Review Article | Volume 11, Issue 2, March, 2023

Revisiting microbial pectinases: An understanding between structure-functional relationship in the arena of genetic engineering

Surojit Bera Evangeline Rajan Sandali Shakya Imasha Perera Sasini Wijewarna Movinya Semini   

Open Access   

Published:  Jan 22, 2023

DOI: 10.7324/JABB.2023.27206
Abstract

In the food and beverage sector, biotechnological applications of pectinase have been increasing day by day. However, subdued production volume and low purity of the pectinase in commercial scale still remain a challenge. As a result, researchers are continuously exploring the opportunity to express modern tools such as genetic engineering, metagenomic study, and metabolic engineering to exploit microbes as promising source for pectinases. Although this enzyme can be found naturally in plants, microbial pectinases retained a high value preference due to its easy fermentation in different bioreactors and inimitable physicochemical attributes. Microbial pectinase has immense potential to contribute in different areas such as textile industries, pharma sector, paper, and pulp industry, environmental engineering, agricultural economics in addition to that food, and beverage industries. The assertion of gene manipulation for better production of pectinase by means of elementary molecular devices and conventional fermentation procedures has been correlated in this study to get a bird’s eye view in the structure-functional relationship of the microbial pectinases.


Keyword:     Pectinase Genetic engineering Bioreactors Metagenomic study


Citation:

Bera S, Rajan E, Shakya S, Perera I, Wijewarna S, Semini M. Revisiting microbial pectinases: An understanding between a structure-functional relationship in the arena of genetic engineering. J App Biol Biotech. 2023;11(02):63-74. https://doi.org/10.7324/JABB.2023.27206

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Amin F, Bhatti HN, Bilal M. Recent advances in the production strategies of microbial pectinases-a review. Int J Biol Macromol 2019;122:1017-26. https://doi.org/10.1016/j.ijbiomac.2018.09.048

2. John J, Kaimal KS, Smith ML, Rahman PK, Chellam PV. Advances in upstream and downstream strategies of pectinase bioprocessing: A review. Int J Biol Macromol 2020;162:1086-99. https://doi.org/10.1016/j.ijbiomac.2020.06.224

3. Hoondal G, Tiwari R, Tewari R, Dahiya NB, Beg Q. Microbial alkaline pectinases and their industrial applications: A review. Appl Microbiol Biotechnol 2002;59:409-18. https://doi.org/10.1007/s00253-002-1061-1

4. Kavitha R, Umesh-Kumar S. Genetic improvement of Aspergillus carbonarius for pectinase overproduction during solid state growth. Biotechnol Bioeng 2000;67:121-5. https://doi.org/10.1002/(SICI)1097-0290(20000105)67:1<121::AID-BIT15>3.0.CO;2-6

5. Li Q, Ray CS, Callow NV, Loman AA, Islam SM, Ju LK. Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing. Enzyme Microb Technol 2020;134:109476. https://doi.org/10.1016/j.enzmictec.2019.109476

6. Ibrahim D, Weloosamy H, Lim SH. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World J Biol Chem 2015;6:265-71. https://doi.org/10.4331/wjbc.v6.i3.265

7. Hours RA, Voget CE, Ertola RJ. Some factors affecting pectinase production from apple pomace in solid-state cultures. Biol Wastes 1988;24:147-57. https://doi.org/10.1016/0269-7483(88)90057-2

8. Singh RS, Singh T, Pandey A. Microbial enzymes-an overview. In: Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology. Netherlands: Elsevier; 2019. p. 1-40. https://doi.org/10.1016/B978-0-444-64114-4.00001-7

9. Samanta S. Microbial pectinases: A review on molecular and biotechnological perspectives. J Microbiol Biotechnol Food Sci 2021;9:248-66. https://doi.org/10.15414/jmbfs.2019.9.2.248-266

10. Jayani RS, Saxena S, Gupta R. Microbial pectinolytic enzymes: A review. Process Biochem 2005;40:2931-44. https://doi.org/10.1016/j.procbio.2005.03.026

11. Sakai T, Sakamoto T, Hallaert J, Vandamme EJ. Pectin, pectinase, and protopectinase: Production, properties, and applications. Adv Appl Microbiol 1993;39:213-94. https://doi.org/10.1016/S0065-2164(08)70597-5

12. Klug-Santner BG, Schnitzhofer W, Vršanská M, Weber J, Agrawal PB, et al. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J Biotechnol 2006;121:390-401. https://doi.org/10.1016/j.jbiotec.2005.07.019

13. Gupta S, Kapoor M, Sharma KK, Nair LM, Kuhad RC. Production and recovery of an alkaline exo-polygalacturonase from Bacillus subtilis RCK under solid-state fermentation using statistical approach. Bioresour Technol 2008;99:937-45. https://doi.org/10.1016/j.biortech.2007.03.009

14. Mohsen LY, Al-Janabi JK, Ebor MA. Production and characterization of Exopolygalacturonase for Fusarium oxysporum and F. sacchari. Int J Sci Res 2016;5:1315-21. https://doi.org/10.21275/v5i1.NOV152995

15. Chiliveri SR, Linga VR. A novel thermostable, alkaline pectate lyase from Bacillus tequilensis SV11 with potential in textile industry. Carbohydr Polym 2014;111:264-72. https://doi.org/10.1016/j.carbpol.2014.04.065

16. Karabi R, Sujan D, Uddin MK, Rasel B, Hossain MT. Extracellular pectinase from a novel bacterium Chryseobacterium indologenes strain SD and its application in fruit juice clarification. Enzyme Res 2018;2018:3859752. https://doi.org/10.1155/2018/3859752

17. Bagley ST, Starr MP. Characterization of intracellular polygalacturonic acidtrans-eliminase from Klebsiella oxytoca, Yersinia enterocolitica, and Erwinia chrysanthemi. Curr Microbiol 1979;2:381-6. https://doi.org/10.1007/BF02602881

18. Yoder MD, Keen NT, Jurnak F. New domain motif: The structure of pectate lyase C, a secreted plant virulence factor. Science 1993;260:1503-7. https://doi.org/10.1126/science.8502994

19. Pickersgill R, Jenkins J, Harris G, Nasser W, Robert-Baudouy J. The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat Struct Biol 1994;1:717-23. https://doi.org/10.1038/nsb1094-717

20. Thomas LM, Doan CN, Oliver RL, Yoder MD. Structure of pectate lyase A: comparison to other isoforms. Acta Crystallogr D Biol Crystallogr 2002;58:1008-15. https://doi.org/10.1107/S0907444902005851

21. Lietzke SE, Yoder MD, Keen NT, Jurnak F. The three-dimensional structure of pectate lyase E, a plant virulence factor from Erwinia chrysanthemi. Plant Physiol 1994;106:849-62. https://doi.org/10.1104/pp.106.3.849

22. Van Alebeek GJ, Christensen TM, Schols HA, Mikkelsen JD, Voragen AG. Mode of action of pectin lyase A of Aspergillus nigeron differently C6-substituted oligogalacturonides. J Biol Chem 2002;277:25929-36. https://doi.org/10.1074/jbc.M202250200

23. Pickersgill R, Smith D, Worboys K, Jenkins J. Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J Biol Chem 1998;273:24660-4. https://doi.org/10.1074/jbc.273.38.24660

24. Van Pouderoyen G, Snijder HJ, Benen JA, Dijkstra BW. Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Lett 2003;554:462-6. https://doi.org/10.1016/S0014-5793(03)01221-3

25. Van Santen Y, Benen JA, Schro?ter KH, Kalk KH, Armand S, Visser J, et al. 1.68-Å crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J Biol Chem 1999;274:30474-80. https://doi.org/10.1074/jbc.274.43.30474

26. Federici L, Caprari C, Mattei B, Savino C, Di Matteo A, De Lorenzo G, et al. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proceed Natl Acad Sci 2001;98:13425-30. https://doi.org/10.1073/pnas.231473698

27. Mukadam DS, Chavan AM, Taware AS, Taware SD. Isolation, cloning and molecular characterization of polygalacturonase I (pgaI) gene from Aspergillus niger isolate from mango. Indian J Biotechnol 2010;9:153-9.

28. Palanivelu P. Polygalacturonases: Active site analyses and mechanism of action. Indian J Biotechnol 2006;5:148-62.

29. Shimizu T, Nakatsu T, Miyairi K, Okuno T, Kato H. Active-site architecture of endopolygalacturonase I from Stereum purpureum revealed by crystal structures in native and ligand-bound forms at atomic resolution. Biochemistry 2002;41:6651-9. https://doi.org/10.1021/bi025541a

30. Armand S, Wagemaker MJ, Sánchez-Torres P, Kester HC, van Santen Y, Dijkstra BW, et al. The active site topology of Aspergillus niger Endopolygalacturonase II as studied by site-directed mutagenesis. J Biol Chem 2000;275:691-6. https://doi.org/10.1074/jbc.275.1.691

31. Petersen TN, Kauppinen S, Larsen S. The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: A right-handed parallel β helix. Structure 1997;5:533-44. https://doi.org/10.1016/S0969-2126(97)00209-8

32. Scavetta RD, Herron SR, Hotchkiss AT, Kita N, Keen NT, Benen JA, et al. Structure of a plant cell wall fragment complexed to pectate lyase C. Plant Cell 1999;11:1081-92. https://doi.org/10.1105/tpc.11.6.1081

33. Brown IE, Mallen MH, Charnock SJ, Davies GJ, Black GW. Pectate lyase 10A from Pseudomonas cellulosa is a modular enzyme containing a family 2a carbohydrate-binding module. Biochem J 2001;355:155-65. https://doi.org/10.1042/bj3550155

34. Vitali J, Schick B, Kester HC, Visser J, Jurnak F. The three-dimensional structure of Aspergillus niger pectin lyase B at 1.7-Å resolution. Plant Physiol 1998;116:69-80. https://doi.org/10.1104/pp.116.1.69

35. Mayans O, Scott M, Connerton I, Gravesen T, Benen J, Visser J, et al. Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure

1997;5:677-89.

36. Gummadi SN, Panda T. Purification and biochemical properties of microbial pectinases-a review. Process Biochem 2003;38:987-96. https://doi.org/10.1016/S0032-9592(02)00203-0

37. Keen NT, Dahlbeck D, Staskawicz B, Belser W. Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. J Bacteriol 1984;159:825-31. https://doi.org/10.1128/jb.159.3.825-831.1984

38. Herron SR, Scavetta RD, Garrett M, Legner M, Jurnak F. Characterization and implications of Ca2+binding to pectate lyase C. J Biol Chem 2003;278:12271-7. https://doi.org/10.1074/jbc.M209306200

39. Rajulapati V, Sharma K, Dhillon A, Goyal A. SAXS and homology modelling based structure characterization of pectin methylesterase a family 8 carbohydrate esterase from Clostridium thermocellum ATCC 27405. Arch Biochem Biophys 2018;641:39-49. https://doi.org/10.1016/j.abb.2018.01.015

40. Johansson K, El-Ahmad M, Friemann R, Jörnvall H, Markovi? O, Eklund H. Crystal structure of plant pectin methylesterase. FEBS Lett 2002;514:243-9. https://doi.org/10.1016/S0014-5793(02)02372-4

41. Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J 2013;81:146-61. https://doi.org/10.1016/j.bej.2013.10.013

42. Mitchell DA, Pitol LO, Biz A, Finkler AT, Luz LF Jr., Krieger N. Design and operation of a pilot-scale packed-bed bioreactor for the production of enzymes by solid-state fermentation. Adv Biochem Eng Biotechnol 2019;169:27-50. https://doi.org/10.1007/10_2019_90

43. Pitol LO, Biz A, Mallmann E, Krieger N, Mitchell DA. Production of pectinases by solid-state fermentation in a pilot-scale packed-bed bioreactor. Chem Eng J 2016;283:1009-18. https://doi.org/10.1016/j.cej.2015.08.046

44. Finkler AT, Biz A, Pitol LO, Medina BS, Luithardt H, Luz LF Jr., et al. Intermittent agitation contributes to uniformity across the bed during pectinase production by Aspergillus niger grown in solid-state fermentation in a pilot-scale packed-bed bioreactor. Biochem Eng J 2017;121:1-2. https://doi.org/10.1016/j.bej.2017.01.011

45. Almeida C, Brányik T, Ferreira PM, Teixeira JA. Comparative Analysis of Immobilization Carriers for a Endopolygalacturonase Producing Yeast Strain; 2003.

46. Biz A, Finkler AT, Pitol LO, Medina BS, Krieger N, Mitchell DA. Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochem Eng J 2016;111:54-62. https://doi.org/10.1016/j.bej.2016.03.007

47. Ruiz HA, Rodríguez-Jasso RM, Rodríguez R, Contreras-Esquivel JC, Aguilar CN. Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem Eng J 2012;15;65:90-5. https://doi.org/10.1016/j.bej.2012.03.007

48. Demir H, Tari C. Bioconversion of wheat bran for polygalacturonase production by Aspergillus sojae in tray type solid-state fermentation. Int Biodeterioration Biodegradation 2016;106:60-6. https://doi.org/10.1016/j.ibiod.2015.10.011

49. Abbasi H, Fazaelipoor MH. Continuous production of polygalacturonases (PGases) using Aspergillus niger in a surface culture bioreactor and modeling the process. Biotechnol Bioprocess Eng 2010;15:308-13. https://doi.org/10.1007/s12257-009-0096-x

50. Hendges DH, Montanari Q, Malvessi E, Silveira MM. Production and characterization of endo-polygalacturonase from Aspergillus niger in solid-state fermentation in double-surface bioreactor. Braz Arch Biol Technol 2011;54:253-8. https://doi.org/10.1590/S1516-89132011000200005

51. Colla E, Santos LO, Deamici K, Magagnin G, Vendruscolo M, Costa JA. Simultaneous production of amyloglucosidase and exo-polygalacturonase by Aspergillus niger in a rotating drum reactor. Appl Biochem Biotechnol 2017;181:627-37. https://doi.org/10.1007/s12010-016-2237-y

52. Mahmoodi M, Najafpour GD, Mohammadi M. Bioconversion of agroindustrial wastes to pectinases enzyme via solid state fermentation in trays and rotating drum bioreactors. Biocatal Agric Biotechnol 2019;21:101280. https://doi.org/10.1016/j.bcab.2019.101280

53. Wolf-Márquez VE, García-García E, García-Rivero M, Aguilar- Osorio G, Trujillo MA. Batch and pulsed fed-batch cultures of Aspergillus flavipes FP-500 growing on lemon peel at stirred tank reactor. Appl Biochem Biotechnol 2015;177:1201-15. https://doi.org/10.1007/s12010-015-1807-8

54. Díaz AB, Alvarado O, de Ory I, Caro I, Blandino A. Valorization of grape pomace and orange peels: Improved production of hydrolytic enzymes for the clarification of orange juice. Food Bioprod Process 2013;91:580-6. https://doi.org/10.1016/j.fbp.2013.01.007

55. Kashyap DR, Soni SK, Tewari R. Enhanced production of pectinase by Bacillus sp. DT7 using solid state fermentation. Bioresour Technol 2003;88:251-4. https://doi.org/10.1016/S0960-8524(02)00206-7

56. Patidar MK, Nighojkar S, Kumar A, Nighojkar A. Papaya peel valorization for production of acidic pectin methylesterase by Aspergillus tubingensis and its application for fruit juice clarification. Biocatal Agric Biotechnol 2016;6:58-67. https://doi.org/10.1016/j.bcab.2016.02.008

57. Herron SR, Benen JA, Scavetta RD, Visser J, Jurnak F. Structure and function of pectic enzymes: Virulence factors of plant pathogens. Proc Natl Acad Sci 2000;97:8762-9. https://doi.org/10.1073/pnas.97.16.8762

58. Caprari C, Bergmann C, Migheli Q, Salvi G, Albersheim P, Darvill A, et al. Fusarium moniliforme secretes four endopolygalacturonases derived from a single gene product. Physiol Mol Plant Pathol 1993;43:453-62. https://doi.org/10.1006/pmpp.1993.1073

59. De Vries RP, van Kuyk PA, Kester HC, Visser J. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem J 2002;363:377-86. https://doi.org/10.1042/bj3630377

60. Andrade MV, Delatorre AB, Ladeira SA, Martins ML. Production and partial characterization of alkaline polygalacturonase secreted by thermophilic Bacillus sp. SMIA-2 under submerged culture using pectin and corn steep liquor. Food Sci Technol 2011;31:204-8. https://doi.org/10.1590/S0101-20612011000100031

61. Bhardwaj V, Degrassi G, Bhardwaj RK. Microbial pectinases and their applications in industries: A review. International Research J Eng Technol 2017;4:829-36.

62. Kavuthodi B, Sebastian D. Review on bacterial production of alkaline pectinase with special emphasis on Bacillus species. Biosci Biotechnol Res Commun 2018;11:18-30. https://doi.org/10.21786/bbrc/11.1/4

63. Sohail M, Latif Z. Phylogenetic analysis of polygalacturonase-producing Bacillus and Pseudomonas isolated from plant waste material. Jundishapur J Microbiol 2016;9:e28594. https://doi.org/10.5812/jjm.28594

64. Priest FG. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 1977;41:711-53. https://doi.org/10.1128/br.41.3.711-753.1977

65. Aaisha GA, Barate DL. Isolation and identification of pectinolytic bacteria from soil samples of Akola region, India. Int J Curr Microbiol Appl Sci 2016;5:514-21. https://doi.org/10.20546/ijcmas.2016.501.051

66. Suneetha V, Khan ZA. Screening, characterisation and optimization of microbial pectinase. In: Soil Enzymology. Berlin, Heidelberg: Springer; 2010. p. 329-37. https://doi.org/10.1007/978-3-642-14225-3_18

67. Potter LF, Mccoy EL. The fermentation of pectin and pectic acid by Bacillus polymyxa. J Bacteriol 1955;70:656-62. https://doi.org/10.1128/jb.70.6.656-662.1955

68. Karam NE, Belarbi A. Detection of polygalacturonases and pectin esterases in lactic acid bacteria. World J Microbiol Biotechnol 1995;11:559-63. https://doi.org/10.1007/BF00286373

69. Pitkänen K, Heikinheimo R, Pakkanen R. Purification and characterization of Erwinia chrysanthemi B374 pectin methylesterase produced by Bacillus subtilis. Enzyme Microb Technol 1992;14:832-6. https://doi.org/10.1016/0141-0229(92)90100-3

70. Cornick NA, Jensen NS, Stahl DA, Hartman PA, Allison MJ. Lachnospira pectinoschiza sp. nov., an anaerobic pectinophile from the pig intestine. Int J Syst Evol Microbiol 1994;44:87-93. https://doi.org/10.1099/00207713-44-1-87

71. Laurent F, Kotoujansky A, Bertheau Y. Overproduction in Escherichia coli of the pectin methylesterase A from Erwinia chrysanthemi 3937: One-step purification, biochemical characterization, and production of polyclonal antibodies. Can J Microbiol 2000;46:474-780. https://doi.org/10.1139/w00-007

72. Ueda S, Fujio Y, Lim JY. Production and some properties of pectic enzymes from Aspergillus oryzae A-3 [fungus]. J Appl Biochem 1982;4:524-32.

73. Blandino A, Dravillas K, Cantero D, Pandiella SS, Webb C. Utilisation of whole wheat flour for the production of extracellular pectinases by some fungal strains. Process Biochem 2001;37:497-503. https://doi.org/10.1016/S0032-9592(01)00241-2

74. Maldonado MC, de Saad AM, Callieri D. Purification and characterization of pectinesterase produced by a strain of Aspergillus niger. Curr Microbiol 1994;28:193-6. https://doi.org/10.1007/BF01575960

75. Maldonado MC, Strasser de Saad AM. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 1998;20:34-8. https://doi.org/10.1038/sj.jim.2900470

76. Förster H. Pectinesterases from Phytophthora infestans. In: Methods in Enzymology. Vol. 161. Cambridge: Academic Press; 1988. p 355-61. https://doi.org/10.1016/0076-6879(88)61040-8

77. Kawano CY, Chellegatti MA, Said S, Fonseca MJ. Comparative study of intracellular and extracellular pectinases produced by Penicillium frequentans. Biotechnol Appl Biochem 1999;29:133-40.

78. Hadj-Taieb N, Ayadi M, Trigui S, Bouabdallah F, Gargouri A. Hyperproduction of pectinase activities by a fully constitutive mutant (CT1) of Penicillium occitanis. Enzyme Microbial Technol 2002;30:662-6. https://doi.org/10.1016/S0141-0229(02)00029-7

79. Libkind D, Perez P, Sommaruga R, Dieguez MC, Ferraro M, Brizzio S, et al. Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochem Photobiol Sci 2004;281-6. https://doi.org/10.1039/b310608j

80. Gainvors A, Frezier V, Lemaresquier H, Lequart C, Aigle M, Belarbi A. Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain. Yeast 1994;10:1311-9. https://doi.org/10.1002/yea.320101008

81. Janssens L, De Pooter HL, Schamp NM, Vandamme EJ. Production of flavours by microorganisms. Process Biochem 1992;27:195-215. https://doi.org/10.1016/0032-9592(92)80020-4

82. Maiorano AE, Schmidell W, Ogaki Y. Determination of the enzymatic activity of pectinases from different microorganisms. World J Microbiol Biotechnol 1995;11:355-6. https://doi.org/10.1007/BF00367120

83. Sutton MD, Peterson JD. Fermentation of sugar beet pulp for ethanol production using bioengineered Klebsiella oxytoca strain P2. J Sugar Beet Res 2001;38:19-34. https://doi.org/10.5274/jsbr.38.1.19

84. Dinu D, Nechifor MT, Stoian G, Costache M, Dinischiotu A. Enzymes with new biochemical properties in the pectinolytic complex produced by Aspergillus niger MIUG 16. J Biotechnol 2007;131:128-37. https://doi.org/10.1016/j.jbiotec.2007.06.005

85. Botella C, De Ory I, Webb C, Cantero D, Blandino A. Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 2005;26:100-6. https://doi.org/10.1016/j.bej.2005.04.020

86. Ahlawat S, Dhiman SS, Battan B, Mandhan RP, Sharma J. Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 2009;44:521-6. https://doi.org/10.1016/j.procbio.2009.01.003

87. Silva D, Tokuioshi K, da Silva Martins E, Da Silva R, Gomes E. Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem 2005;40:2885-9. https://doi.org/10.1016/j.procbio.2005.01.008

88. Kaur A, Mahajan R, Singh A, Garg G, Sharma J. Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 2010;101:9150-5. https://doi.org/10.1016/j.biortech.2010.07.020

89. Sunnotel O, Nigam P. Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation. World J Microbiol Biotechnol 2002;18:835-9. https://doi.org/10.1023/A:1021209123641

90. Kluskens LD, van Alebeek GJ, Walther J, Voragen AG, de Vos WM, van der Oost J. Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima. FEBS J 2005;272:5464-73. https://doi.org/10.1111/j.1742-4658.2005.04935.x

91. Priya V, Sashi V. Pectinase producing microorganisms. Int J Sci Res Pub 2014;4:1-4.

92. Lima JO, Pereira JF, Araújo EF, Queiroz MV. Pectin lyase overproduction by Penicillium griseoroseum mutants resistant to catabolite repression. Braz J Microbiol 2017;48:602-6. https://doi.org/10.1016/j.bjm.2016.12.009

93. Zhou C, Xue Y, Ma Y. Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming. Appl Microbiol Biotechnol 2017;101:3663-76. https://doi.org/10.1007/s00253-017-8110-2

94. Cheng Z, Chen D, Wang Q, Xian L, Lu B, Wei Y, et al. Identification of an acidic endo-polygalacturonase from Penicillium oxalicum CZ1028 and its broad use in major tropical and subtropical fruit juices production. J Biosci Bioeng 2017;123:665-72. https://doi.org/10.1016/j.jbiosc.2017.01.013

95. Abdulrachman D, Thongkred P, Kocharin K, Nakpathom M, Somboon B, Narumol N, et al. Heterologous expression of Aspergillus aculeatus endo-polygalacturonase in Pichia pastoris by high cell density fermentation and its application in textile scouring. BMC Biotechnol 2017;17:15. https://doi.org/10.1186/s12896-017-0334-9

96. Teixeira JA, Gonçalves DB, De Queiroz MV, De Araújo EF. Improved pectinase production in Penicillium griseoroseum recombinant strains. J Appl Microbiol 2011;111:818-25. https://doi.org/10.1111/j.1365-2672.2011.05099.x

97. Benen JA, van Alebeek GJ, Voragen AG, Visser J. Mode of action analysis and structure-function relationships of Aspergillus niger pectinolytic enzymes. In: Advances in Pectin and Pectinase Research. Dordrecht: Springer; 2003. p. 235-56. https://doi.org/10.1007/978-94-017-0331-4_18

98. Shakibaie M, Ameri A, Ghazanfarian R, M Adeli-Sardou, Amirpour-Rostami S, Torkzadeh-Mahani M, et al. Statistical optimization of kojic acid production by a UVinduced mutant strain of Aspergillus terreus. Braz. J. Microbiol 2018; 49(4); 865-871. https://doi.org/10.1016/j.bjm.2018.03.009

99. Solbak AI, Richardson TH, McCann RT, Kline KA, Bartnek F, Tomlinson G, et al. Discovery of pectin-degrading enzymes and directed evolution of a novel pectate lyase for processing cotton fabric. J Biol Chem 2005;280:9431-8. https://doi.org/10.1074/jbc.M411838200

100. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 2002;20:707-12. https://doi.org/10.1038/nbt0702-707

101. Munir M, Abdullah R, Ul Haq I, Kaleem A, Iqtedar M, Naz SH. A. Strain improvement by random mutagenesis of Aspergillus Tamarii RMLC-10 for improved biosynthesis of polygalacturonase. Pak J Bot 2020;52;1809-13. https://doi.org/10.30848/PJB2020-5(29)

102. Cyrus ET, Juwon AD. Effects of radiation and chemical mutagenesis on expression of aflatoxigenic traits in Aspergillus parasiticus SMS08-C. Res J Microbiol 2015;10:205. https://doi.org/10.3923/jm.2015.205.213

103. Nawaz A, Hussain M, Munir M, Mukhtar H, Ul Haq I. Strain improvement and assessment of cultural conditions for improved Biosynthesis of pectinase using Penicillium notatum. Int J Biol Biotech 2019;16:1-8.

104. Haq IU, Nawaz A, Mukhtar H, Ahmed W. Isolation and identification of glucose oxidase hyper producing strain of Aspergillus niger. Br Microbiol Res J 2014;4:195. https://doi.org/10.9734/BMRJ/2014/3082

105. Suribabu K, Govardhan TL, Hemalatha KP. Strain improvement of Brevibacillus borostelensis R1 for optimization of α-amylase production by mutagens. J Microbiol Biochem Technol 2014;6:123-7. https://doi.org/10.4172/1948-5948.1000132

106. Kamalambigeswari R, Alagar S, Sivvaswamy N. Strain improvement through mutation to enhance pectinase yield from Aspergillus niger and molecular characterization of polygalactouronase gene. J Pharm Sci Res 2018;10:989-94.

107. Lin W, Xu X, Lv R, Huang W, Gao Y, Ren H, et al. Differential proteomics reveals main determinants for the improved pectinase activity in UV-mutagenized Aspergillus niger strain. Biotechnol Lett 2021;43:909-18. https://doi.org/10.1007/s10529-020-03075-w

108. Comtet-Marre S, Parisot N, Lepercq P, Chaucheyras-Durand F, Mosoni P, Peyretaillade E, et al. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front Microbiol 2017;8:67. https://doi.org/10.3389/fmicb.2017.00067

109. Yuan P, Meng K, Wang Y, Luo H, Huang H, Shi P, et al. Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem. PLoS One 2012;7:e40940. https://doi.org/10.1371/journal.pone.0040940

110. Singh A, Yadav RD, Kaur A, Mahajan R. An ecofriendly cost effective enzymatic methodology for deinking of school waste paper. Bioresour Technol 2012;120:322-7. https://doi.org/10.1016/j.biortech.2012.06.050

111. Wang H, Li X, Ma Y, Song J. Characterization and high-level expression of a metagenome-derived alkaline pectate lyase inrecombinant Escherichia coli. Process Biochem 2014;49:69-76. https://doi.org/10.1016/j.procbio.2013.10.001

112. Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, et al. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 2016;9:22. https://doi.org/10.1186/s13068-016-0440-2

113. Varavallo MA, Queiroz MV, Lana TG, Brito AT, Gonçalves DB, Araújo EF. Isolation of recombinant strains with enhanced pectinase production by protoplast fusion between Penicillium expansum and Penicillium griseoroseum. Braz J Microbiol 2007;38:52-7. https://doi.org/10.1590/S1517-83822007000100011

114. Zhang J, Kang Z, Ling Z, Cao W, Liu L, Wang M, et al. High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements. Bioresour Technol 2013;146:543-8. https://doi.org/10.1016/j.biortech.2013.07.129

115. Irshad M, Anwar Z, Mahmood Z, Aqil T, Mehmmod S, Nawaz H. Bio-processing of agro-industrial waste orange peel for induced production of pectinase by Trichoderma viridi; its purification and characterization. Turk J Biochem 2014;39:9-18. https://doi.org/10.5505/tjb.2014.55707

116. Patel PH, Panchal KS, Patel BN, Patel HP. Production and partial purification of pectinase from Streptomyces chartreusis. Crop Res 2021;56:67-73. https://doi.org/10.31830/2454-1761.2021.012

117. Takc? HA, Turkmen FU. Extracellular pectinase production and purification from a newly isolated Bacillus subtilis strain. Int J Food Properties 2016;19:2443-50. https://doi.org/10.1080/10942912.2015.1123270

118. Koshy M, De S. Effect of Bacillus tequilensis SALBT crude extract with pectinase activity on demucilation of coffee beans and juice clarification. J Basic Microbiol 2019;59:1185-94. https://doi.org/10.1002/jobm.201900321

119. Prodanovi? JM, Antov MG. The influence of molecular weight of polyethylene glycol on separation and purification of pectinases from Penicillium cyclopium in aqueous two-phase system. Acta Period Technol 2008;39:193-9. https://doi.org/10.2298/APT0839193P

120. Antov MG. Partitioning of pectinase produced by Polyporus squamosus in aqueous two-phase system polyethylene glycol 4000/ crude dextran at different initial pH values. Carbohydr Polym 2004;56:295-300. https://doi.org/10.1016/j.carbpol.2003.12.008

121. Jaramillo PM, Gomes HA, de Siqueira FG, Homem-de-Mello M, Ferreira Filho EX, Magalhães PO. Liquid-liquid extraction of pectinase produced by Aspergillus oryzae using aqueous two-phase micellar system. Sep Purif Technol 2013;120:452-7. https://doi.org/10.1016/j.seppur.2013.09.020

122. Trentini MM, Menegotto AL, Steffens J, Zeni J, Backes GT, Dallago RM, et al. Recovery of pectinases from Aspergillus niger using aqueous two-phase systems. Braz J Dev 2020;6:47791-806. https://doi.org/10.34117/bjdv6n7-427

123. Hamdy HS. Purification and characterization of pectin lyase produced by Rhizopus oryzae grown on orange peels. Ann Microbiol 2005;55:205.

124. Amid M, Manap Y, Zohdi K. Purification and characterisation of thermo-alkaline pectinase enzyme from Hylocereus polyrhizus. Eur Food Res Technol 2014;239:21-9. https://doi.org/10.1007/s00217-014-2188-x

125. Mehmood T, Saman T, Irfan M, Anwar F, Ikram MS, Tabassam Q. Pectinase production from Schizophyllum commune through central composite design using citrus waste and its immobilization for industrial exploitation. Waste Biomass Valorization 2019;10:2527-36. https://doi.org/10.1007/s12649-018-0279-9

126. Ahmed I, Zia MA, Hussain MA, Akram Z, Naveed MT, Nowrouzi A. Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. J Radiation Res Appl Sci 2016;9:148-54. https://doi.org/10.1016/j.jrras.2015.11.003

127. Khatri BP, Bhattarai T, Shrestha S, Maharjan J. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal. SpringerPlus 2015;4:1-8. https://doi.org/10.1186/s40064-015-1286-y

128. Mondal K, Mehta P, Gupta MN. Affinity precipitation of Aspergillus niger pectinase by microwave-treated alginate. Protein Exp Purif1 2004;33:104-9. https://doi.org/10.1016/j.pep.2003.08.013

129. Tyagi R, Gupta MN. Purification and immobilization of Aspergillus niger pectinase on magnetic latex beads. Biocatal Biotransform 1995;12:293-8. https://doi.org/10.3109/10242429509003191

Article Metrics
29 Views 73 Downloads 102 Total

Year

Month

Related Search

By author names