Optimization of Justicia gendarussa Burm.f. fermentation by Aspergillus oryzae based on total phenolic, total flavonoid, and antioxidant capacity responses
This study aimed to determine the optimal fermentation conditions for Justicia gendarussa leaves to produce compounds with the highest antioxidant activity. Solid-state fermentation was conducted using Aspergillus oryzae, with treatment variables including incubation time, temperature, moisture content, and inoculum concentration optimized using Design-Expert v.13.0 software. Methanol was used to extract the fermented products, which were analyzed for total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric antioxidant power (FRAP) methods. The results revealed that fermentation generally increased TPC by approximately threefold and antioxidant activity while decreasing TFC by half. Correlation analysis indicated a negative relationship between inoculum concentration and TPC. TFC increased with prolonged fermentation time but decreased at higher inoculum concentrations. Antioxidant activity, as determined by the DPPH method, increased at higher fermentation temperatures, whereas the FRAP method showed higher antioxidant capacity at lower inoculum concentrations. The optimal fermentation conditions for achieving the highest TPC, TFC, and antioxidant activity were an incubation period of 14 d at 45°C, 80% moisture content, and an inoculum concentration of 20%.
Suminto S, Setiawan CD, Nurcholis W, Hasanah U, Trivadila T. Optimization of Justicia gendarussa Burm.f. fermentation by Aspergillus oryzae based on total phenolic, total flavonoid, and antioxidant capacity responses. J App Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.235051
1. Souza LG, Almeida SM, Lemos TL, Ribeiro PR, Canuto KM, Braz-Filho R, et al. Brazoides A-D, new alkaloids from Justicia gendarussa burm. F. Species. J Braz Chem Soc 2017;28:1281-7. https://doi.org/10.21577/0103-5053.20160291 | |
2. Suminto S, Takatsuji E, Iguchi A, Kanzaki H, Okuda T, Nitoda T. A new asteltoxin analog with insecticidal activity from Pochonia suchlasporia TAMA 87. J Pest Sci 2020;45:81-5. https://doi.org/10.1584/jpestics.D19-081 | |
3. Soccol CS, Costa ES, Letti LA, Karp SG, Woiciechowski AL, Vandenberghe LP. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov 2017;1:52-71. https://doi.org/10.1016/j.biori.2017.01.002 | |
4. Yafetto L. Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon 2022;8:e09173. https://doi.org/10.1016/j.heliyon.2022.e09173 | |
5. Punia S, Sandhu KS, Grasso S, Purewal SS, Kaur M, Siroha AK, et al. Aspergillus oryzae fermented rice bran: A byproduct with enhanced bioactive compounds and antioxidant potential. Foods 2020;10:70. https://doi.org/10.3390/foods10010070 | |
6. Sulasiyah S, Sarjono PR, Aminin AL. Antioxidant from turmeric fermentation products (Curcuma longa) by Aspergillus oryzae. J Sci Appl Chem 2018;21:13-8. https://doi.org/10.14710/jksa.21.1.13-18 | |
7. Puspitasari C, Pinsirodom P, Wattanachaisaereekul S. Effect of solid-state fermentation using Aspergillus oryzae and Aspergillus niger on bitter and bioactive compounds of Moringa oleifera seed flour. LWT 2024;207:116616. https://doi.org/10.1016/j.lwt.2024.116616 | |
8. Guo N, Zhu YW, Jiang YW, Li HK, Liu ZM, Wang W, et al. Improvement of flavonoid aglycone and biological activity of mulberry leaves by solid-state fermentation. Ind Crop Prod 2020;148:112287. https://doi.org/10.1016/j.indcrop.2020.112287 | |
9. Suminto S, Huang AA, Hasanah U, Nurcholis W. Optimizing solid-state fermentation for metabolite enrichment by Aspergillus tamarii on rice bran and wheat. J Appl Biol Biotechnol 2024;12:195-202. https://doi.org/10.7324/JABB.2024.179836 | |
10. Gao YL, Wang CS, Zhu QH, Qian GY. Optimization of solid-state fermentation with Lactobacillus brevis and Aspergillus oryzae for trypsin inhibitor degradation in soybean meal. J Integr Agric 2013;12:869-76. https://doi.org/10.1016/S2095-3119(13)60305-6 | |
11. Rashid NY, Jamaluddin A, Ghani AA, Razak DL, Jonit J, Mansor A, et al. Quantification of phenolic compounds changes by Aspergillus oryzae on rice bran fermentation. Food Res 2019;3:133-7. https://doi.org/10.26656/fr.2017.3(2).122 | |
12. Villasante J, Espinosa-Ramírez J, Pérez-Carrillo E, Heredia-Olea E, Almajano M. Extrusion and solid-state fermentation with Aspergillus oryzae on the phenolic compounds and radical scavenging activity of pecan nut (Carya illinoinensis) shell. Br Food J 2021;123:4367-82. https://doi.org/10.1108/BFJ-10-2020-0978 | |
13. Meyrath J. Influence of the size of inoculum on various growth phases in Aspergillus oryzae. Antonie Van Leeuwenhoek 1963;29:57-78. https://doi.org/10.1007/BF02046039 | |
14. Batubara I, Komariah K, Sandrawati A, Nurcholis W. Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. Leaves using chemometric analysis. Sci Rep 2020;10:20945. https://doi.org/10.1038/s41598-020-77991-2 | |
15. Turker I, Isleroglu H. Optimization of extraction conditions of bioactive compounds by ultrasonic-assisted extraction from artichoke wastes. Acta Chim Slov 2021;68:658-66. https://doi.org/10.17344/acsi.2021.6679 | |
16. Legesse AB, Emire SA, Tadesse MG, Dadi DW, Kassa SK, Oyinloye TM, et al. Optimization of ultrasound-assisted extraction of Verbascum sinaiticum leaves: Maximal phenolic yield and antioxidant capacity. Foods 2024;13:1255. https://doi.org/10.3390/foods13081255 | |
17. Rafi M, Pertiwi TY, Syaefudin S. Determination of total phenolic content and antioxidant activity of six ornamental plants. J Sci App Chem 2019;22:79-84. https://doi.org/10.14710/jksa.22.3.79-84 | |
18. Pérez M, Dominguez-López I, Lamuela-Raventós RM. The chemistry behind the Folin-Ciocalteu method for the estimation of (poly) phenol content in food: Total phenolic intake in a Mediterranean dietary pattern. J Agric Food Chem 2023;71:17543-53. https://doi.org/10.1021/acs.jafc.3c04022 | |
19. Cao C, Lin D, Zhou Y, Li N, Wang Y, Gong W, et al. Solid-state fermentation of Apocynum venetum L. By Aspergillus niger: Effect on phenolic compounds, antioxidant activities and metabolic syndrome-associated enzymes. Front Nut 2023;10:1125746. https://doi.org/10.3389/fnut.2023.1125746 | |
20. Akbari M, Gómez-Urios C, Razavi SH, Khodaiyan F, Blesa J, Esteve MJ. Optimization of solid-state fermentation conditions to improve phenolic content in corn bran, followed by extraction of bioactive compounds using natural deep eutectic solvents. Innov Food Sci Emerg Technol 2024;93:103621. https://doi.org/10.1016/j.ifset.2024.103621 | |
21. Ozdemir MB, K?l?çarslan E, Demir H, Koca E, Salum P, Berkta? S, et al. Upgrading the bioactive potential of hazelnut oil cake by Aspergillus oryzae under solid-state fermentation. Molecules 2024;29:4237. https://doi.org/10.3390/molecules29174237 | |
22. Kim MJ, John KM, Choi JN, Lee S, Kim AJ, Kim YM et al. Changes in secondary metabolites of green tea during fermentation by Aspergillus oryzae and its effect on antioxidant potential. Food Res Int 2013;53:670-7. https://doi.org/10.1016/j.foodres.2012.12.053 | |
23. Rafiquzzaman SM, Kong IS, Kim JM. Enhancement of antioxidant activity, total phenolic and flavonoid content of Saccharina japonica by submerged fermentation with Aspergillus oryzae. KSBB J 2015;30:27-32. https://doi.org/10.7841/ksbbj.2015.30.1.27 | |
24. Rumpf J, Burger R, Schulze M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int J Biol Macromol 2023;233:123470. https://doi.org/10.1016/j.ijbiomac.2023.123470 | |
25. Apak R, Özyürek M, Güçlü K, Çapano?lu E. Antioxidant activity/ capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 2016;64:997-1027. https://doi.org/10.1021/acs.jafc.5b04739 | |
26. Nwachukwu ID, Sarteshnizi RA, Udenigwe CC, Aluko RE. A concise review of current in vitro chemical and cell-based antioxidant assay methods. Molecules 2021;26:4865. https://doi.org/10.3390/molecules26164865 | |
27. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci 2021;22:3380. https://doi.org/10.3390/ijms22073380 | |
28. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants (Basel) 2019;8:96. https://doi.org/10.3390/plants8040096 | |
29. Muflihah YM, Gollavelli G, Ling YC. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants (Basel) 2021;10:1530. https://doi.org/10.3390/antiox10101530 | |
30. Milella RA, De Rosso M, Gasparro M, Gigante I, Debiase G, Forleo LR, et al. Correlation between antioxidant and anticancer activity and phenolic profile of new Apulian table grape genotypes (V. vinifera L.). Front Plant Sci 2023;13:1064023. https://doi.org/10.3389/fpls.2022.1064023 | |
31. Kumar S, Sandhir R, Ojha S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res Notes 2014;7:560. https://doi.org/10.1186/1756-0500-7-560 | |
32. Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep 2020;10:2611. https://doi.org/10.1038/s41598-020-59451-z | |
33. Derawi D. Experimental design using response surface methods for palm olein-based hydroxy-ether synthesis. Sains Malays 2016;45:1149-54. | |
34. Tchabo W, Ma Y, Kwaw E, Zhang H, Li X. Influence of fermentation parameters on phytochemical profile and volatile properties of mulberry (Morus nigra) wine. JIB 2017;123:151-8. https://doi.org/10.1002/jib.401 | |
35. Gomi K. Aspergillus: Aspergillus oryzae. In: Batt CA, Tortorello ML, editors. Encyclopedia of Food Microbiology. New York: Academic Press; 2014. p. 92-6. https://doi.org/10.1016/B978-0-12-384730-0.00011-2 | |
36. Jia Y, Guo S, Hu W, Zhang Q, Wang Y, Zhang Z, et al. Effects of different fermentation temperatures on microbiomes of cigar tobacco leaves. Front Bioeng Biotechnol 2025;13:1550383. https://doi.org/10.3389/fbioe.2025.1550383 | |
37. Jiang C, Ge J, He B, Zhang Z, Hu Z, Li Y, et al. Transcriptomic analysis reveals Aspergillus oryzae responds to temperature stress by regulating sugar metabolism and lipid metabolism. PLoS One 2022;17:e0274394. https://doi.org/10.1371/journal.pone.0274394 | |
38. Castro RJ, Sato HH. Protease from Aspergillus oryzae: Biochemical characterization and application as a potential biocatalyst for production of protein hydrolysates with antioxidant activities. J Food Process 2014;2014:372352. https://doi.org/10.1155/2014/372352 | |
39. Yang L, Shakeel Q, Xu X, Ali L, Chen Z, Mubeen M, et al. Optimized submerged batch fermentation for metabolic switching in Streptomyces yanglinensis 3-10 providing platform for reveromycin A and B biosynthesis, engineering, and production. Front Microbiol 2024;15:1378834. https://doi.org/10.3389/fmicb.2024.1378834 | |
40. Jenzsch M, Gnoth S, Kleinschmidt M, Simutis R, Lübbert A. Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile. Bioprocess Biosyst Eng 2006;29:315-21. https://doi.org/10.1007/s00449-006-0080-1 | |
41. Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem (Oxf) 2021;3:100047. https://doi.org/10.1016/j.fochms.2021.100047 |
Year
Month