, Pragya Mishra, Nitin Gadol, Neha Jain, Rajeev Kumar, Sanjay Kalia, Nagendra Kumar Singh, Vandna RaiBioactive compounds as plant-based functional foods for human health: current scenario and future challenges
Rajeshwari Negi, Babita Sharma, Tawseefa Jan, Tanvir Kaur, Sofia Sharief Khan, Neelam Yadav, Ashutosh Kumar Rai, Sarvesh Rustagi, Sheikh Shreaz, Divjot Kour, Naseer Ahmed, Puneet Negi, Sohini Chowdhury, Monit Kapoor, Sangram Singh, Ajar Nath YadavSensitive and cost-effective citrate-based RNA extraction procedure for isolation of RNA from Tilapia Lake Virus-infected fish
S.R. Saranya, R. SudhakaranAccumulation of plastics in terrestrial crop plants and its impact on the plant growth
Bhavika Garua, Jai Gopal SharmaEmerging microplastic contamination in ecosystem: An urge for environmental sustainability
Akanksha Saini, Jai Gopal SharmaDetrimental effects of microplastics in aquatic fauna on marine and freshwater environments – A comprehensive review
Irene Monica Jaikumar, Majesh Tomson, Manikantan Pappuswamy, Krishnakumar V, Anushka Shitut, Arun Meyyazhagan, Balamuralikrishnan Balasubramnaian, Vijaya Anand Arumugam