Phasin proteins expressed by Rhodopseudomonas palustris for bioplastic production
Polyhydroxyalkanoates (PHAs) are bioplastics produced by microbes that could replace conventional plastics. Phasins are a group of small proteins found in all PHA-producing organisms that have diverse functions for PHA metabolism including (i) activating PHA synthases and depolymerases, (ii) fostering compositional changes in PHA granules, and (iii) chaperone-like activities for cell fitness. Rhodopseudomonas palustris is a metabolically robust microbe that produces from lignin but its phasins have not been experimentally explored yet. Thus, the aim of this study is to employ combined transcriptomics and proteomics analyses to identify and characterize four predicted phasins in R. palustris’ genome (RPA3770, RPA0089, RPA4137, and RPA4138). The gene expressions of the four bioinformatically-predicted phasins were significantly higher under PHA-producing conditions compared to non- PHA production. The only phasin gene to have a significantly higher fold change under mid-exponential growth was RPA3770, suggesting it may have a role in preventing PHA accumulation or perhaps a role in initiating PHA production. All four phasins proteins were detected under PHA-producing conditions by mass spectrometry. Based on the multi-omics analysis in this study, it is likely that RPA0089 and RPA3770 code for the dominant phasins employed by R. palustris. Ultimately, this study employs a targeted multi-omics approach to trailblaze the initial identification and characterization of phasin proteins that R. palustris uses for bioplastic production from lignin breakdown products. Future studies can build on this work to further progress R. palustris as an industrial powerhouse for sustainable production of bioplastics or perhaps use this information to “turn off” bioplastic production and funnel more energy toward other valuable bioproducts like biohydrogen.
Brown BJ, Pechanova O, Pechan T. Phasin proteins expressed by Rhodopseudomonas palustris for bioplastic production. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2025.257983
1. Houssini K, Li J, Tan Q. Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis. Commun Earth Environ. 2025;6:257. https://doi.org/10.1038/s43247-025- 02169-5
2. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782. https://doi.org/10.1126/sciadv.1700782
3. Pilapitiya PG, Ratnayake AS. The world of plastic waste: A review. Clean Mater. 2024;11:100220.https://doi.org/10.1016/j.clema.2024.100220
4. Liang Z, Sethupathy S, Wenqian D, Jinhao H, Zhu D, Lignin valorization through microbial production of polyhydroxyalkanoates: Recent trends, challenges and opportunities. Green Chem. 2025;27(21):5920-46. https://doi.org/10.1039/D5GC00370A
5. Hadri SH, Tareen N, Hassan A, Naseer M, Ali K, Javed H. Alternatives to conventional plastics: Polyhydroxyalkanoates (PHA) from microbial sources and recent approaches - a review. Process Saf Environ Prot. 2025;195:106809. https://doi.org/10.1016/j.psep.2025.106809
6. Kourmentza C, Placido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering (Basel). 2017;4:55. https://doi.org/10.3390/bioengineering4020055
7. Wang C, Liu RY, Xu T, Liu ZH, Li BZ, Yuan YJ. Valorizing lignin and coprecursors into homogeneous polyhydroxyalkanoates by engineered Pseudomonas putida. ACS Sustain Chem Eng. 2024;12:8402-14. https://doi.org/10.1021/acssuschemeng.4c01184
8. Gundlapalli M, Ganesan S. Polyhydroxyalkanoates (PHAs): Key Challenges in production and sustainable strategies for cost reduction within a circular economy framework. Results Eng. 2025;26:105345. https://doi.org/10.1016/j.rineng.2025.105345
9. Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol. 2019;271:462-72. https://doi.org/10.1016/j.biortech.2018.09.070
10. Kathol M, Chowdhury NB, Immethun C, Alsiyabi A, Morris D, Naldrett MJ, et al. High enzyme promiscuity in lignin degradation mechanisms in Rhodopseudomonas palustris CGA009. Appl Environ Microbiol. 2025;91:e0057325. https://doi.org/10.1128/aem.00573-25
11. Brown B, Immethun C, Wilkins M, Saha R. Rhodopseudomonas palustris CGA009 polyhydroxybutyrate production from a lignin aromatic and quantification via flow cytometry. Bioresour Technol Rep. 2020;11:100474. https://doi.org/10.1016/j.biteb.2020.100474
12. Brown B, Wilkins M, Saha R. Rhodopseudomonas palustris: A biotechnology chassis. Biotechnol Adv. 2022;60:108001. https://doi.org/10.1016/j.biotechadv.2022.108001
13. Alsiyabi A, Brown B, Immethun C, Long D, Wilkins M, Saha R. Synergistic experimental and computational approach identifies novel strategies for polyhydroxybutyrate overproduction. Metab Eng. 2021;68:1-13. https://doi.org/10.1016/j.ymben.2021.08.008
14. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol. 2004;22:55-61. https://doi.org/10.1038/nbt923
15. Mazny BE, Sheff OF, LaSarre B, McKinlay A, McKinlay JB. Complete genome sequence of Rhodopseudomonas palustris CGA0092 and corrections to the R. palustris CGA009 genome sequence. Microbiol Resour Announc. 2023;12:e0128522. https://doi.org/10.1128/mra.01285-22
16. Brown B, Immethun C, Alsiyabi A, Long D, Wilkins M, Saha R. Heterologous phasin expression in Rhodopseudomonas palustris CGA009 for bioplastic production from lignocellulosic biomass. Metab Eng Commun. 2022;14:e00191. https://doi.org/10.1016/j.mec.2021.e00191
17. Pan M, Colpo RA, Roussou S, Ding C, Lindblad P, Kromer JO. Engineering a photoautotrophic microbial coculture toward enhanced biohydrogen production. Environ Sci Technol. 2025;59:337-48. https://doi.org/10.1021/acs.est.4c08629
18. Hanisch J, Waltermann M, Robenek H, Steinbuchel A. The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins. Microbiology (Reading). 2006;152:3271-80. https://doi.org/10.1099/mic.0.28969-0
19. Potter M, Muller H, Steinbuchel A. Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology (Reading). 2005;151:825-33. https://doi.org/10.1099/mic.0.27613-0
20. Brown B, Immethun C, Wilkins M, Saha R. Biotechnical applications of phasins: Small proteins with large potential. Renew Sustain Energy Rev. 2022;158:112129. https://doi.org/10.1016/j.rser.2022.112129
21. Mezzina MP, Alvarez DS, Egoburo DE, Pena RD, Nikel PI, Pettinari MJ. A new player in the biorefineries field: Phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli. Appl Environ Microbiol. 2017;83:e00662-17. https://doi.org/10.1128/AEM.00662-17
22. Sharma PK, Fu J, Spicer V, Krokhin OV, Cicek N, Sparling R, et al. Global changes in the proteome of Cupriavidus necator H16 during poly-(3-hydroxybutyrate) synthesis from various biodiesel by-product substrates. AMB Express. 2016;6:36. https://doi.org/10.1186/s13568-016-0206-z
23. Tang R, Peng X, Weng C, Han Y. The overexpression of phasin and regulator genes promoting the synthesis of polyhydroxybutyrate in Cupriavidus necator H16 under nonstress conditions. Appl Environ Microbiol. 2022;88:e0145821. https://doi.org/10.1128/AEM.01458-21
24. Zhao H, Yao Z, Chen X, Wang X, Chen GQ. Modelling of microbial polyhydroxyalkanoate surface binding protein PhaP for rational mutagenesis. Microb Biotechnol. 2017;10:1400-11. https://doi.org/10.1111/1751-7915.12820
25. Li R, Yang J, Xiao Y, Long L. In vivo immobilization of an organophosphorus hydrolyzing enzyme on bacterial polyhydroxyalkanoate nano-granules. Microb Cell Fact. 2019;18P:166. https://doi.org/10.1186/s12934-019-1201-2
26. Meng N, Yu BJ. Proteomics-based investigation of salt-responsive mechanisms in roots of Bradyrhizobium japonicum-inoculated Glycine max and Glycine soja seedlings. J Plant Growth Regul. 2018;37:266-77. https://doi.org/10.1007/s00344-017-9724-4
27. Alves LP, Amaral FP, Kim D, Bom MT, Gavidia MP, Teixeira CS, et al. Importance of poly-3-hydroxybutyrate metabolism to the ability of Herbaspirillum seropedicae to promote plant growth. Appl Environ Microbiol. 2019;85:e02586-18. https://doi.org/10.1128/AEM.02586-18
28. Mezzina MP, Pettinari MJ. Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins. Appl Environ Microbiol. 2016;82:5060-7. https://doi.org/10.1128/AEM.01161-16
29. Kathol M, Immethun C, Saha R. Protocol to develop a synthetic biology toolkit for the non-model bacterium R. palustris. STAR Protoc. 2023;4:102158. https://doi.org/10.1016/j.xpro.2023.102158
30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
31. Taká? T, Pechan T, Šamajová O, Šamaj J. Proteomic analysis of arabidopsis Pld α 1 mutants revealed an important role of phospholipase D alpha 1 in chloroplast biogenesis. Front Plant Sci. 2019;10:89. https://doi.org/10.3389/fpls.2019.00089
32. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4:1265-72. https://doi.org/10.1074/mcp.M500061-MCP200
33. Pfeiffer D, Jendrossek D. Localization of poly(3-Hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, phap6 and phap7, in Ralstonia eutropha H16. J Bacteriol. 2012;194:5909-21. https://doi.org/10.1128/JB.00779-12
Year
Month
Influence of growth conditions on production of poly(3-hydroxybutyrate) by Bacillus cereus HAL 03 endophytic to Helianthus annuus L.
Rituparna Das, Agnijita Dey, Arundhati Pal, A. K. PaulBioconversion of sugarcane molasses to poly(3-hydroxybutyrate-co-3- hydroxyvalerate) by endophytic Bacillus cereus RCL 02
Rituparna Das, Arundhati Pal, Amal Kanti PaulA bibliometric landscape of polyhydroxyalkanoates production from low-cost substrates by Cupriavidus necator and its perspectives for the Latin American bioeconomy
Martha L. Ascencio-Galván, Víctor A. López-Agudelo, David Gómez-Ríos, Howard Ramirez-MaluleIsolation and characterization of polyhydroxyalkanoate producing halotolerant Bacillus subtilis SG1 using marine water samples collected from Calicut coast, Kerala
Sneha Grigary, Mridul Umesh, Vellingiri Manon Mani