Mutational enhancement of Aspergillus niger Tiegh. for higher cellulase production comparable to Trichoderma species in solid-state fermentation

Harjeet Singh Komal Janiyani Ajit Gangawane   

Open Access   

Published:  Feb 11, 2025

DOI: 10.7324/JABB.2025.200551
Abstract

The present study aimed to obtain a fungal isolate and enhance its cellulolytic activity through various mutational techniques, focusing on achieving results comparable to those obtained from extensively researched isolates of Trichoderma sp. An Aspergillus niger Tiegh. strain was obtained from environmental samples collected in Vadodara, Gujarat, and its cellulolytic-enzyme production was assessed and found to be akin to Trichoderma viride and Trichoderma reesei. Utilizing rice straw in solid-state fermentation (SSF), this research evaluated optimal conditions for enzyme activity at diverse pH and temperatures for both wild-type and mutant strains modified employing NTG (Methylnitronitrosoguanidine), EMS (Ethyl Methane Sulphonate), and UV radiation treatments. NTG-induced mutations significantly enhanced enzyme yields, particularly at pH 5 and 27°C. The NTG-treated A. niger mutants exhibited remarkable increases in endoglucanase activity, achieving 30.36 Units/mL, which corresponds to an increase of 22.91 Units/mL (4.12-fold) compared to the untreated strain. Similarly, T. viride and T. reesei showed significant increases to 29.18 and 25.58 Units/mL, respectively. Also, A. niger NTG-treated mutants showed avicelase activity of 245.73 ± 14.9 Units/mLat pH 5 and 27°C, compared to untreated strains with 85.62 Units/mL, representing a 2.43-fold increase. Moreover, the addition of cellulose significantly boosted enzymatic activity, increasing endoglucanase activity in A. niger from 4.76 Units/mL to 6.29 Units/mL.The findings of this study highlight the capacity of NTG-mutagenesis to enhance the production of cellulase. This opens up encouraging prospects for optimizing the utilization of enzymes in industrial settings and promoting sustainable waste management via bioconversion technologies.


Keyword:     Cellulase Mutagenesis Solid-state fermentation Sustainable waste management


Citation:

Singh H, Janiyani K, Gangawane A. Mutational enhancement of Aspergillus niger Tiegh. for higher cellulase production comparable to Trichoderma species in solid-state fermentation. J App Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.200551

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Kumar A, Agrawal A. Recent trends in solid waste management status, challenges, and potential for the future Indian cities - A review. Curr Res Environ Sustain. 2020;2. https://doi.org/10.1016/j.crsust.2020.100011

2. Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol. 2007;98:504-10. https://doi.org/10.1016/j.biortech.2006.02.009

3. Sohail M, Siddiqi R, Ahmad A, Khan SA. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol. 2009;25:437-41. https://doi.org/10.1016/j.nbt.2009.02.002

4. Pérez J, Muñoz-Dorado J, De La Rubia T, Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overviewPérez. Int Microbiol. 2002;5:53-63. https://doi.org/10.1007/s10123-002-0062-3

5. Grover D, Chaudhry S. Ambient air quality changes after stubble burning in rice-wheat system in an agricultural state of India. Environ Sci Pollut Res. 2019;26:20550-9. https://doi.org/10.1007/s11356-019-05395-5

6. Gadde B, Bonnet S, Menke C, Garivait S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ Pollut. 2009;157:1554-8. https://doi.org/10.1016/j.envpol.2009.01.004

7. He Q, Zhao X, Lu J, Zhou G, Yang H, Gao W, et al. Impacts of biomass-burning on aerosol properties of a severe haze event over Shanghai. Particuology. 2015;20:52-60. https://doi.org/10.1016/j.partic.2014.11.004

8. Venkataraman C, Habib G, Kadamba D, Shrivastava M, Leon J.-F, Crouzille B, et al. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob Biogeochem Cycles. 2006;20. https://doi.org/10.1029/2005GB002547

9. Deswal D, Khasa YP, Kuhad RC. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol. 2011;102:6065-72. https://doi.org/10.1016/j.biortech.2011.03.032

10. Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol. 2008;99:7623-9. https://doi.org/10.1016/j.biortech.2008.02.005

11. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol. 2010;46:541-9. https://doi.org/10.1016/j.enzmictec.2010.03.010

12. Sari SLA, Setyaningsih R, Wibowo NFA. Isolation and screening of cellulolytic fungi from Salacca edulis leaf litter. Biodiversitas. 2017;18:1282-8. https://doi.org/10.13057/biodiv/d180355

13. Wen Z, Liao W, Chen S. Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem. 2005;40:3087-94. https://doi.org/10.1016/j.procbio.2005.03.044

14. Angela S, Oziniel R, Ignatious N, Thembekile N. Diversity of cellulase- and xylanase-producing filamentous fungi from termite mounds. J Yeast Fungal Res. 2019;10:15-29. https://doi.org/10.5897/JYFR2019.0189

15. Sakpetch P, H-Kittikun A, Chandumpai A. Isolation and screening of potential lignocellulolytic microorganisms from rubber bark and other agricultural residues. Walailak J Sci Technol. 2017;14:953-67.

16. Muthezhilan R, Ashok R, Jayalakshmi S. Production and optimization of thermostable alkaline xylanase by Penicillium oxalicum in solid state fermentation. J Microbiol. 2007:20-8.

17. Friedel JK, Munch JC, Fischer WR. Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation. Soil Biol Biochem. 1996;28:479-88. https://doi.org/10.1016/0038-0717(95)00188-3

18. Emmerling C, Udelhoven T, Schröder D. Response of soil microbial biomass and activity to agricultural de-intensification over a 10 year period. Soil Biol Biochem. 2001;33:2105-14. https://doi.org/10.1016/S0038-0717(01)00143-2

19. Sunitha VH, Devi DN, Srinivas C. Extracellular Enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agric Sci. 2013;9:1-9.

20. Yan C, Yan SS, Jia TY, Dong SK, Ma CM, Gong ZP. Decomposition characteristics of rice straw returned to the soil in northeast China. Nutr Cycl Agroecosyst. 2019;114:211-24. https://doi.org/10.1007/s10705-019-09999-8

21. Waksman SA. A method for counting the number of fungi in the soil. J Bacteriol. 1922;7:339-41. https://doi.org/10.1128/jb.7.3.339-341.1922

22. Dodge BO, Raper KB, Thom C. A manual of the Penicillia. Bull Torrey Bot Club. 1950;77:515. https://doi.org/10.2307/2482186

23. Petrikkou E, Rodríguez-Tudela JL, Cuenca-Estrella M, Gómez A, Molleja A, Mellado E. Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans. J Clin Microbiol. 2001;39:1345-7. https://doi.org/10.1128/JCM.39.4.1345-1347.2001

24. Jafari N, Jafarizadeh-Malmiri H, Hamzeh-Mivehroud M, Adibpour M. Optimization of UV irradiation mutation conditions for cellulase production by mutant fungal strains of Aspergillus niger through solid state fermentation. Green Process Synth. 2017;6:333-40. https://doi.org/10.1515/gps-2016-0145

25. Buragohain P, Sharma N, Pathania S. Use of wheat straw for extracellular cellulase production from Aspergillus niger F 8 isolated from compost. J Biofuels. 2016;7:37. https://doi.org/10.5958/0976-4763.2016.00006.4

26. Acharya PB, Acharya DK, Modi HA. Optimization for cellulase production by Aspergillus niger using saw dust as substrate. African J Biotechnol. 2008;7:4147-52.

27. Legodi LM, La Grange D, Van Rensburg ELJ, Ncube I. Isolation of Cellulose degrading fungi from decaying banana pseudostem and Strelitzia alba. Enzyme Res. 2019;2019. https://doi.org/10.1155/2019/1390890

28. Archer DB, Peberdy JF. The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol. 1997;17:273-306. https://doi.org/10.3109/07388559709146616

29. Juwaied AA, Abdulamier A, Al-Amiery H, Abdumuniem Z, Anaam U. Optimization of cellulase production by Aspergillus niger and Tricoderma viride using sugar cane waste. J Yeast Fungal Res. 2011;2:19-23.

30. Mrudula S, Murugammal R. Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian J Microbiol. 2011;42:1119-27. https://doi.org/10.1590/S1517-83822011000300033

31. Kumari S, Prasad D, Swayamprabha S. Production and optimisation of cellulases on pre-treated groundnut shell by Aspergillus niger. 2010;3:21-37.

32. Singh RKRRS, Singh T, Pandey A, et al. RNA Metabolism. Bioresour Technol. 2020;8:393-435.

33. Okada G. Purification and properties of a cellulase from aspergillus niger. Agric Biol Chem. 1985;49:1257-65. https://doi.org/10.1271/bbb1961.49.1257

34. Tong CC, Rajendra K. Effect of Carbon and nitrogen sources on the growth and production of cellulase enzymes of a newly isolated Aspergillus sp. Pertanika. 1992;15:45-50.

35. Gokhale DV, Deobagkar DN. Differential Expression of xylanases and endoglucanases in the hybrid derived from intergeneric protoplast fusion between a Cellulomonas sp. and Bacillus subtilis. Appl Environ Microbiol 1989;55:2675-80. https://doi.org/10.1128/aem.55.10.2675-2680.1989

36. Wood TM, Bhat KM. Methods for measuring cellulase activities. Methods Enzymol. 1988;160:87-112. https://doi.org/10.1016/0076-6879(88)60109-1

37. Grajek W, Technology P. Influence of water activity on the enzyme biosynthesis and enzyme activities produced by Trichoderma viride TS in solid-state fermentation. Enzyme Microbial Technol. 1987;9:658-62. https://doi.org/10.1016/0141-0229(87)90123-2

38. Zhang L, Fu Q, Li W, Wang B, Yin X, Liu S, et al. Identification and characterization of a novel β-glucosidase via metagenomic analysis of Bursaphelenchus xylophilus and its microbial flora. Sci Rep. 2017;7:1-11. https://doi.org/10.1038/s41598-017-14073-w

39. Adney, B and Baker J. Measurement of cellulase activities: Laboratory analytical procedure (LAP). Natl Renew Energy Lab. 1996:8.

40. Jafari N, Jafarizadeh-Malmiri H, Hamzeh-Mivehroud M, Adibpour M. Optimization of UV irradiation mutation conditions for cellulase production by mutant fungal strains of Aspergillus niger through solid state fermentation. Green Process Synth. 2017;6:333-40. https://doi.org/10.1515/gps-2016-0145

41. Foster PL. In vivo mutagenesis. Methods Enzymol. 1991;204:114-25. https://doi.org/10.1016/0076-6879(91)04007-B

42. El-Ghonemy DH, Ali TH, El-Bondkly AM, Moharam MES, Talkhan FN. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase. Antonie van Leeuwenhoek. 2014;106:853-64. https://doi.org/10.1007/s10482-014-0255-8

43. Isaac GS, Abu-Tahon MA. Enhanced alkaline cellulases production by the thermohalophilic aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate. Brazilian J Microbiol. 2015;46:1269-77. https://doi.org/10.1590/S1517-838246420140958

44. Oetari A, Susetyo-Salim T, Sjamsuridzal W, Suherman EA, Suherman M, Suherman R, et al. Occurrence of fungi on deteriorated old dluwang manuscripts from Indonesia. Int Biodeterior Biodegrad. 2016;114:94-103. https://doi.org/10.1016/j.ibiod.2016.05.025

45. Gilman JC. A Manual of Soil Fungi. Vol II. Biotech Books; 1957. https://doi.org/10.1097/00010694-195708000-00021

46. Subramanian CV. Hyphomycetes, an account of Indian Species, except Cercosporae. 1974.

47. Barnett H, Hunter B. Illustrated genera of imperfect fungi. 1972.

48. Nagamani A, Kunwar CM. Handbook of Soil Fungi. 2006.

49. Meddeb-Mouelhi F, Moisan JK, Beauregard M. A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme Microb Technol. 2014;66:16-9. https://doi.org/10.1016/j.enzmictec.2014.07.004

50. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506-77. https://doi.org/10.1128/MMBR.66.3.506-577.2002

51. Domingues FC, Queiroz JA, Cabral JMS, Fonseca LP. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme Microb Technol. 2000;26:394-401. https://doi.org/10.1016/S0141-0229(99)00166-0

52. Nathan VK, Rani ME, Rathinasamy G, Dhiraviam KN, Jayavel S. Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. Springerplus. 2014:3. https://doi.org/10.1186/2193-1801-3-92

53. Mandels M, Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol. 1957;73:269-78. https://doi.org/10.1128/jb.73.2.269-278.1957

54. Dixit M, Shukla P. Multi-efficient endoglucanase from Aspergillus niger MPS25 and its potential applications in saccharification of wheat straw and waste paper deinking. Chemosphere. 2023;313:137298. https://doi.org/10.1016/j.chemosphere.2022.137298

55. Abdullah R, Chudhary SN, Kaleem A, Iqtedar M, Nisar K, Iftikhar T, et al. Enhanced production of β-glucosidase by locally isolated fungal strain employing submerged fermentation. Biosci J. 2019;35:1552-9. https://doi.org/10.14393/BJ-v35n5a2019-47943

56. Dutta S deb, Tarafder M, Islam R, Datta B. Characterization of cellulolytic enzymes of Fusarium soil Isolates. Biocatal Agric Biotechnol. 2018;14:279-85. https://doi.org/10.1016/j.bcab.2018.03.011

57. Bomtempo FVS, Santin FMM, Pimenta RS, de Oliveira DP, Guarda EA. Production of cellulases by Penicillium oxalicum through solid state fermentation using agroindustrial substrates. Acta Sci Biol Sci. 2017;39:321-9. https://doi.org/10.4025/actascibiolsci.v39i3.32384

58. Sharma R, Kocher GS, Bhogal RS, Oberoi HS. Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY. J Basic Microbiol. 2014;54:1367-77. https://doi.org/10.1002/jobm.201400187

59. Hanif A, Yasmeen A, Rajoka MI. Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresour Technol 2004;94:311-9. https://doi.org/10.1016/j.biortech.2003.12.013

60. Diro BB, Daba T, Genemo TG. Production and characterization of cellulase from mushroom (Pleurotus ostreatus) for effective degradation of cellulose. Int J Biol Pharm Sci Arch. 2021;2:135-50. https://doi.org/10.53771/ijbpsa.2021.2.1.0066

61. Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess. 2021;8:1-34. https://doi.org/10.1186/s40643-020-00357-z

62. de Souza WR. Microbial degradation of lignocellulosic biomass. In: Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization. InTech; 2013:207. https://doi.org/10.5772/54325

63. Olsson L, Christensen TMIE, Hansen KP, Palmqvist EA. Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme Microb Technol. 2003;33:612-9. https://doi.org/10.1016/S0141-0229(03)00181-9

64. Luo Y, Valkonen M, Jackson RE, Palmer JM, Bhalla A, Nikolaev I, et al. Modification of transcriptional factor ACE3 enhances protein production in Trichoderma reesei in the absence of cellulase gene inducer. Biotechnol Biofuels. 2020;13:137. https://doi.org/10.1186/s13068-020-01778-w

65. Chandra M, Kalra A, Sangwan NS, Gaurav SS, Darokar MP, Sangwan RS. Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Bioresour Technol. 2009;100:1659-62. https://doi.org/10.1016/j.biortech.2008.09.011

66. Kumar AK. UV mutagenesis treatment for improved production of endoglucanase and β-glucosidase from newly isolated thermotolerant actinomycetes, Streptomyces griseoaurantiacus. Bioresour Bioprocess. 2015;2:1-10. https://doi.org/10.1186/s40643-015-0052-x

67. Shafique S, Bajwa R, Shafique S. Mutagenesis and genotypic characterization of Aspergillus niger FCBP-02 for improvement in cellulolytic potential. Nat Prod Commun. 2009;4:557-62. https://doi.org/10.1177/1934578X0900400423

68. Daud Q ul ain, Hamid Z, Sadiq T, et al. Enhanced production of cellulase by escherichia coli Engineered with UV-mutated cellulase gene from Aspergillus niger UVMT-I. BioResources. 2019;14:9054-63. https://doi.org/10.15376/biores.14.4.9054-9063

69. Morán-Aguilar MG, Calderón-Santoyo M, Domínguez JM, Aguilar- Uscanga MG. Optimization of cellulase and xylanase production by Aspergillus niger CECT 2700 using brewery spent grain based on Taguchi design. Biomass Convers Biorefinery. 2023;13:7983-91. https://doi.org/10.1007/s13399-021-01808-z

70. Ahmad W, Zafar M, Anwar Z. Heterologous expression and characterization of mutant cellulase from indigenous strain of Aspergillus niger. PLoS One. 2024;19:e0298716. https://doi.org/10.1371/journal.pone.0298716

71. de Souza Falcão L, Santiago do Amaral T, Bittencourt Brasil G, Melchionna Albuquerque P. Improvement of endoglucanase production by Aspergillus brasiliensis in solid-state fermentation using cupuaçu (Theobroma grandiflorum) residue as substrate. J Appl Microbiol. 2022;132:2859-69. https://doi.org/10.1111/jam.15412

72. Patel KB, Patel SS, Patel BK, Chauhan HC, Rajgor M, Kala JK. Production and optimization of endoglucanase by Aspergillus sp., Trichoderma sp. and Penicillium sp. Int J Curr Microbiol Appl Sci. 2017;6:1318-25. https://doi.org/10.20546/ijcmas.2017.604.161

73. dos Santos TC, Filho GA, De Brito AR, Pires AJV, Bonomo RCF, Franco M. Production and characterization of cellulolytic enzymes by Aspergillus niger and Rhizopus sp. By solid state fermentation of prickly pear. Rev Caatinga. 2016;29:222-33. https://doi.org/10.1590/1983-21252016v29n126rc

74. Naitam MG, Tomar GS, Kaushik R. Optimization and production of holocellulosic enzyme cocktail from fungi Aspergillus nidulans under solid-state fermentation for the production of poly(3- hydroxybutyrate). Fungal Biol Biotechnol. 2022;9. https://doi.org/10.1186/s40694-022-00147-6

75. Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int. 2011;2011:1-8. https://doi.org/10.4061/2011/810425

76. Boondaeng A, Keabpimai J, Trakunjae C, Vaithanomsat P, Srichola P, Niyomvong N. Cellulase production under solid-state fermentation by Aspergillus sp. IN5: parameter optimization and application. Heliyon. 2024;10:e26601. https://doi.org/10.1016/j.heliyon.2024.e26601

77. Barapatre S, Rastogi M, Savita, Nandal M. Isolation of fungi and optimization of ph and temperature for cellulase production. Nat Environ Pollut Technol. 2020;19:1729-35. https://doi.org/10.46488/NEPT.2020.v19i04.044

78. Selim M, Awad S, Abdel-Fattah GM. Using clover husk for avicelase production from Aspergillus flavus via solid-state fermetnation. J Agric Chem Biotechnol. 2020;11:319-26. https://doi.org/10.21608/jacb.2020.128901

Article Metrics
38 Views 12 Downloads 50 Total

Year

Month

Related Search

By author names

Similar Articles

Enhancement of pigment production potential of Serratia marcescens (GBB151) through mutation and random amplified polymorphic deoxyribonucleic acid analysis of its mutants

Cecilia Nireti Fakorede, Babamotemi Oluwasola Itakorode, Olu Odeyemi, Gbolahan Babalola

Improvement in ornamental, medicinal, and aromatic plants through induced mutation

Lalit Agrawal, Manish Kumar

Assessment of morpho-agronomic and yield attributes in gamma-irradiated mutants of Kalanamak rice (Oryza sativa L.)

Tanmai Mishra, Anjali Singh, Virendra Kumar Madhukar, Ashutosh Kumar Verma, Shambhavi Mishra, Rajveer Singh Chauhan

Biocatalysis of agro-processing waste by marine Streptomyces fungicidicus strain RPBS-A4 for cellulase production

Rajanikanth Akurathi, Damodharam Thoti

Laccase production by Myrothecium gramineum and its optimization under solid state fermentation using cowpea pod as substrate

V. Daphne Vivienne Gnanasalomi, J. Joel Gnanadoss

Solid-state fermentation of groundnut (Arachis hypogaea) shell using Trichoderma sp., tape yeast, and tempeh yeast to produce cellulase

Muhammad Yusuf Abduh, Chalil Rizqullah Ramadhan, Alfanny Putri Fadhlilah, Siti Dhiffah Nabilah Abdul, Khairul Hadi Burhan

Optimizing solid-state fermentation for metabolite enrichment by Aspergillus tamarii on rice bran and wheat

Syaefudin Suminto,, Arthur Alba Huang, Uswatun Hasanah, Waras Nurcholis,

Sustainable improvement of nutrition quality and biological activity from cassava residue and okara through solid-state fermentation by Pleurotus citrinopileatus mycelium

Hang Nguyen Thi Bich, Cuong Chi Doan, Uyen Nguyen Khanh Phan, Khanh Trang Vu Le, Thang Duc Bui, Munehiro Tanaka, Minh Van Vo