Bioactive compounds as plant-based functional foods for human health: current scenario and future challenges
In the past few years, people have been more conscious of a healthy diet to sustain their health. The plant’s bioactive compounds play a vital role by exhibiting functional activity and preventing many diseases. Bioactive compounds are extra nutritive constituents that typically occur in small quantities in foods and provide beneficial health properties. Thus, functional characteristics that are directly linked to the health advantages of different medicinal plants, vegetables, fruits, cereals, condiments, and spices have been the focus of significant study in the past few years. This scientific investigation was sparked by numerous epidemiologic studies that showed the preventive effects associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibers, among others, derived from their antioxidant, anti-atherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. However, their use is often limited, and only a few products are available for commercial use. In this perspective, plant derived bioactive compounds exhibiting antioxidant, and antimicrobial activity could be used as environmentally friendly food conservatives. The use of bioactive compounds in different commercial sectors, such as pharmaceutical, food, and chemical industries, signifies the need for the most appropriate and standard method to extract these active components from plant materials. Along with conventional methods, numerous new methods have been established, but till now, no single method is regarded as the standard for extracting bioactive compounds from plants. The use of novel and combined novel technologies increases extractability, resulting in yields with higher extraction rates. It also yields lower impurities in the final extract, preserves thermosensitive compounds, uses different inorganic solvents, and consumes low energy. The present review deals with the properties, source, extraction methods, encapsulation, and uses of bioactive compounds from plants as a fresh supply of functional food components and food preservatives.
Negi R, Sharma B, Jan T, Kaur T, Khan SS, Yadav N, Rai AK, Rustagi S, Shreaz S, Kour D, Ahmed N, Negi P, Chowdhury S, Kapoor M, Singh S, Yadav AN. Bioactive compounds as plant-based functional foods for human health: current scenario and future challenges. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.180889
1. J?drusek?Goli?ska A, Górecka D, Buchowski M, Wieczorowska? Tobis K, Gramza?Micha?owska A, Szymandera?Buszka K. Recent progress in the use of functional foods for older adults: A narrative review. Compr Rev Food Sci Food Saf. 2020;19:835-56. https://doi.org/10.1111/1541-4337.12530 | |
2. Martirosyan D, Von Brugger J, Bialow S. Functional food science: Differences and similarities with food science. Funct Foods Health Dis. 2021;11:408-30. https://doi.org/10.31989/ffhd.v11i9.831 | |
3. Domínguez Díaz L, Fernández-Ruiz V, Cámara M. The frontier between nutrition and pharma: The international regulatory framework of functional foods, food supplements and nutraceuticals. Crit Rev Food Sci Nutr. 2020;60:1738-46. https://doi.org/10.1080/10408398.2019.1592107 | |
4. Baker MT, Lu P, Parrella JA, Leggette HR. Consumer acceptance toward functional foods: A scoping review. Int J Environ Res Public Health. 2022;19:1217. https://doi.org/10.3390/ijerph19031217 | |
5. Subramanian P, Anandharamakrishnan C. Introduction to functional foods and nutraceuticals. In: Subramanian P, Anandharamakrishnan C. Industrial Application of Functional Foods, Ingredients and Nutraceuticals. Elsevier, Academic Press;2023:3-43. https://doi.org/10.1016/B978-0-12-824312-1.00001-7 | |
6. Arshad MS, Khalid W, Ahmad RS, Khan MK, Ahmad MH, Safdar S, et al. Functional foods and human health: an overview. In: Arshad MS, Ahmad MH (eds) Functional Foods Phytochem Health Promoting Potential. IntechOpen, London, UK, 2021;pp 3 | |
7. Granato D, Barba FJ, Bursa? Kova?evi? D, Lorenzo JM, Cruz AG, Putnik P. Functional foods: product development, technological trends, efficacy testing, and safety. Annu Rev Food Sci Technol. 2020;11:93-118. https://doi.org/10.1146/annurev-food-032519-051708 | |
8. Indriyani NN, Anshori JA, Permadi N, Nurjanah S, Julaeha E. Bioactive components and their activities from different parts of Citrus aurantifolia (christm.) Swingle for food development. Foods. 2023;12:2036. https://doi.org/10.3390/foods12102036 | |
9. Swamy MK (ed.). Plant-derived bioactives: Chemistry and mode of action. Springer, Nature; 2020. https://doi.org/10.1007/978-981-15-2361-8 | |
10. Onuh JO, Pathak YV. Introduction to food bioactive phytochemicals. In: Onuh JO and Pathak YV (eds) Plant Food Phytochemicals and Bioactive Compounds in Nutrition and Health. CRC Press; 2024:1-14. https://doi.org/10.1201/9781003340201-1 | |
11. Islam MS, Wang H, Admassu H, Sulieman AA, Wei FA. Health benefits of bioactive peptides produced from muscle proteins: antioxidant, anti-cancer, and anti-diabetic activities. Process Biochem. 2022;116:116-25. https://doi.org/10.1016/j.procbio.2022.03.007 | |
12. Banwo K, Olojede AO, Adesulu-Dahunsi AT, Verma DK, Thakur M, Tripathy S, et al. Functional importance of bioactive compounds of foods with potential health benefits: A review on recent trends. Food Biosci. 2021;43:101320. https://doi.org/10.1016/j.fbio.2021.101320 | |
13. Liu Y, Ren C, Zhan R, Cao Y, Ren Y, Zou L, et al. Exploring the potential of plant-derived exosome-like nanovesicle as functional food components for human health: a review. Foods. 2024;13:712. https://doi.org/10.3390/foods13050712 | |
14. Gong X, Li X, Xia Y, Xu J, Li Q, Zhang C, et al. Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends Food Sci Technol. 2020;103:304-20. https://doi.org/10.1016/j.tifs.2020.07.026 | |
15. Mohamad NE, Abu N, Yeap SK, Lim KL, Romli MF, Sharifuddin SA, et al. Apoptosis and metastasis inhibitory potential of pineapple vinegar against mouse mammary gland cells in vitro and in vivo. Nutr Metab. 2019;16:1-13. https://doi.org/10.1186/s12986-019-0380-5 | |
16. Sharma R, Kumar S, Kumar V, Thakur A. Comprehensive review on nutraceutical significance of phytochemicals as functional food ingredients for human health management. J Pharmacogn Phytochem. 2019;8:385-95. https://doi.org/10.22271/phyto.2019.v8.i5h.9589 | |
17. Davoodvandi A, Sahebnasagh R, Mardanshah O, Asemi Z, Nejati M, Shahrzad MK, et al. Medicinal plants as natural polarizers of macrophages: Phytochemicals and pharmacological effects. Curr Pharm Des. 2019;25:3225-38. https://doi.org/10.2174/1381612825666190829154934 | |
18. Owushi JN, Asanga DE. Assessment of human health improved fruits and vegetables: The benefits for growing children. Peerian J. 2024;27:117-29. | |
19. Nayak SN, Aravind B, Malavalli SS, Sukanth B, Poornima R, Bharati P, et al. Omics technologies to enhance plant based functional foods: an overview. Front Genet. 2021;12:742095. https://doi.org/10.3389/fgene.2021.742095 | |
20. Ezeorba TPC, Chukwudozie KI, Ezema CA, Anaduaka EG, Nweze EJ, Okeke ES. Potentials for health and therapeutic benefits of garlic essential oils: Recent findings and future prospects. Pharmacol Res Mod Chin Med. 2022;3:100075. https://doi.org/10.1016/j.prmcm.2022.100075 | |
21. Fang H, Chen S, Guo D, Pan S, Yu Z. Proteomic identification of differentially expressed proteins in curcumin-treated MCF-7 cells. Phytomedicine. 2011;18:697-703. https://doi.org/10.1016/j.phymed.2010.11.012 | |
22. Sowbhagya H. Chemistry, technology, and nutraceutical functions of cumin (Cuminum cyminum L): An overview. Crit Rev Food Sci Nutr. 2013;53:1-10. https://doi.org/10.1080/10408398.2010.500223 | |
23. Lee K-G, Shibamoto T. Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. et Perry]. Food Chem. 2001;74:443-8. https://doi.org/10.1016/S0308-8146(01)00161-3 | |
24. Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Piperine the bioactive compound of black pepper: from isolation to medicinal formulations. Compr Rev Food Sci Food Saf. 2017;16:124-40. https://doi.org/10.1111/1541-4337.12246 | |
25. Assa JR, Widjanarko SB, Kusnadi J, Berhimpon S. Antioxidant potential of flesh, seed and mace of nutmeg (Myristica fragrans Houtt). Int J Chem Tech Res. 2014;6:2460-8. | |
26. Ghosh B, Chandra I, Chatterjee S. Fenugreek (Trigonella foenum-graecum L.) and its necessity. Fire J Eng Technol. 2015;1:60-7. | |
27. Zhang C-R, Dissanayake AA, Kevsero?lu K, Nair MG. Evaluation of coriander spice as a functional food by using in vitro bioassays. Food Chem. 2015;167:24-9. https://doi.org/10.1016/j.foodchem.2014.06.120 | |
28. Chakraborty S, Chakraborty N, Agrawal L, Ghosh S, Narula K, Shekhar S, et al. Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Nat Acad Sci. 2010;107:17533-8. https://doi.org/10.1073/pnas.1006265107 | |
29. Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int J Food Prop. 2023;26:359-88. https://doi.org/10.1080/10942912.2022.2157425 | |
30. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74:2157-84. https://doi.org/10.1016/j.lfs.2003.09.047 | |
31. Nieto G. How are medicinal plants useful when added to foods? Medicines (Basel). 2020;7:58 https://doi.org/10.3390/medicines7090058 | |
32. Nieto G, Ros G, Castillo J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines. 2018;5:98. https://doi.org/10.3390/medicines5030098 | |
33. Ahn J, Grün IU, Mustapha A. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 2007;24:7-14. https://doi.org/10.1016/j.fm.2006.04.006 | |
34. Pandit V, Shelef L. Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiol. 1994;11:57-63. https://doi.org/10.1006/fmic.1994.1008 | |
35. Fernandez-Lopez J, Zhi N, Aleson-Carbonell L, Pérez-Alvarez Ja, Kuri V. Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci. 2005;69:371-80. https://doi.org/10.1016/j.meatsci.2004.08.004 | |
36. Ortega?Ramirez LA, Rodriguez?Garcia I, Leyva JM, Cruz?Valenzuela MR, Silva?Espinoza BA, Gonzalez?Aguilar GA, et al. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: a hypothesis. J Food Sci. 2014;79:R129-37. https://doi.org/10.1111/1750-3841.12341 | |
37. Meghwal M, Goyal MR (2018) State-of-the-Art Technologies in Food Science: Human Health, Emerging Issues and Specialty Topics. CRC Press. https://doi.org/10.1201/9781315165271 | |
38. Sun?Waterhouse D. The development of fruit?based functional foods targeting the health and wellness market: a review. Int J Food Sci Technol. 2011;46:899-920. https://doi.org/10.1111/j.1365-2621.2010.02499.x | |
39. Masibo M, He Q. Major mango polyphenols and their potential significance to human health. Compr Rev Food Sci Food Saf. 2008;7:309-19. https://doi.org/10.1111/j.1541-4337.2008.00047.x | |
40. Emanuele S, Lauricella M, Calvaruso G, D'Anneo A, Giuliano M. Litchi chinensis as a functional food and a source of antitumor compounds: an overview and a description of biochemical pathways. Nutrients. 2017;9:992. https://doi.org/10.3390/nu9090992 | |
41. Arya SS, Salve AR, Chauhan S. Peanuts as functional food: a review. J Food Sci Technol. 2016;53:31-41. https://doi.org/10.1007/s13197-015-2007-9 | |
42. Adilah HN, Saleh MI, Az-Zahra NDA, Cho E, Sinaga E. Total phenolic and total flavonoid content, antioxidant activity, and nutritional profile of Ziziphus mauritiana fruit juice. Int J Biol Phys Chem Studies. 2023;5:1-8. https://doi.org/10.32996/ijbpcs.2023.5.1.1 | |
43. Deng Y, Liu Y, Zhang C, Xie P, Huang L. Characterization of enzymatic modified soluble dietary fiber from Rhodomyrtus tomentosa fruits: A potential ingredient in reducing AGEs accumulation. Food Bioprocess Technol. 2023;16:232-46. https://doi.org/10.1007/s11947-022-02935-9 | |
44. Baniwal P, Mehra R, Kumar N, Sharma S, Kumar S. Cereals: Functional constituents and its health benefits. Pharm Innov. 2021;10:343-9. https://doi.org/10.22271/tpi.2021.v10.i2e.5681 | |
45. Saikia D, Deka S. Cereals: from staple food to nutraceuticals. Int Food Res J. 2011;18:21-30. | |
46. Charalampopoulos D, Wang R, Pandiella S, Webb C. Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol. 2002;79:131-41. https://doi.org/10.1016/S0168-1605(02)00187-3 | |
47. Achi OK, Ukwuru M. Cereal-based fermented foods of Africa as functional foods. Int J Microbiol App. 2015;2:71-83. | |
48. Bora P, Ragaee S, Marcone M. Characterisation of several types of millets as functional food ingredients. Int J Food Sci Nutr. 2019;70:714-24. https://doi.org/10.1080/09637486.2019.1570086 | |
49. Blakeney M (2019) Food loss and waste and food security. In: Blakeney M (ed) Food Loss and Food Waste: Causes and Solutions. Edward Elgar Publishing;2019:1-26. https://doi.org/10.4337/9781788975391.00006 | |
50. Papastavropoulou K, Proestos C. Vegetables as functional foods against cardiovascular diseases. Zabetakis I, Lordan R, Tsoupras A, Ramji D (eds) Functional Foods and Their Implications for Health Promotion. Elsevier, Academic Press;2023:3-28. https://doi.org/10.1016/B978-0-12-823811-0.00005-5 | |
51. Fotschki J, Ogrodowczyk AM, Wróblewska B, Ju?kiewicz J. side streams of vegetable processing and its bioactive compounds support microbiota, intestine milieu, and immune system. Molecules. 2023;28:4340. https://doi.org/10.3390/molecules28114340 | |
52. Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274:532-8. https://doi.org/10.1016/0003-9861(89)90467-0 | |
53. Agregán R, Pateiro M, Bohrer BM, Shariati MA, Nawaz A, Gohari G, et al. Biological activity and development of functional foods fortified with okra (Abelmoschus esculentus). Crit Rev Food Sci Nutr. 2023;63:6018-33. https://doi.org/10.1080/10408398.2022.2026874 | |
54. Wuyts S, Van Beeck W, Allonsius CN, van den Broek MF, Lebeer S. Applications of plant-based fermented foods and their microbes. Curr Opin Biotechnol. 2020;61:45-52. https://doi.org/10.1016/j.copbio.2019.09.023 | |
55. Riar CS, Panesar PS. Bioactive Compounds and Nutraceuticals: Classification, Potential Sources, and Application Status. In: Riar CS and Panesar PS (eds) Bioactive Compounds and Nutraceuticals from Dairy, Marine, and Nonconventional Sources. Apple Academic Press; 2024:3-60. https://doi.org/10.1201/9781003452768-2 | |
56. Walia A, Gupta AK, Sharma V. Role of bioactive compounds in human health. Acta Sci Med Sci. 2019;3:25-33. | |
57. Dahiya D, Terpou A, Dasenaki M, Nigam PS. Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification. Sustain Food Technol. 2023;1:500-10. https://doi.org/10.1039/D3FB00015J | |
58. Ghosh S, Sarkar T, Pati S, Kari ZA, Edinur HA, Chakraborty R. Novel bioactive compounds from marine sources as a tool for functional food development. Front Mar Sci. 2022;9:832957. https://doi.org/10.3389/fmars.2022.832957 | |
59. Chen H, Jia Y, Guo Q. Polysaccharides and polysaccharide complexes as potential sources of antidiabetic compounds: A review. Stud Nat Prod Chem. 2020;67:199-220. https://doi.org/10.1016/B978-0-12-819483-6.00006-0 | |
60. Meng F, Li Q, Qi Y, He C, Wang C, Zhang Q. Characterization and immunoregulatory activity of two polysaccharides from the root of Ilex asprella. Carbohydr Polym. 2018;197:9-16. https://doi.org/10.1016/j.carbpol.2018.05.066 | |
61. Liu M, Li S, Wang X, Zhu Y, Zhang J, Liu H, Jia L. Characterization, anti-oxidation and anti-inflammation of polysaccharides by Hypsizygus marmoreus against LPS-induced toxicity on lung. Int J Biol Macromol. 2018;111:121-8. https://doi.org/10.1016/j.ijbiomac.2018.01.010 | |
62. Arora S, Singh D, Rajput A, Bhatia A, Kumar A, Kaur H, et al. Plant-based polysaccharides and their health functions. Funct Foods Health Dis. 2021;11:179-200. https://doi.org/10.31989/ffhd.v11i4.773 | |
63. Lovegrove A, Edwards C, De Noni I, Patel H, El S, Grassby T, et al. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr. 2017;57:237-53. https://doi.org/10.1080/10408398.2014.939263 | |
64. Warren FJ, Royall PG, Gaisford S, Butterworth PJ, Ellis PR. Binding interactions of α-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydr Polym. 2011;86:1038-47. https://doi.org/10.1016/j.carbpol.2011.05.062 | |
65. Farvid MS, Homayouni F, Shokoohi M, Fallah A, Farvid MS. Glycemic index, glycemic load and their association with glycemic control among patients with type 2 diabetes. Eur J Clin Nutr. 2014;68:459-63. https://doi.org/10.1038/ejcn.2013.288 | |
66. Zhao J-L, Zhang M, Zhou H-L. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules. 2019;24:1605. https://doi.org/10.3390/molecules24081605 | |
67. Góral I, Wojciechowski K. Surface activity and foaming properties of saponin-rich plants extracts. Adv Colloid Interface Sci. 2020;279:102145. https://doi.org/10.1016/j.cis.2020.102145 | |
68. Sharma K, Kaur R, Kumar S, Saini RK, Sharma S, Pawde SV, Kumar V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem Adv. 2023;100191. https://doi.org/10.1016/j.focha.2023.100191 | |
69. Shin K-C, Kim DW, Oh YJ, Seo M-J, Na CS, Kim Y-S. Improved production of deglucosylated platycodin D from saponins from balloon flower leaf by a food-grade enzyme using high hydrostatic pressure. Heliyon. 2021;7:e08104. https://doi.org/10.1016/j.heliyon.2021.e08104 | |
70. Nichakool B, Jamphon A, Pootang-on Y, Techakriengkrai W, Techakriengkrai T. A Study about Brahmi (Bacopa monnieri) preparation steps on its saponin quantity. Trends Sci. 2021;18:1439. https://doi.org/10.48048/tis.2021.1439 | |
71. Gu Y, Yang X, Shang C, Thao TTP, Koyama T. Inhibitory properties of saponin from Eleocharis dulcis peel against α-glucosidase. RSC Adv. 2021;11:15400-9. https://doi.org/10.1039/D1RA02198B | |
72. Dixit V, Joseph Kamal SW, Bajrang Chole P, Dayal D, Chaubey KK, et al. Functional foods: Exploring the health benefits of bioactive compounds from plant and animal sources. J Food Qual. 2023;2023:5546753. https://doi.org/10.1155/2023/5546753 | |
73. Mozaffarian D, Wu JH. Flavonoids, dairy foods, and cardiovascular and metabolic health: A review of emerging biologic pathways. Circ Res. 2018;122:369-84. https://doi.org/10.1161/CIRCRESAHA.117.309008 | |
74. Khan S, Dar AH, Shams R, Aga MB, Siddiqui MW, Mir SA, et al. Applications of ultraviolet light-emitting diode technology in horticultural produce: A systematic review and meta-analysis. Food Bioprocess Technol. 2022;1-11. | |
75. Gupta L, Chauhan M, Kumar A, Chauhan D, Saini P. Flavonoids and cardiovascular diseases. In: Sharma N, Saini D, Kesharwani RK, Gupta PC, Keservani RK (eds) Advances in Flavonoids for Human Health and Prevention of Diseases. Apple Academic Press; 2024:73-94. https://doi.org/10.1201/9781003369813-4 | |
76. Yao LH, Jiang Y-M, Shi J, Tomas-Barberan F, Datta N, Singanusong R, et al. Flavonoids in food and their health benefits. Plant Foods Hum Nutr. 2004;59:113-22. https://doi.org/10.1007/s11130-004-0049-7 | |
77. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: A review. Molecules. 2022;27:2901. https://doi.org/10.3390/molecules27092901 | |
78. Shi Q, Hui S, Zhang A-H, Hong-Ying X, Guang-Li Y, Ying H, et al. Natural alkaloids: basic aspects, biological roles, and future perspectives. Chin J Nat Med. 2014;12:401-6. https://doi.org/10.1016/S1875-5364(14)60063-7 | |
79. Zhang X, Cui J, Hou J, Wang W. Research progress of natural active substances with uric-acid-reducing activity. J Agric Food Chem. 2022;70:15647-64. https://doi.org/10.1021/acs.jafc.2c06554 | |
80. Lopes M, Coimbra MA, Costa MdC, Ramos F. Food supplement vitamins, minerals, amino-acids, fatty acids, phenolic and alkaloid-based substances: An overview of their interaction with drugs. Crit Rev Food Sci Nutr. 2023;63:4106-40. https://doi.org/10.1080/10408398.2021.1997909 | |
81. Borsoi FT, Pastore GM, Arruda HS. Health benefits of the alkaloids from Lobeira (Solanum lycocarpum St. Hill): a comprehensive review. Plants. 2024;13:1396. https://doi.org/10.3390/plants13101396 | |
82. Ranjitha D, Sudha K. Alkaloids in foods. Int J Pharm Chem Biol Sci. 2015;5:896. | |
83. Suter PM. The B-Vitamins. In: Prasad AS, Brewer GJ (eds) Essential and Toxic Trace Elements and Vitamins in Human Health. Academic Press; 2020:241-62. https://doi.org/10.1016/B978-0-12-805378-2.00018-8 | |
84. Torquato P, Marinelli R, Bartolini D, Galli F. Vitamin E: Nutritional aspects. In: Patel VB (ed.) Molecular Nutrition. Elsevier; 2020:447-85. https://doi.org/10.1016/B978-0-12-811907-5.00019-1 | |
85. Xiao S, Li J. Study on functional components of functional food based on food vitamins. J Phys Conf Ser. 2020;1549:032002 https://doi.org/10.1088/1742-6596/1549/3/032002 | |
86. Kumar P, Banik SP, Ohia SE, Moriyama H, Chakraborty S, Wang C-K, et al. Current insights on the photoprotective mechanism of the macular carotenoids, lutein and zeaxanthin: safety, efficacy and bio-delivery. J Am Nutr Assoc. 2024;1-14. https://doi.org/10.1080/27697061.2024.2319090 | |
87. Abuajah CI, Ogbonna AC, Osuji CM. Functional components and medicinal properties of food: A review. J Food Sci Technol. 2015;52:2522-9. https://doi.org/10.1007/s13197-014-1396-5 | |
88. Bone RA, Landrum JT, Guerra LH, Ruiz CA. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr. 2003;133:992-8. https://doi.org/10.1093/jn/133.4.992 | |
89. Zakynthinos G, Varzakas T. Carotenoids: From plants to food industry. Curr Res Nutr Food Sci. 2016;4:38-51. https://doi.org/10.12944/CRNFSJ.4.Special-Issue1.04 | |
90. Meléndez-Martínez AJ, Esquivel P, Rodriguez-Amaya DB. Comprehensive review on carotenoid composition: Transformations during processing and storage of foods. Food Res Int. 2023;112773. https://doi.org/10.1016/j.foodres.2023.112773 | |
91. Zhang W, Hu W, Zhu Q, Niu M, An N, Feng Y, et al. Hydroxy fatty acids in the surface earth system. Sci Total Environ. 2023;167358. https://doi.org/10.1016/j.scitotenv.2023.167358 | |
92. Gunstone FD, Eskin M. Research highlights: lipid technology 2/2013. Lipid Technol. 2013;25:43-46. https://doi.org/10.1002/lite.201300256 | |
93. Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs. 2013;11:4662-97. https://doi.org/10.3390/md11114662 | |
94. Ram?rez M, Amate L, Gil A. Absorption and distribution of dietary fatty acids from different sources. Early Hum Dev. 2001;65:S95-101. https://doi.org/10.1016/S0378-3782(01)00211-0 | |
95. Kaur N, Chugh V, Gupta AK. Essential fatty acids as functional components of foods-A review. J Food Sci Technol. 2014;51:2289-303. https://doi.org/10.1007/s13197-012-0677-0 | |
96. Silva A, Silva V, Igrejas G, Aires A, Falco V, Valentão P, Poeta P. Phenolic compounds classification and their distribution in winemaking by-products. Eur Food Res Technol. 2023;249:207-39. https://doi.org/10.1007/s00217-022-04163-z | |
97. Machu L, Misurcova L, Vavra Ambrozova J, Orsavova J, Mlcek J, Sochor J, Jurikova T. Phenolic content and antioxidant capacity in algal food products. Molecules. 2015;20:1118-33. https://doi.org/10.3390/molecules20011118 | |
98. Ghouari N, Benali-Cherif R, Takouachet R, Falek W, Missaoui D, Rahmouni A, et al. Crystal engineering of a new pharmaceutical polymorph of gallic acid monohydrate: A structural comparative study and chemical computational quantum investigations. Cryst Eng Comm. 2023. https://doi.org/10.1039/D3CE00766A | |
99. Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem. 2020;44:e13394. https://doi.org/10.1111/jfbc.13394 | |
100. Zhou L, Elias RJ. Understanding antioxidant and prooxidant mechanisms of phenolics in food lipids. In: Logan A, Nienaber U, Pan X (eds) Lipid Oxidation. Elsevier; Academic Press, AOCS Press; 2013:297-321. https://doi.org/10.1016/B978-0-9830791-6-3.50012-6 | |
101. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-a review. J Funct Foods. 2015;18:820-97. https://doi.org/10.1016/j.jff.2015.06.018 | |
102. Zuzarte M, Salgueiro L. Essential oils chemistry. In: de Sousa D (eds) Bioactive Essential Oils and Cancer. Springer; 2015:19-61. https://doi.org/10.1007/978-3-319-19144-7_2 | |
103. Zuzarte M, Girão H, Salgueiro L. Aromatic plant-based functional foods: A natural approach to manage cardiovascular diseases. Molecules. 2023;28:5130. https://doi.org/10.3390/molecules28135130 | |
104. Jackson-Davis A, White S, Kassama L, Coleman S, Shaw A, Mendonca A, et al. A review of regulatory standards and advances in essential oils as antimicrobials in foods. J Food Protect. 2022;100025. https://doi.org/10.1016/j.jfp.2022.100025 | |
105. Carpena M, Nuñez-Estevez B, Soria-Lopez A, Garcia-Oliveira P, Prieto MA. Essential oils and their application on active packaging systems: A review. Resources. 2021;10:7. https://doi.org/10.3390/resources10010007 | |
106. Piironen V, Lampi AM (2004) Occurrance and Levels of Phytosterols in Foods. In: Dutta P (ed) Phytosterols as Functional Food Components and Nutraceuticals. Marcel Dekker https://doi.org/10.1201/9780203913413.ch1 | |
106. Piironen V, Lampi AM (2004) Occurrance and Levels of Phytosterols in Foods. In: Dutta P https://doi.org/10.1201/9780203913413.ch1 | |
(ed) Phytosterols as Functional Food Components and Nutraceuticals. Marcel Dekker; 2004:1-32. | |
107. Gylling H, Simonen P. Phytosterols, phytostanols, and lipoprotein metabolism. Nutrients. 2015;7:7965-77. https://doi.org/10.3390/nu7095374 | |
108. Blebea NM, Rambu D, Costache T, Negre? S. Very fast RP-UHPLC-PDA method for identification and quantification of the cannabinoids from hemp oil. Appl Sci. 2021;11:9414. https://doi.org/10.3390/app11209414 | |
109. Shakil SS, Gowan M, Hughes K, Azam MNK, Ahmed MN. A narrative review of the ethnomedicinal usage of Cannabis sativa Linnaeus as traditional phytomedicine by folk medicine practitioners of Bangladesh. J Cannabis Res. 2021;3:1-12. https://doi.org/10.1186/s42238-021-00063-3 | |
110. Montserrat-de la Paz S, Marín-Aguilar F, García-Gimenez MD, Fernández-Arche M. Hemp (Cannabis sativa L.) seed oil: Analytical and phytochemical characterization of the unsaponifiable fraction. J Agric Food Chem. 2014;62:1105-10. https://doi.org/10.1021/jf404278q | |
111. McPartland JM, Guy GW. Models of Cannabis taxonomy, cultural bias, and conflicts between scientific and vernacular names. Bot Rev. 2017;83:327-81. https://doi.org/10.1007/s12229-017-9187-0 | |
112. Radwan MM, Chandra S, Gul S, ElSohly MA. Cannabinoids, phenolics, terpenes and alkaloids of cannabis. Molecules. 2021;26:2774. https://doi.org/10.3390/molecules26092774 | |
113. Rock EM, Parker LA. Constituents of Cannabis sativa. In: Murillo- Rodriguez E, Pandi-Perumal SR, Monti JM (eds) Cannabinoids and Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, vol 1264. Springer; 2021:1-13. | |
114. Gülck T, Møller BL. Phytocannabinoids: Origins and biosynthesis. Trends Plant Sci. 2020;25:985-1004. https://doi.org/10.1016/j.tplants.2020.05.005 | |
115. ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod. 2017;103:1-36. https://doi.org/10.1007/978-3-319-45541-9_1 | |
116. Morales, P.; Hurst, D.; Reggio, P.H. Molecular targets of the phytocannabinoids: A complex picture. Prog Chem Org Nat Prod. 2017;103:103-31. https://doi.org/10.1007/978-3-319-45541-9_4 | |
117. Krüger M, van Eeden T, Beswa D. Cannabis sativa cannabinoids as functional ingredients in snack foods-Historical and developmental aspects. Plants. 2022;11:3330. https://doi.org/10.3390/plants11233330 | |
118. Shah S, Schwenk ES, Sondekoppam RV, Clarke H, Zakowski M, Rzasa-Lynn RS, et al. ASRA Pain Medicine consensus guidelines on the management of the perioperative patient on Cannabis and cannabinoids. Reg Anesth Pain Med. 2023;48:97-117. https://doi.org/10.1136/rapm-2022-104013 | |
119. Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res. 2017;128:58-69. https://doi.org/10.1016/j.marenvres.2016.05.002 | |
120. Azmir J, Zaidul ISM, Rahman MM, Sharif K, Mohamed A, Sahena F, Jahurul M, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 2013;117:426-36. https://doi.org/10.1016/j.jfoodeng.2013.01.014 | |
121. Paczkowska-Walendowska M, Cielecka-Piontek J. Chitosan as a functional carrier for the local delivery anti-inflammatory systems containing Scutellariae baicalensis radix extract. Pharmaceutics. 2022;14:2148. https://doi.org/10.3390/pharmaceutics14102148 | |
122. Cannavacciuolo C, Pagliari S, Celano R, Campone L, Rastrelli L. Critical analysis of green extraction techniques used for botanicals: Trends, priorities, and optimization strategies-A review. TrAC Trends Analyt Chem. 2024;117627. https://doi.org/10.1016/j.trac.2024.117627 | |
123. Lefebvre T, Destandau E, Lesellier E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J Chromatogr A. 2021;1635:461770. https://doi.org/10.1016/j.chroma.2020.461770 | |
124. Jha AK, Sit N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci Technol. 2022;119:579-91. https://doi.org/10.1016/j.tifs.2021.11.019 | |
125. Chemat F, Vian MA, Fabiano-Tixier A-S, Nutrizio M, Jambrak AR, Munekata PE, Lorenzo JM, Barba FJ, Binello A, Cravotto G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020;22:2325-53. https://doi.org/10.1039/C9GC03878G | |
126. Picot-Allain C, Mahomoodally MF, Ak G, Zengin G. Conventional versus green extraction techniques-A comparative perspective. Curr Opin Food Sci. 2021;40:144-56. https://doi.org/10.1016/j.cofs.2021.02.009 | |
127. Wen L, Zhang Z, Sun D-W, Sivagnanam SP, Tiwari BK. Combination of emerging technologies for the extraction of bioactive compounds. Crit Rev Food Sci Nutr. 2020;60:1826-41. https://doi.org/10.1080/10408398.2019.1602823 | |
128. Branch JA, Bartlett PN. Electrochemistry in supercritical fluids. Philos Trans A Math Eng Sci. 2015;373:20150007. https://doi.org/10.1098/rsta.2015.0007 | |
129. Kate A, Singh A, Shahi N, Pandey J, Prakash O, Singh T. Novel eco-friendly techniques for extraction of food based lipophilic compounds from biological materials. Nat Prod Chem Res. 2016;4:1000231. https://doi.org/10.4172/2329-6836.1000231 | |
130. Kulazynski M, Stolarski M, Faltynowicz H, Narowska B, Swiatek L, Lukaszewicz M. Supercritical fluid extraction of vegetable materials. Chem Chem Technol. 2016;637-44. https://doi.org/10.23939/chcht10.04si.637 | |
131. Raventós M, Duarte S, Alarcón R. Application and possibilities of supercritical CO2 extraction in food processing industry: An overview. Food Sci Technol Int. 2002;8:269-84. https://doi.org/10.1106/108201302029451 | |
132. Uwineza PA, Wa?kiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules. 2020;25:3847. https://doi.org/10.3390/molecules25173847 | |
133. Rodrigues VM, Sousa EMBD, Monteiro AR, Chiavone-Filho O, Marques MOM, Meireles MAA. Determination of the solubility of extracts from vegetable raw material in pressurized CO2: A pseudo-ternary mixture formed by cellulosic structure+solute+solvent. J Supercrit Fluids. 2002;22:21-36. https://doi.org/10.1016/S0896-8446(01)00108-5 | |
134. Pereira CG, Meireles MAA. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Technol. 2010;3:340-72. https://doi.org/10.1007/s11947-009-0263-2 | |
135. Temelli F, Güçlü-Üstünda ?g Ö. Supercritical technologies for further processing of edible oils. In: Shahidi F (ed) Bailey's Industrial Oil and Fat Products. John Wiley & Sons; 2005:397-432. https://doi.org/10.1002/047167849X.bio057 | |
136. Lang Q, Wai CM. Supercritical fluid extraction in herbal and natural product studies-a practical review. Talanta. 2001;53:771-82. https://doi.org/10.1016/S0039-9140(00)00557-9 | |
137. Ghafoor K, Park J, Choi Y-H. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov Food Sci Emerg Technol. 2010;11:485-90. https://doi.org/10.1016/j.ifset.2010.01.013 | |
138. Reverchon E, De Marco I. Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids. 2006;38:146-66. https://doi.org/10.1016/j.supflu.2006.03.020 | |
139. Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M. Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Hayes M (ed.) Marine Bioactive Compounds: Sources, Characterization and Applications. Springer; 2011:55-98. https://doi.org/10.1007/978-1-4614-1247-2_2 | |
140. da Silva RPFF, Rocha-Santos TAP, Duarte AC. Supercritical fluid extraction of bioactive compounds. Trends Anal Chem. 2016;76:40-51. https://doi.org/10.1016/j.trac.2015.11.013 | |
141. Nasti? N, Švarc-Gaji? J, Delerue-Matos C, Barroso MF, Soares C, Moreira MM, et al. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind Crops Prod. 2018;111:579-89. https://doi.org/10.1016/j.indcrop.2017.11.015 | |
142. Herrero M, Cifuentes A, Ibañez E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006;98:136-48. https://doi.org/10.1016/j.foodchem.2005.05.058 | |
143. Zakaria SM, Kamal SMM. Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Eng Rev. 2016;8:23-34. https://doi.org/10.1007/s12393-015-9119-x | |
144. Getachew AT, Chun BS. Molecular modification of native coffee polysaccharide using subcritical water treatment: Structural characterization, antioxidant, and DNA protecting activities. Int J Biol Macromol. 2017;99:555-62. https://doi.org/10.1016/j.ijbiomac.2017.03.034 | |
145. Zhang J, Wen C, Zhang H, Duan Y, Ma H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci Technol. 2020;95:183-95. https://doi.org/10.1016/j.tifs.2019.11.018 | |
146. Ju Z, Howard LR. Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. J Food Sci. 2005;70:S270-6. https://doi.org/10.1111/j.1365-2621.2005.tb07202.x | |
147. Ramos L, Kristenson EM, Brinkman UT. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J Chromatogr A. 2002;975:3-29. https://doi.org/10.1016/S0021-9673(02)01336-5 | |
148. Gbashi S, Adebo OA, Piater L, Madala NE, Njobeh PB. Subcritical water extraction of biological materials. Sep Purif Rev. 2017;46:21-34. https://doi.org/10.1080/15422119.2016.1170035 | |
149. Xu D, Huang C, Wang S, Guo Y. Characteristics analysis of water film in transpiring wall reactor. Int J Heat Mass Transf. 2016;100:559-65. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.090 | |
150. AlYammahi J, Rambabu K, Thanigaivelan A, Bharath G, Hasan SW, Show PL, et al. Advances of non-conventional green technologies for phyto-saccharides extraction: Current status and future perspectives. Phytochem Rev. 2023;22:1067-88. https://doi.org/10.1007/s11101-022-09831-2 | |
151. Ong ES, Cheong JSH, Goh D. Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. J Chromatogr A. 2006;1112:92-102. https://doi.org/10.1016/j.chroma.2005.12.052 | |
152. Anastas, P.T.; Zimmerman, J.B. Through the 12 principles green engineering. Environ Sci Technol. 2003;37:94A https://doi.org/10.1021/es032373g | |
153. Lavilla I, Bendicho C. Fundamentals of Ultrasound-Assisted Extraction. In: Dominguez González H, González Muñoz MJ (eds) Water Extraction of Bioactive Compounds. Elsevier:2017:291-316. https://doi.org/10.1016/B978-0-12-809380-1.00011-5 | |
154. Tabaraki R, Heidarizadi E, Benvidi A. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Sep Purif Technol. 2012;98:16-23. https://doi.org/10.1016/j.seppur.2012.06.038 | |
155. Vilkhu K, Mawson R, Simons L, Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry - A review. Innov Food Sci Emerg Technol. 2008;9:161-9. https://doi.org/10.1016/j.ifset.2007.04.014 | |
156. Sharayei P, Azarpazhooh E, Zomorodi S, Ramaswamy HS. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. Lwt. 2019;101:342-50. https://doi.org/10.1016/j.lwt.2018.11.031 | |
157. Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano- Tixier A-S, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem. 2017;34:540-60. https://doi.org/10.1016/j.ultsonch.2016.06.035 https://doi.org/10.1016/j.ultsonch.2016.06.035 | |
158. Chemat F, Tomao V, Virot M. Ultrasound-assisted extraction in food analysis. Handb Food Anal Instrum. 2008;11:85-103. https://doi.org/10.1201/9781420045673.ch5 | |
159. Alara OR, Abdurahman NH, Abdul Mudalip SK. Optimizing microwave?assisted extraction conditions to obtain phenolic?rich extract from Chromolaena odorata Leaves. Chem Eng Technol. 2019;42:1733-40. https://doi.org/10.1002/ceat.201800462 | |
160. Nour AH, Oluwaseun AR, Nour AH, Omer MS, Ahmed N. Microwave-assisted extraction of bioactive compounds. In: Gennadiy IC (ed.) Microwave Heating Electromagnetic Fields Causing Thermal and Non-Thermal Effects. IntechOpen;2021:1-31. | |
161. Deo S, Janghel A, Raut P, Bhosle D, Verma C, Kumar SS, et al. Emerging microwave assisted extraction (mae) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals. Res J Pharm Technol. 2015;8:655-66. https://doi.org/10.5958/0974-360X.2015.00104.3 | |
162. Routray W, Orsat V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2012;5:409-24. https://doi.org/10.1007/s11947-011-0573-z | |
163. Kaufmann B, Christen P. Recent extraction techniques for natural products: microwave?assisted extraction and pressurised solvent extraction. Phytochem Anal. 2002;13:105-13. https://doi.org/10.1002/pca.631 | |
164. Khajeh M, Reza Akbari Moghaddam A, Sanchooli E. Application of Doehlert design in the optimization of microwave-assisted extraction for determination of zinc and copper in cereal samples using FAAS. Food Anal Methods. 2010;3:133-7. https://doi.org/10.1007/s12161-009-9099-7 | |
165. Jha D, Maheshwari P, Singh Y, Haider MB, Kumar R, Balathanigaimani M. A comparative review of extractive desulfurization using designer solvents: Ionic liquids & deep eutectic solvents. J Energy Inst. 2023;101313. https://doi.org/10.1016/j.joei.2023.101313 | |
166. Yan L-G, He L, Xi J. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-a review. Crit Rev Food Sci Nutr. 2017;57:2877-88. https://doi.org/10.1080/10408398.2015.1077193 | |
167. Ganeva V, Galutzov B. Electropulsation as an alternative method for protein extraction from yeast. FEMS Microbiol Lett. 1999;174:279-84. https://doi.org/10.1111/j.1574-6968.1999.tb13580.x | |
168. Puértolas E, de Marañón IM. Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties. Food Chem. 2015;167:497-502. https://doi.org/10.1016/j.foodchem.2014.07.029 | |
169. Donsì F, Ferrari G, Pataro G. Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Eng Rev. 2010;2:109-30. https://doi.org/10.1007/s12393-010-9015-3 | |
170. Bobinait? R, Pataro G, Lamanauskas N, Šatkauskas S, Viškelis P, Ferrari G. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J Food Sci Technol. 2015;52:5898-905. https://doi.org/10.1007/s13197-014-1668-0 | |
171. Grimi N, Mamouni F, Lebovka N, Vorobiev E, Vaxelaire J. Impact of apple processing modes on extracted juice quality: Pressing assisted by pulsed electric fields. J Food Eng. 2011;103:52-61. https://doi.org/10.1016/j.jfoodeng.2010.09.019 | |
172. Puértolas E, Cregenzán O, Luengo E, Álvarez I, Raso J. Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chem. 2013;136:1330-6. https://doi.org/10.1016/j.foodchem.2012.09.080 | |
173. Perez-Vazquez A, Carpena M, Barciela P, Cassani L, Simal-Gandara J, Prieto MA. Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review. Antioxidants. 2023;12:612. https://doi.org/10.3390/antiox12030612 | |
174. Camel V. Recent extraction techniques for solid matrices- supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Analyst. 2001;126:1182-93. https://doi.org/10.1039/b008243k | |
175. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C. Accelerated solvent extraction: a technique for sample preparation. Anal Chem. 1996;68:1033-9. https://doi.org/10.1021/ac9508199 | |
176. Mustafa A, Turner C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal Chim Acta. 2011;703:8-18. https://doi.org/10.1016/j.aca.2011.07.018 | |
177. Machado APDF, Pasquel-Reátegui JL, Barbero GF, Martínez J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Res Int. 2015;77:675-83. https://doi.org/10.1016/j.foodres.2014.12.042 | |
178. Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, Hernández-Méndez J. Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A. 2005;1089:1-17. https://doi.org/10.1016/j.chroma.2005.06.072 | |
179. Monrad JK, Howard LR, King JW, Srinivas K, Mauromoustakos A. Subcritical solvent extraction of anthocyanins from dried red grape pomace. J Agric Food Chem. 2010;58:2862-8. https://doi.org/10.1021/jf904087n | |
180. Wijngaard H, Hossain MB, Rai DK, Brunton N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int. 2012;46:505-13. https://doi.org/10.1016/j.foodres.2011.09.027 | |
181. Pronyk C, Mazza G. Design and scale-up of pressurized fluid extractors for food and bioproducts. J Food Eng. 2009;95:215-26. https://doi.org/10.1016/j.jfoodeng.2009.06.002 | |
182. Correia RT, Borges KC, Medeiros MF, Genovese MI. Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues. Food Sci Technol Int. 2012;18:539-47. https://doi.org/10.1177/1082013211433077 | |
183. Mao Q-Q, Xu X-Y, Cao S-Y, Gan R-Y, Corke H, Beta T, Li H-B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8:185. https://doi.org/10.3390/foods8060185 | |
184. Capelezzo AP, Mohr LC, Dalcanton F, de Mello JMM, Fiori MA. β-Cyclodextrins as Encapsulating Agents of Essential Oils. In: Poonam A, Neelima D (eds) Cyclodextrin: A Versatile Ingredient. IntechOpen: London, UK, 2018; 169-200. https://doi.org/10.5772/intechopen.73568 | |
185. Drewnowski A, Gomez-Carneros C. Bitter taste, phytonutrients, and the consumer: Areview. Am J Clin Nutr. 2000;72:1424-35. https://doi.org/10.1093/ajcn/72.6.1424 | |
186. Dima ?, Dima C, Iord?chescu G. Encapsulation of functional lipophilic food and drug biocomponents. Food Eng Rev. 2015;7:417-38. https://doi.org/10.1007/s12393-015-9115-1 | |
187. Li K, Liu L, McClements DJ, Liu Z, Liu X, Liu F. A review of the bioactive compounds of kiwifruit: Bioactivity, extraction, processing and challenges. Food Rev Int. 2024;40:996-1027. https://doi.org/10.1080/87559129.2023.2212033 | |
188. Bamidele OP, Emmambux MN. Encapsulation of bioactive compounds by "extrusion" technologies: A review. Crit Rev Food Sci Nutr. 2021;61:3100-18. https://doi.org/10.1080/10408398.2020.1793724 | |
189. Anal AK, Shrestha S, Sadiq MB. Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems. Food Hydrocoll. 2019;87:691-702. https://doi.org/10.1016/j.foodhyd.2018.09.008 | |
190. Lalbiaknguri JL, Singh NSC, Kumar B. Encapsulation techniques for enhancing the stability and bioavailability of food: A review. 2024;8(3):16-23. https://doi.org/10.33545/26174693.2024.v8.i3Sa.681 | |
191. Devi N, Sarmah M, Khatun B, Maji TK. Encapsulation of active ingredients in polysaccharide-protein complex coacervates. Adv Colloid Interface Sci. 2017;239:136-45. https://doi.org/10.1016/j.cis.2016.05.009 | |
192. McClements DJ, Gunasekaran S. Ultrasonic characterization of foods and drinks: Principles, methods, and applications. Crit Rev Food Sci Nutr. 1997;37:1-46. https://doi.org/10.1080/10408399709527766 | |
193. Silva EK, Zabot GL, Hijo AAT, Meireles MAA. Encapsulation of Bioactive Compounds Using Ultrasonic Technology. In: Aguirre DB (ed) Ultrasound: Advances for Food Processing and Preservation. Elsevier; 2017:323-350. https://doi.org/10.1016/B978-0-12-804581-7.00013-0 | |
194. Chemat F, Khan MK. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem. 2011;18:813-35. https://doi.org/10.1016/j.ultsonch.2010.11.023 | |
195. Goldberg BB, Liu J-B, Forsberg F. Ultrasound contrast agents: A review. Ultrasoun Med Biol. 1994;20:319-33. https://doi.org/10.1016/0301-5629(94)90001-9 | |
196. Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci. 1999;29:295-326. https://doi.org/10.1146/annurev.matsci.29.1.295 | |
197. Leighton T (2012) The acoustic Bubble. Academic Press. | |
198. Kentish S, Wooster T, Ashokkumar M, Balachandran S, Mawson R, Simons L. The use of ultrasonics for nanoemulsion preparation. Innov Food SciEmerg Technol. 2008;9:170-5. https://doi.org/10.1016/j.ifset.2007.07.005 | |
199. Tao Y, Zhang Z, Sun D-W. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrason Sonochem. 2014;21:1461-9. https://doi.org/10.1016/j.ultsonch.2014.01.029 | |
200. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int. 2007;40:1107-21. https://doi.org/10.1016/j.foodres.2007.07.004 | |
201. Zhang WF, Chen XG, Li PW, Liu CS, He QZ. Preparation and characterization of carboxymethyl chitosan and β-cyclodextrin microspheres by spray drying. Dry Technol. 2007;26:108-15. https://doi.org/10.1080/07373930701781736 | |
202. Caliskan G, Dirim SN. The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food Bioprod Process. 2013;91:539-48. https://doi.org/10.1016/j.fbp.2013.06.004 | |
203. Zuidam NJ, Heinrich E. Encapsulation of Aroma. In: Zuidam NJ, Nedovic VA (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer; 2010:127-60. https://doi.org/10.1007/978-1-4419-1008-0_5 | |
204. Dalmoro A, Barba AA, Lamberti G, d'Amore M. Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach. Eur J Pharm Biopharm. 2012;80:471-7. https://doi.org/10.1016/j.ejpb.2012.01.006 | |
205. Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016;100:27-50. https://doi.org/10.1016/j.addr.2015.12.010 | |
206. Drosou CG, Krokida MK, Biliaderis CG. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Dry Technol. 2017;35:139-62. https://doi.org/10.1080/07373937.2016.1162797 | |
207. Kemp IC. Fundamentals of energy analysis of dryers. Modern Dry Technol. 2012;4:1-45. https://doi.org/10.1002/9783527631681.ch1 | |
208. Parikh, DM. Handbook of Pharmaceutical Granulation Technology; Drugs and the Pharmaceutical Sciences. CRC Press; 2005. https://doi.org/10.1201/9780849354953 | |
209. Ishwarya SP, Anandharamakrishnan C, Stapley AG. Spray-freeze-drying: A novel process for the drying of foods and bioproducts. Trends Food Sci Technol. 2015;41:161-81. https://doi.org/10.1016/j.tifs.2014.10.008 | |
210. Bhandari BR, Patel KC, Chen XD. Spray drying of food materials-process and product characteristics. Dry Technol Food Process. 2008;4:113-57. | |
211. Langrish T, Premarajah R. Antioxidant capacity of spray-dried plant extracts: Experiments and simulations. Adv Powder Technol. 2013;24:771-9. https://doi.org/10.1016/j.apt.2013.03.020 | |
212. F. Gibbs SK, Inteaz Alli, Catherine N. Mulligan, Bernard. Encapsulation in the food industry: A review. Int J Food Sci Nutr. 1999;50:213-24. https://doi.org/10.1080/096374899101256 | |
213. Zuidam NJ, Shimoni E. Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them. In Zuidam NJ and Nedovic VA (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer; 2010:3-29. https://doi.org/10.1007/978-1-4419-1008-0_2 | |
214. Oxley J. Spray Cooling and Spray Chilling for Food Ingredient and Nutraceutical Encapsulation. In: Garti N and McClements DJ (eds) Encapsulation Technologies and Delivery Systems for Food Ingredients And Nutraceuticals. Elsevier; 2012:110-30. https://doi.org/10.1533/9780857095909.2.110 | |
215. Risch SJ. Encapsulation: Overview of Uses and Techniques. In: Rish SJ, Reineccius GA (eds) Encapsulation and Controlled Release of Food Ingredient. American Chemical Society; 1995:2-7. https://doi.org/10.1021/bk-1995-0590.ch001 | |
216. Dimick KP, Benjamin M (1959) Process for preparing a solid flavoring composition. Google Patents. | |
217. Alvim ID, Stein MA, Koury IP, Dantas FBH, Cruz CLdCV. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT-Food Sci Technol. 2016;65:689-94. https://doi.org/10.1016/j.lwt.2015.08.049 | |
218. Günel Z, Varhan E, Koç M, Topuz A, Sahin-Nadeem H. Production of pungency-suppressed capsaicin microcapsules by spray chilling. Food Biosci. 2021;40:100918. https://doi.org/10.1016/j.fbio.2021.100918 | |
219. de Matos-Jr FE, Comunian TA, Thomazini M, Favaro-Trindade CS. Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. Lwt. 2017;75:251-60. https://doi.org/10.1016/j.lwt.2016.09.006 | |
220. Hemati M, Cherif R, Saleh K, Pont V. Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics. Powder Technol. 2003;130:18-34. https://doi.org/10.1016/S0032-5910(02)00221-8 | |
221. Kage H, Abe R, Hattanda R, Zhou T, Ogura H, Matsuno Y. Effect of solid circulation rate on coating efficiency and agglomeration in circulating fluidized bed type coater. Powder Technol. 2003;130:203-10. https://doi.org/10.1016/S0032-5910(02)00267-X | |
222. Guignon B, Duquenoy A, Dumoulin ED. Fluid bed encapsulation of particles: principles and practice. Dry Technol. 2002;20:419-47. https://doi.org/10.1081/DRT-120002550 | |
223. Desai K, Park H. Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J Microencapsul. 2005;22:179-92. https://doi.org/10.1080/02652040400026533 | |
224. Yang WC, Keairns D. Rate of particle separation in a gas fluidized bed. Ind Eng Chem Fund. 1982;21:228-35. https://doi.org/10.1021/i100007a007 | |
225. Ghosh SK. Functional Coatings and Microencapsulation: A General Perspective. Ghosh SK (ed) Functional Coatings: by Polymer Microencapsulation. John Wiley & Sons; 2006:1-28. https://doi.org/10.1002/3527608478.ch1 | |
226. Arshady R. Microcapsules for food. J Microencapsul. 1993;10:413-35. https://doi.org/10.3109/02652049309015320 | |
227. Kydonieus AF (1980) Controlled release technologies: Methods, theory, and applications, vols 1 and 2. CRC Press; 1980. | |
228. Kester JJ, Fennema O. Edible films and coatings: a review. Food Technol. 1986;40:47-59. | |
229. Shilton N, Niranjan K. Fluidization and its applications to food processing. Food Struct. 1993;12:199-215. | |
230. Balassa LL, Fanger GO, Wurzburg OB. Microencapsulation in the food industry. Crit Rev Food Sci Nutr. 1971;2:245-65. https://doi.org/10.1080/10408397109527123 | |
231. Celli GB, Ghanem A, Brooks MS-L. Bioactive encapsulated powders for functional foods-a review of methods and current limitations. Food Bioprocess Technol. 2015;8:1825-37. https://doi.org/10.1007/s11947-015-1559-z | |
232. Mascarenhas W, Akay H, Pikal M. A computational model for finite element analysis of the freeze-drying process. Comput Methods Appl Mech Eng. 1997;148:105-24. https://doi.org/10.1016/S0045-7825(96)00078-3 | |
233. Ceballos AM, Giraldo GI, Orrego CE. Effect of freezing rate on quality parameters of freeze dried soursop fruit pulp. J Food Eng. 2012;111:360-5. https://doi.org/10.1016/j.jfoodeng.2012.02.010 | |
234. Young S, Sarda X, Rosenberg M. Microencapsulating properties of whey proteins. 1. Microencapsulation of anhydrous milk fat. J Dairy Sci. 1993;76:2868-77. https://doi.org/10.3168/jds.S0022-0302(93)77625-0 | |
235. Parthasarathi S, Anandharamakrishnan C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food Bioprod Process. 2016;100:469-76. https://doi.org/10.1016/j.fbp.2016.09.004 | |
236. Liu A, Hou A, Chai L. Assessing human and environmental health in global diets from a perspective of economic growth. Sustain Prod Consum. 2024;45:306-15. https://doi.org/10.1016/j.spc.2024.01.011 | |
237. Roberfroid MB. Concepts in functional foods: the case of inulin and oligofructose. J Nutr. 1999;129:1398S-401S. https://doi.org/10.1093/jn/129.7.1398S | |
238. Kaur S, Das M. Functional foods: An overview. Food Sci Biotechnol. 2011;20:861-75. https://doi.org/10.1007/s10068-011-0121-7 | |
239. Dutt S, Manjul AS, Chauhan M, Changan SS, Raigond P, Singh B, Chakrabarti SK. Biotechnology for nutritional and associated processing quality improvement in potato. In: Jaiwal P, Chhillar A, Chaudhary D, Jaiwal R (eds) Nutritional Quality Improvement in Plants. Springer; 2019:429-83. https://doi.org/10.1007/978-3-319-95354-0_15 | |
240. Gupta E, Mishra P. Functional food with some health benefits, so called superfood: A review. Curr Nutr Food Sci. 2021;17:144-66. https://doi.org/10.2174/22123881MTA4nMjQ8w | |
241. Shahidi F. Functional foods: Their role in health promotion and disease prevention. J Food Sci. 2004;69:R146-9. https://doi.org/10.1111/j.1365-2621.2004.tb10727.x | |
242. Kumar A, Mosa KA, Ji L, Kage U, Dhokane D, Karre S, Madalageri D, Pathania N. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit Rev Food Sci Nutr. 2018;58:1791-807. https://doi.org/10.1080/10408398.2017.1285752 | |
243. Gong X, Ji M, Xu J, Zhang C, Li M. Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China. Crit Rev Food Sci Nutr. 2020;60:2303-26. https://doi.org/10.1080/10408398.2019.1634517 | |
244. Ren L, Zhang J, Zhang T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021;340:127933. https://doi.org/10.1016/j.foodchem.2020.127933 | |
245. Kim JH, Doo E-H, Jeong M, Kim S, Lee Y-Y, Yang J, et al. Enhancing immunomodulatory function of red ginseng through fermentation using Bifidobacterium animalis subsp. lactis LT 19-2. Nutrients. 2019;11:1481. https://doi.org/10.3390/nu11071481 | |
246. Huang Q, Li L, Liu Q, Wang Z. Advances in immunoregulation effects of Ganoderma lucidum polysaccharide and/or Polyporus umbellatus polysaccharide. Food Sci. 2020;41:275-82. | |
247. Sun B, Yu S, Zhao D, Guo S, Wang X, Zhao K. Polysaccharides as vaccine adjuvants. Vaccine. 2018;36:5226-34. https://doi.org/10.1016/j.vaccine.2018.07.040 | |
248. He Y, Hu Z, Li A, Zhu Z, Yang N, Ying Z, et al. Recent advances in biotransformation of saponins. Molecules. 2019;24:2365. https://doi.org/10.3390/molecules24132365 | |
249. Rajput ZI, Hu S-h, Xiao C-w, Arijo AG. Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B. 2007;8:153-61. https://doi.org/10.1631/jzus.2007.B0153 | |
250. Liu J, Wang X, Yong H, Kan J, Jin C. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int J Biol Macromol. 2018;116:1011-25. https://doi.org/10.1016/j.ijbiomac.2018.05.149 | |
251. Jiang L-L, Gong X, Ji M-Y, Wang C-C, Wang J-H, Li M-H. Bioactive compounds from plant-based functional foods: a promising choice for the prevention and management of hyperuricemia. Foods. 2020;9:973. https://doi.org/10.3390/foods9080973 | |
252. Song D-x, Jiang J-g. Hypolipidemic components from medicine food homology species used in China: Pharmacological and health effects. Arch Med Res. 2017;48:569-81. https://doi.org/10.1016/j.arcmed.2018.01.004 | |
253. Jiang L, Zhang G, Li Y, Shi G, Li M. Potential application of plant-based functional foods in the development of immune boosters. Front Pharmacol. 2021;12:637782. https://doi.org/10.3389/fphar.2021.637782 | |
254. Aziz T, Hussain N, Hameed Z, Lin L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: Recent challenges and future recommendations. Gut Microb. 2024;16:2297864. https://doi.org/10.1080/19490976.2023.2297864 | |
255. Lazovi? M?, Jovi? MD, Petrovi? M, Dimki? IZ, Gaši? UM, Opsenica DMM, et al. Potential application of green extracts rich in phenolics for innovative functional foods: Natural deep eutectic solvents as media for isolation of biocompounds from berries. Food Funct. 2024;15:4122-39. https://doi.org/10.1039/D3FO05292C | |
256. Hieke S, Kuljanic N, Wills JM, Pravst I, Kaur A, Raats MM, et al. The role of health?related claims and health?related symbols in consumer behaviour: Design and conceptual framework of the CLYMBOL project and initial results. Nutr Bull. 2015;40:66-72. https://doi.org/10.1111/nbu.12128 | |
257. De Boer A. Fifteen years of regulating nutrition and health claims in Europe: The past, the present and the future. Nutrients. 2021;13:1725. https://doi.org/10.3390/nu13051725 | |
258. Díaz LD, Fernández-Ruiz V, Cámara M. An international regulatory review of food health-related claims in functional food products labeling. J Funct Foods. 2020;68:103896. https://doi.org/10.1016/j.jff.2020.103896 | |
259. Elaveniya E, Jayamuthunagai J. Functional, physicochemical and anti-oxidant properties of dehydrated banana blossom powder and its incorporation in biscuits. Int J Chemtech Res. 2014;6:4446-54. | |
260. Varastegani B, Zzaman W, Yang TA. Investigation on physicochemical and sensory evaluation of cookies substituted with papaya pulp flour. J Food Qual. 2015;38:175-83. https://doi.org/10.1111/jfq.12129 | |
261. Harsha H, Aarti S. Quality evaluation of herbal juice developed from traditional Indian medicinal plants using Citrus limetta as base. J Nutr Food Sci. 2015;5:1-5. https://doi.org/10.4172/2155-9600.1000396 | |
262. Rathnayake A, Nawarathna S. Utilization of Moringa oleifera leaves as a functional food ingredient in bakery industry. Int J Sci Res. 2017;6:339-44. | |
263. Goel S, Kochar G, Kaur T. Development and organoleptic evaluation of food preparations incorporated with selected antidiabetic medicinal plants. Stud Ethno-Med. 2011;5:101-6. https://doi.org/10.1080/09735070.2011.11886396 | |
264. Erukainure OL, Ebuehi OA, Adeboyejo FO, Aliyu M, Elemo GN. Hematological and biochemical changes in diabetic rats fed with fiber-enriched cake. J Acute Med. 2013;3:39-44. https://doi.org/10.1016/j.jacme.2013.03.001 | |
265. Galla NR, Pamidighantam PR, Karakala B, Gurusiddaiah MR, Akula S. Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int. J Gastron Food Sci. 2017;7:20-6. https://doi.org/10.1016/j.ijgfs.2016.12.003 | |
266. Hassan AA, Rasmy NM, Foda MI, Bahgaat WK. Production of functional biscuits for lowering blood lipids. World J Dairy Food Sci. 2012;7:1-20. | |
267. Mousa R, Mousa A. Formulation of reduced calorie and trans-free fat biscuits using palm oil and sucralose: Study of their hypoglycemic activity on albino rats. Am J Food Nutr. 2015;3:131-40. | |
268. Selim A, Ismaael OH, Abdel Bary M. Influence of incorporation of orange juice by-product on the quality properties of sponge cake and low-fat beef burger. J Food Sci Technol. 2019;4:860-87. https://doi.org/10.25177/JFST.4.7.RA.564 | |
269. Siol M, Sadowska A. Chemical composition, physicochemical and bioactive properties of avocado (Persea Americana) seed and its potential use in functional food design. Agriculture. 2023;13:316. https://doi.org/10.3390/agriculture13020316 | |
270. Fernández-López J, Lucas-González R, Viuda-Martos M, Sayas- Barberá E, Navarro C, Haros CM, et al. Chia (Salvia hispanica L.) products as ingredients for reformulating frankfurters: Effects on quality properties and shelf-life. Meat Sci. 2019;156:139-45. https://doi.org/10.1016/j.meatsci.2019.05.028 | |
271. Al-Juhaimi F, Ghafoor K, Hawashin MD, Alsawmahi ON, Babiker EE. Effects of different levels of Moringa (Moringa oleifera) seed flour on quality attributes of beef burgers. CyTA-J Food. 2016;14:1-9. https://doi.org/10.1080/19476337.2015.1034784 | |
272. Kaur G, Sharma S, Nagi H, Dar BN. Functional properties of pasta enriched with variable cereal brans. J Food Sci Technol. 2012;49:467-74. https://doi.org/10.1007/s13197-011-0294-3 | |
273. Talukder S, Sharma D. Development of dietary fiber rich chicken meat patties using wheat and oat bran. J Food Sci Technol. 2010;47:224-9. https://doi.org/10.1007/s13197-010-0027-z | |
274. Pintado T, Herrero AM, Jiménez-Colmenero F, Cavalheiro CP, Ruiz- Capillas C. Chia and oat emulsion gels as new animal fat replacers and healthy bioactive sources in fresh sausage formulation. Meat Sci. 2018;135:6-13. https://doi.org/10.1016/j.meatsci.2017.08.004 | |
275. Wandersleben T, Morales E, Burgos-Díaz C, Barahona T, Labra E, Rubilar M, et al. Enhancement of functional and nutritional properties of bread using a mix of natural ingredients from novel varieties of flaxseed and lupine. LWT. 2018;91:48-54. https://doi.org/10.1016/j.lwt.2018.01.029 | |
276. Sharima-Abdullah N, Hassan C, Arifin N, Huda-Faujan N. Physicochemical properties and consumer preference of imitation chicken nuggets produced from chickpea flour and textured vegetable protein. 2018;25:1016-25. | |
277. Al-Dalalia S, Zhenga F, Aleidc S, Abu-Ghoushd M, Samhourie M, Ammar A. Effect of dietary fibers from mango peels and date seeds on physicochemical properties and bread quality of Arabic bread. Int J Mod Res Eng Manage. 2018;1:10-24. | |
278. Aamer R. Physicohemical properties of doum (Hyphaene thebaica) fruits and utilization of its flour in formulating some functional foods. Alex J Food Sci Technol. 2015;12:29-40. https://doi.org/10.12816/0025396 | |
279. Ismail HA, Hameed AM, Refaey MM, Sayqal A, Aly AA. Rheological, physio-chemical and organoleptic characteristics of ice cream enriched with Doum syrup and pomegranate peel. Arab J Chem. 2020;13:7346-56. https://doi.org/10.1016/j.arabjc.2020.08.012 | |
280. El-Hadidy G, El-Dreny E. Effect of addition of doum fruits powder on chemical, rheological and nutritional properties of toast bread. Asian Food Sci J. 2020;16:22-31. https://doi.org/10.9734/afsj/2020/v16i230169 | |
281. Shahin F, Helal M. Evaluation of a high nutrition value gluten free pan bread prepared. Curr Sci Inter. 2021;10:324-34. | |
282. Bandyopadhyay K, Ganguly S, Chakraborty C, Roychowdhury R. A relative study on the utilisation of fenugreek seeds for enhancement of the antioxidant activities in various baked products. Int J Agric Environ Sci. 2019;6:67-70. https://doi.org/10.14445/23942568/IJAES-V6I1P111 | |
283. Zwolan A, Pietrzak D, Adamczak L, Chmiel M, Kalisz S, Wirkowska- Wojdy?a M, et al. Effects of Nigella sativa L. seed extracts on lipid oxidation and color of chicken meatballs during refrigerated storage. LWT. 2020;130:109718. https://doi.org/10.1016/j.lwt.2020.109718 | |
284. Hadi V, Kheirouri S, Alizadeh M, Khabbazi A, Hosseini H. Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Avicenna J Phytomed. 2016;6:34-43. | |
285. Senarathna S, Navaratne S, Wickramasinghe I, Coorey R. Use of fenugreek seed gum in edible film formation: major drawbacks and applicable methods to overcome. J Food Sci Technol. 2023;60:1860-9. https://doi.org/10.1007/s13197-022-05465-6 | |
286. Zaky AA, Shim J-H, Abd El-Aty A. A review on extraction, characterization, and applications of bioactive peptides from pressed black cumin seed cake. Front Nutr. 2021;8:743909. https://doi.org/10.3389/fnut.2021.743909 | |
287. Khan SS, Zaidi KU. Protective effect of Nigella sativa seed extract and its bioactive compound thymoquinone on streptozotocin-induced diabetic rats. Cardiovasc Hematol Agents Med Chem. 2024;22:51-9. https://doi.org/10.2174/1871525721666221221161742 |
Year
Month
Effect of extraction methods and temperature preservation on total anthocyanins compounds of Peristrophe bivalvis L. Merr leaf
Nguyen Minh Thuy, Dao Huynh Ngoc Han, Vo Quang Minh, Ngo Van TaiFood waste as potential bioresources for extraction of carotenoid of nutraceutical importance: Current research and future challenges
Jeet Nag Das, Suradeep Basak, Vandana Sablania, Rajeshwari Negi, Neelam Yadav,, Sarvesh Rustagi, Sangram Singh, Ashutosh Kumar Rai, Sheikh Shreaz, Ajar Nath Yadav