The comparative anti-obesity potential of Lagerstroemia speciosa (L.) leaf extracts and their synthesized gold nanoparticles by downregulation of PPAR-γ, C/EBP-α, and FABP4/aP2 gene expression
The rising worldwide obesity rate is associated with various metabolic disorders such as hypertension, stroke, type 2 diabetes, cancer, and exacerbation of health challenges throughout the world. Lagerstroemia speciosa offers multiple health benefits, including anticancer, cardiovascular, nephroprotective, hypertension, insulin sensitivity, anti-diabetic, and inflammation-related conditions. The present study explored the comparative anti-adipogenic effects of different extracts and spherical gold nanoparticles (Au-NPs) synthesized with fresh L. speciosa leaf (LS-Au-NPs) using 3T3-L1 mature adipocytes. Cell viability was assessed using an MTT assay, and reactive oxygen species (ROS) production was evaluated using the 2′,7′-dichlorodihydrofluorescein diacetate method. The gene expression pattern of key adipogenic genes, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, and ap2 was quantified using reverse transcription polymerase chain reaction. Results demonstrated that leaf extracts and Au-NPs were non-toxic to 3T3-L1 cells up to a specific concentration and significantly reduced ROS generation, lipid accumulation, and triglyceride content in induced obese cells. Aqueous, supercritical fluid extraction (SFE) extract, and AuNPs exhibited the most potent effects, while the methanol extract showed moderate effects, and the n-hexane extract had negligible effects on gene expression regulation. Altogether, these results showed that all effective treatments significantly downregulated the transcriptional adipogenic genes, reflecting their potent anti-obesity potential. SFE exhibited more pronounced effects due to the non-toxicity of the solvent. Thus, the plant leaf is a rich source of phenolic and flavonoid compounds that coat the surface of Au-NPs and help to reduce excess lipid and triglyceride content in the cells.
Nain T, Bishnoi M, Kaur N, Tiwari SK, Yadav JP. The comparative anti-obesity potential of Lagerstroemia speciosa (L.) leaf extracts and their synthesized gold nanoparticles by downregulation of PPAR-γ, C/EBP-α, and FABP4/aP2 gene expression. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2025.258124
1. Xu L, Yang C, Pang K, Zhang Y, He Y, Liu S, et al. Adipocyte Septin-7 attenuates obesogenic adipogenesis and promotes lipolysis to prevent obesity. Mol Metab. 2025;95:102114. https://doi.org/10.1016/j.molmet.2025.102114
2. Blüher M. Obesity: Global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288-98. https://doi.org/10.1038/s41574-019-0176-8
3. Kobi JB, Matias AM, Gasparini PV, Torezani-Sales S, Madureira AR, da Silva DS, et al. High-fat, high-sucrose, and combined high-fat/ high-sucrose diets effects in oxidative stress and inflammation in male rats under presence or absence of obesity. Physiol Rep. 2023;11(7):e15635.https://doi.org/10.14814/phy2.15635
4. Mohamed MM, Kamel EA, Ahmed KA, Rashed LA, Ismail SH. The potential efficacy of Artemisia anuua L. extract nanoparticles in mitigating obesity-related-metabolic complications in hypercaloric diet-fed rats. Egypt J Basic Appl Sci. 2024;11(1):183-212. https://doi.org/10.1080/2314808X.2024.2331903
5. Geng X, Tian W, Zhuang M, Shang H, Gong Z, Li J. Green radish polysaccharides ameliorate hyperlipidemia in high-fat-diet-induced mice via short-chain fatty acids production and gut microbiota regulation. Foods. 2024;13(24):4113. https://doi.org/10.3390/foods13244113
6. Kazemi N, Ramazani E, Tayarani-Najaran Z. In vitro effects of phytochemicals on adipogenesis with a focus on molecular mechanisms: A systematic review. Iran J Basic Med Sci. 2025;28(4):409-25.
7. Chandrasekaran A, Jeon Y, Kim SY, Seo DH, Yuk HJ, Son E, et al. Therapeutic potential of suaeda Japonica makino leaf extract against obesity in 3T3-L1 preadipocytes and HFD-induced C57BL/6 J mice. Appl Biochem Biotechnol. 2025;197:2555-78. https://doi.org/10.1007/s12010-024-05170-4
8. Christoffersen BØ, Sanchez-Delgado G, John LM, Ryan DH, Raun K, Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity (Silver Spring). 2022;30(4):841-57. https://doi.org/10.1002/oby.23374
9. Tak YJ, Lee SY. Anti-obesity drugs: Long-term efficacy and safety: An updated review. World J Mens Health 2020;39(2):208-21. https://doi.org/10.5534/wjmh.200010
10. Nagre K, Singh N, Ghoshal C, Tandon G, Iquebal MA, Nain T, et al. Probing the potential of bioactive compounds of millets as an inhibitor for lifestyle diseases: Molecular docking and simulation-based approach. Front Nutr. 2023;10:1228172. https://doi.org/10.3389/fnut.2023.1228172
11. Yue Z, Xu Y, Cai M, Fan X, Pan H, Zhang D, et al. Floral elegance meets medicinal marvels: Traditional uses, phytochemistry, and pharmacology of the genus Lagerstroemia L. Plants (Basel). 2024;13(21):3016. https://doi.org/10.3390/plants13213016
12. Al-Snafi AE. Medicinal value of Lagerstroemia speciosa: An updated review. Int J Curr Pharm Res. 2019;11(5):18-26. https://doi.org/10.22159/ijcpr.2019v11i5.35708
13. Yin H, Yang X, Liu S, Zeng J, Chen S, Zhang S, et al. Total flavonoids from Lagerstroemia speciosa (L.) Pers inhibits TNF- α-induced insulin resistance and inflammatory response in 3T3-L1 adipocytes via MAPK and NF-?B signaling pathways. Food Sci Technol. 2022;42:e45222. https://doi.org/10.1590/fst.45222
14. Unno T, Sugimoto A, Kakuda T. Xanthine oxidase inhibitors from the leaves of Lagerstroemia speciosa (L.) Pers. J Ethnopharmacol. 2004;93(2-3):391-5. https://doi.org/10.1016/j.jep.2004.04.012
15. Gupta A, Agrawal VK, Rao CV. Exploration of analgesic and antiinflammatory potential of Lagerstroemia speciosa. J Appl Pharm Sci. 2017;7(2):156-61.
16. Chowdhury MA, Islam MR, Muktadir MA. Thrombolytic activity of Lagerstroemia speciosa Leaves. Discov Phytomed. 2017;4(4):41-5. https://doi.org/10.15562/phytomedicine.2017.48
17. Sahu BD, Kuncha M, Rachamalla SS, Sistla R. Lagerstroemia speciosa L. attenuates apoptosis in isoproterenol-induced cardiotoxic mice by inhibiting oxidative stress: Possible role of Nrf2/HO-1. Cardiovasc Toxicol. 2015;15:10-22. https://doi.org/10.1007/s12012-014-9263-1
18. Goyal S, Sharma M, Sharma R. Bioactive compound from Lagerstroemia speciosa: Activating apoptotic machinery in pancreatic cancer cells. 3 Biotech. 2022;12(4):96.https://doi.org/10.1007/s13205-022-03155-w
19. Tandrasasmita OM, Berlian G, Tjandrawinata RR. Molecular mechanism of DLBS3733, a bioactive fraction of Lagerstroemia speciosa (L.) Pers., on ameliorating hepatic lipid accumulation in HepG2 cells. Biomed Pharmacother. 2021;141:111937. https://doi.org/10.1016/j.biopha.2021.111937
20. Chaudhary G, Mahajan UB, Goyal SN, Ojha S, Patil CR, Subramanya SB. Protective effect of Lagerstroemia speciosa against dextran sulfate sodium induced ulcerative colitis in C57BL/6 mice. Am J Transl Res. 2017;9(4):1792-800.
21. Amith T, Sujatha P. Anticalciuria effect of methanolic root extract of Lagerstroemia speciosa (L). pers (Lythraceae) against high protein diet ingested in albino rats. J Adv Sci Res. 2023;14(10):30-5.https://doi.org/10.55218/JASR.2023141006
22. Pareek A, Suthar M, Rathore GS, Bansal V, Kumawat T. In vitro antioxidant studies of Lagerstroemia speciosa leaves. Pharmacogn J. 2010;2(10):357-60. https://doi.org/10.1016/S0975-3575(10)80109-9
23. Ganesan G, Sujatha P. Anti-obesity effects of Lagerstroemia speciosa ethanolic green and red leaf extracts against caprylic acid and a high fat diet in the albino rat. Res J Agric Sci. 2024;15(4):957-62.
24. Hestiantoro A, Wiryawan P, Tjandrawinata RR, Wiweko B, Ritonga MA, Ferrina AI, et al. The efficacy and safety of DLBS3233, a combined bioactive fraction of Cinnamomum burmanii and Lagerstroemia speciosa plants on the endocrine-metabolic profile of women with polycystic ovary syndrome: A randomized clinical trial. Int J Fertil Steril. 2024;18(1):35-47.
25. Shashiraj KN, Hugar A, Kumar RS, Rudrappa M, Bhat MP, Almansour AI, et al. Exploring the antimicrobial, anticancer, and apoptosis inducing ability of biofabricated silver nanoparticles using Lagerstroemia speciosa flower buds against the Human Osteosarcoma (MG-63) cell line via flow cytometry. Bioengineering (Basel). 2023;10(7):821. https://doi.org/10.3390/bioengineering10070821
26. Singla R, Soni S, Kulurkar PM, Kumari A, Mahesh S, Patial V, et al. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym. 2017;155:152-62. https://doi.org/10.1016/j.carbpol.2016.08.065
27. Pathan A, Nayak T, Alshahrani S, Tripathi R, Tripathi P. Current and emerging frontiers in biologically synthesized gold nanoparticles: An in-depth review. Chem Pap. 2025;79:3421-42. https://doi.org/10.1007/s11696-025-03952-6
28. Sekhon-Loodu S, Rupasinghe HV. Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Front Nutr. 2019;6:53. https://doi.org/10.3389/fnut.2019.00053
29. Kaushik S, Kaushik S, Dar L, Yadav JP. Eugenol isolated from supercritical fluid extract of Ocimum sanctum: A potent inhibitor of DENV-2. AMB Express. 2023;13(1):105. https://doi.org/10.1186/s13568-023-01607-x
30. Namdev N. Forensic screening of medicinal plants for qualitative phytochemical analysis using various solvent extracts. J Emerg Innov. 2024;1(1):54-8.
31. Wehbe N, Mesmar JE, El Kurdi R, Al-Sawalmih A, Badran A, Patra D, et al. Halodule uninervis extract facilitates the green synthesis of gold nanoparticles with anticancer activity. Sci Rep. 2025;15(1):4286. https://doi.org/10.1038/s41598-024-81875-0
32. Hajighasemi N. Investigating the Stability of Different Sizes of Gold Nanoparticles in Physiological Environments and different Gold Nanoclusters in Water. Canada: The University of Western Ontario; 2024. p. 1-24.
33. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif Cells Nanomed Biotechnol. 2016;44(4):1150-7.
34. Shah S, Shah SA, Faisal S, Khan A, Ullah R, Ali N, et al. Engineering novel gold nanoparticles using Sageretia thea leaf extract and evaluation of their biological activities. J Nanostruct Chem. 2022;12(1):129-40.https://doi.org/10.1007/s40097-021-00407-8
35. Ahn S, Singh P, Jang M, Kim YJ, Castro-Aceituno V, Simu SY, et al. Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264. 7 macrophages via NF-κB and AP-1 pathways. Colloids Surf B Biointerfaces. 2018;162:398-404. https://doi.org/10.1016/j.colsurfb.2017.11.037
36. Yi MH, Simu SY, Ahn S, Aceituno VC, Wang C, Mathiyalagan R, et al. Anti-obesity effect of gold nanoparticles from Dendropanax morbifera Léveille by suppression of triglyceride synthesis and downregulation of PPARγ and CEBPα signaling pathways in 3T3-L1 mature adipocytes and HepG2 cells. Curr Nanosci. 2020;16(2):196-203. https://doi.org/10.2174/1573413716666200116124822
37. Rohmawaty E, Wiraswati HL, Zahra TA, Amalina SN, Ramadhanti J, Rosdianto AM, et al. Antioxidant and anti-inflammatory potential of Cymbopogon nardus ethanol extract on 3T3-L1 cells. J Inflamm Res. 2025;18:2125-36. https://doi.org/10.2147/JIR.S506189
38. Yu SY, Choi Y, Kwon YI, Lee OH, Kim YC. Mechanism of formononetin-induced stimulation of adipocyte fatty acid oxidation and preadipocyte differentiation. J Food Nutr Res. 2021;9(3):163-9. https://doi.org/10.12691/jfnr-9-3-9
39. Kim D, Lee C, Kim M, Park JH. Gold kiwi-derived nanovesicles mitigate ultraviolet-induced photoaging and enhance osteogenic differentiation in bone marrow mesenchymal stem cells. Antioxidants (Basel). 2024;13(12):1474. https://doi.org/10.3390/antiox13121474
40. Mohanty S, Pattnaik A. Evaluation of anti-obesity potential of isolated bioactive fractions from Justicia Adhatoda leaves: An in vitro, in vivo, and 3T3-L1 cell line approach using high-performance thin layer chromatography coupled with mass spectrometry for compound identification. Chem Biodivers. 2025;22(5):e202401532. https://doi.org/10.1002/cbdv.202401532
41. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. United Kingdom: Oxford University Press; 2009. https://doi.org/10.1373/clinchem.2008.112797
42. Nandi Jui B, Sarsenbayeva A, Jernow H, Hetty S, Pereira MJ. Evaluation of RNA isolation methods in human adipose tissue. Lab Med. 2022;53(5):e129-33. https://doi.org/10.1093/labmed/lmab126
43. Jiao Y, Wang X, Chen JH. Biofabrication of AuNPs using Coriandrum sativum leaf extract and their antioxidant, analgesic activity. Sci Total Environ. 2021;767:144914. https://doi.org/10.1016/j.scitotenv.2020.144914
44. Dolai J, Mandal K, Jana NR. Nanoparticle size effects in biomedical applications. ACS Appl Nano Mater. 2021;4(7):6471-96. https://doi.org/10.1021/acsanm.1c00987
45. Li J, Zhang Y, Gao H, Wang D, Xue J, Chen X, et al. Characteristics study on the cofluidized thermal conversion of vacuum residue and rice husk pyrolysis oil. Fuel. 2024;365:131221. https://doi.org/10.1016/j.fuel.2024.131221
46. Alam MS, Lee DU. Molecular structure, spectral (FT-IR, FT-Raman, Uv-Vis, and fluorescent) properties and quantum chemical analyses of azomethine derivative of 4-aminoantipyrine. J Mol Struct. 2021;1227:129512. https://doi.org/10.1016/j.molstruc.2020.129512
47. Abdelhadi AB, Rodríguez-Sánchez S, Ouarsal R, Saadi M, El Ammari L, Morley N, et al. Synthesis, characterization, and magnetic and antibacterial properties of a novel iron (iii) complex (CH 3) 2 NH 2 [Fe (phen) Cl 4]. Mater Adv. 2024;5(7):3058-66. https://doi.org/10.1039/D3MA00971H
48. Tsague FL, Chimeni DY, Assonfack HL, Abo MT, Cheumani AM, Ndinteh DT, et al. Study of oxidation of cellulose by Fenton-type reactions using alkali metal salts as swelling agents. Cellulose. 2024;31(11):6643-61. https://doi.org/10.1007/s10570-024-05970-1
49. Abbas HS, Ismaeil TA, Ahmed EA, Abou Baker DH. Iron oxide nanoparticles of Cystoseira sp. Sugar alcohol treat MRSA and thyroid gland cancer. J King Saud Univ Sci. 2024;36(8):103338. https://doi.org/10.1016/j.jksus.2024.103338
50. Jurkiewicz K, Pawlyta M, Burian A. Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. C-J Carbon Res. 2018;4(4):68. https://doi.org/10.3390/c4040068
51. Akter R, Ling L, Rupa EJ, KyuPark J, Mathiyalagan R, Nahar J, et al. Binary effects of gynostemma gold nanoparticles on obesity and inflammation via downregulation of PPARγ/CEPBα and TNF-α gene expression. Molecules. 2022;27(9):2795. https://doi.org/10.3390/molecules27092795
52. Lee E, Nam JO. Anti-obesity and anti-diabetic effects of Ostericum koreanum (Ganghwal) extract. Int J Mol Sci. 2024;25(9):4908. https://doi.org/10.3390/ijms25094908
53. Neill S, Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1-12. https://doi.org/10.1111/obr.12229
54. Schetz M, De Jong A, Deane AM, Druml W, Hemelaar P, Pelosi P, et al. Obesity in the critically ill: A narrative review. Intensive Care Med. 2019;45(6):757-69. https://doi.org/10.1007/s00134-019-05594-1
55. Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019;92:82-97. https://doi.org/10.1016/j.metabol.2018.11.014
56. Daneschvar HL, Aronson MD, Smetana GW. FDA-approved anti-obesity drugs in the United States. Am J Med. 2016;129(8):879.e1-6. https://doi.org/10.1016/j.amjmed.2016.02.009
57. Velazquez A, Apovian CM. Updates on obesity pharmacotherapy. Ann N Y Acad Sci. 2018;1411(1):106-19. https://doi.org/10.1111/nyas.13542
58. Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules. 2022;27(2):349. https://doi.org/10.3390/molecules27020349
59. Fu C, Jiang Y, Guo J, Su Z. Natural products with anti-obesity effects and different mechanisms of action. J Agric Food Chem. 2016;64(51):9571-85. https://doi.org/10.1021/acs.jafc.6b04468
60. Tripathi SK, Behera S, Panda M, Zengin G, Biswal BK. A comprehensive review on pharmacology and toxicology of bioactive compounds of Lagerstroemia Speciosa (L.) Pers. Curr Tradit Med. 2021;7(4):504-13. https://doi.org/10.2174/2215083806999201211213931
61. Cheng Y, Zhang K, Liu J, Liu G. Is orbital adipose tissue obesity-privileged? The relationship between small adipocyte size and metabolically healthy state from the view of orbital fat. J Endocrinol Invest. 2025;48:1-14. https://doi.org/10.1007/s40618-025-02568-7
62. Simu SY, Ahn S, Castro-Aceituno V, Singh P, Mathiyalagan R, Jiménez-Pérez ZE, et al. Gold nanoparticles synthesized with fresh Panax ginseng leaf extract suppress adipogenesis by downregulating PPARγ/CEBPα signaling in 3T3-L1 mature adipocytes. J Nanosci Nanotechnol. 2019;19(2):701-8. https://doi.org/10.1166/jnn.2019.15753
63. Morshed MN, Awais M, Akter R, Park J, Ling L, Kong BM, et al. Exploring the therapeutic potential of Terminalia ferdinandiana (Kakadu Plum) in targeting obesity-induced Type 2 diabetes and chronic inflammation: An in silico and experimental study. S Afr J Bot. 2024;171:32-44. https://doi.org/10.1016/j.sajb.2024.05.056
64. Lee MS, Cho SM, Lee MH, Lee EO, Kim SH, Lee HJ. Ethanol extract of Pinus koraiensis leaves containing lambertianic acid exerts anti-obesity and hypolipidemic effects by activating adenosine monophosphate-activated protein kinase (AMPK). BMC Complement Altern Med. 2016;16:51. https://doi.org/10.1186/s12906-016-1031-2
65. Karsono AH, Tandrasasmita OM, Tjandrawinata RR. Bioactive fraction from Lagerstroemia speciosa leaves (DLBS3733) reduces fat droplet by inhibiting adipogenesis and lipogenesis. J Exp Pharmacol. 2019;11:39-51. https://doi.org/10.2147/JEP.S181642
66. Lee W, Song G, Bae H. Suppressive effect of fraxetin on adipogenesis and reactive oxygen species production in 3T3-L1 cells by regulating MAPK signaling pathways. Antioxidants (Basel). 2022;11(10):1893. https://doi.org/10.3390/antiox11101893
67. Ree J, Kim JI, Lee CW, Lee J, Kim HJ, Kim SC, et al. Quinizarin suppresses the differentiation of adipocytes and lipogenesis in vitro and in vivo via downregulation of C/EBP-beta/SREBP pathway. Life Sci. 2021;287:120131. https://doi.org/10.1016/j.lfs.2021.120131
68. Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional regulation of adipogenesis. Compr Physiol. 2017;7(2):635-74. https://doi.org/10.1002/j.2040-4603.2017.tb00753.x
69. Sharma VK, Gupta SC, Singh BN, Rao CV, Barik SK. Cinnamomum verum derived bioactives-functionalized gold nanoparticles for prevention of obesity through gut microbiota reshaping. Mater Today Bio. 2022;13:100204. https://doi.org/10.1016/j.mtbio.2022.100204
Year
Month
Mangrove algae as sustainable microbial cell factory for cellulosic biomass degradation and lipid production
Shrestha Debnath, Dipankar GhoshTherapeutic potential of harmaline, a novel alkaloid, against cervical cancer cells in vitro: Apoptotic induction and DNA interaction study
Paromita Bhattacharjee, Sarita Sarkar, Tapas Ghosh, Kakali BhadraStudy of impact of Wolbachia surface protein on reactive oxygen species production in HepG2 cell line exposed to ethanol
V. P. Kishore, H. P. PuttarajuInsights into the impact of spermidine in reducing salinity stress in Gerbera jamesonii
Javeria Uzma, Sai Krishna Talla, Praveen MamidalaAssessment of oxidative stress, genotoxicity, and histopathological alterations in freshwater food fish Channa punctatus exposed to fungicide, Mancozeb
Manoj Kumar, Anjali Mishra, Akash Verma, Anamika Jain, Adeel Ahmad Khan, Shikha Dwivedi, Sunil P. TrivediNanotoxicity: Generation of reactive oxygen species in plants
Mohammad Faizan, Pravej Alam, Vishnu D. Rajput, Ajar Nath Yadav, Shadma Afzal, Sadia Haque Tonny, Ahmad Faraz, Anjuman Hussain, S. Maqbool Ahmad, Tatiana Minkina, Shamsul HayatImpact of nanoparticles on microalgae and the prospects for biofuel production: Current advancements and future outlook
Richa Pahariya, Abhishek Chauhan, Anuj Ranjan,, S. K. Thakur¸ Hardeep Singh Tuli, Seema Ramniwas, Moyad Shahwan,, Tanu JindalGreen synthetic photo-irradiated chitin-silver nanoparticles for antimicrobial applications
Navya Kumari Tenkayala,, Laxman Vamshi Krishna Kandala, Roopkumar Sangubotla, Rambabu Gundla, Subramani Devaraju