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ABSTRACT

In food and beverage sector, biotechnological applications of pectinase have been increasing day by day. However, 
subdued production volume and low purity of the pectinase in commercial scale still remain a challenge. As a 
result, researchers are continuously exploring the opportunity to express modern tools such as genetic engineering, 
metagenomic study, and metabolic engineering to exploit microbes as a promising source for pectinases. Although 
this enzyme can be found naturally in plants, microbial pectinases retained a high value preference due to its easy 
fermentation in different bioreactors and inimitable physicochemical attributes. Microbial pectinase has immense 
potential to contribute in different areas such as textile industries, pharma sector, paper, and pulp industry, 
environmental engineering, agricultural economics in addition to that food, and beverage industries. The assertion 
of gene manipulation for better production of pectinase by means of elementary molecular devices and conventional 
fermentation procedures has been correlated in this study to get a bird’s eye view in the structure-functional 
relationship of the microbial pectinases.

1. INTRODUCTION

In fermentation technology, enzymes are exceptionally resourceful 
catalysts sometimes from microbial origin which can perform a 
variety of reactions both in vivo and in vitro. Pectinase is one of such 
enzymes responsible for degradation of pectic substances. Pectic 
materials can be identified as an assorted group comprises principally 
of D-galactopy- ranosyluronic acids connected to polygalacturonic 
acid alpha 1-4 glycosidic linkage with a trivial quantity of L-rhamnose 
linked with beta 1–2 glycosidic linkage [1]. Numerous adjacent chains 
entailing of L-arabinose, D-galactose, and β-D-xylose can also be 
found alongside those glycosidic bonds. Pectinases can be obtained 
naturally in plants or can be obtained from different microbes. Pectic 
substances are one of the key components of middle lamella of plant 
cell walls which makes around one third weight of the total biomass of 
the plant (dry basis). Pectinase which is naturally exist within the plant 
begins to digest that middle lamella which leads to unstiffening of 
fruits thus called ripening. Various microbes including bacteria, fungi, 
and yeast can produce pectinases which are fundamentally critical due 
to their involvement in plant-pathogenesis, plant-microbe interaction, 
and degradation of dead plant materials. The commercial application 
for microbial pectinases is gaining world-wide attention now a days 
due to their adaptability in wide range of environment, broad substrate 
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specificity, and high enzyme activity [2]. However, due to limitations 
in wild strains genetic engineering opening a new era for microbial 
pectinase production for biotechnology industries including textile, 
food, and feed, and pharmaceutical. [3]. In addition, different types 
of bioreactors are being designed to the overcome unusual limitations 
for the enzyme production such as ass transfer, nutrient mixing, proper 
aeration, and many more. Novel strategies such as metagenomic study 
and metabolic engineering are being introduced to get the maximum 
benefit of cutting-edge biomolecular tools for biotechnological 
advancement of microbial pectinase production [4].

Various cultural conditions such as temperature, moisture content, 
production time, pH, nutrient mixing, and aeration affect can limit the 
production of pectinase. These elements are essential for promoting, 
stimulating, enhancing, and optimizing pectinase production [5]. 
Few studies suggested to keep pH to be maintained below 5.5 to 
prevent pectinase degradation and above 2.6 to avoid limitation in 
the production of pectinase. To ensure smooth pectinase production, 
a sufficient number of organic nitrogen components, such as those 
found in peptone and yeast extract, must be added to spawn significant 
enzymatic activity [6]. To obtain pectinase enzymes with the required 
specific activity, nutrient contents may be modified with KH2PO4, 
Na2HPO4, FeSO4.7H2O, CaCl2, peptone, MnSO4.7H2O, H3BO3, and 
citrus pectin. [7] In the solid state and submerged fermentation method, 
filamentous fungi are mostly used while pellet form of cultures is used 
in downstream fermentation process because of the very low viscosity 
of fermentation medium. Usage of pellets makes the mass transfer of 
oxygen and nutrients much efficient and also separating the pallets 
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from the fermentation medium is comparatively easier [8]. Increasing 
the agitation rate raises the oxygen pressure in the system but does 
not boost output as the structure of the enzyme changes at such high 
agitation rates. Lowering the aeration rate, on the other hand, may 
result in a large drop in pectinase production yields because oxygen 
availability is a critical limiting factor for both growth and pectinase 
production. Agitation and aeration are to a lesser complex method that 
can be operated cost effectively when it comes to industrial pectinase 
enzyme production.

The current review deals with brief analysis of newly found microbial 
sources for pectinase production and their genetic modifications for 
pectinase yield improvement. The unique structure of the enzyme 
and their role in different functionality has also been correlated to 
get a proper scenario on structure-functional relationship of microbial 
pectinases. In final part, a concise representation has been made 
to identify key strategies being adapted by researchers for partial 
purification of microbial pectinase. In overall, a successful attempt 
has been made to represent the occurrence and functionality of 
microbial pectinases which might be helpful to design strategies for 
enhanced microbial pectinase production for industrial applications 
worldwide.

2. STRUCTURE AND FUNCTIONAL RELATIONSHIP OF 
PECTINASE

2.1. Classification Based on the Mechanism of Action of Pectic 
Enzymes
Pectic enzymes are broadly grouped in to three types based on the 
mechanism of action, namely, pectinesterase (PE) (which are de 
esterifying enzymes), depolymerizing enzymes (hydrolases and 
lyases), and protopectinase. PE eliminates methyl residues from 
pectin forming pectic acid and protopectinase solubilizes insoluble 
protopectin to polymerized soluble pectin. Alpha 1,4-glycosidic 
bonds are cleaved by the depolymerizing enzymes [5,6]. 
Depolymerizing enzymes have two mechanisms to act on pectin 
substances. One is hydrolysis when water is introduced over 
the oxygen bridge, they promote the hydrolytic cleavage and 
the other one is transelimination lysis in which they use a trans-
elimination reaction to break the glycosidic bond without the 
use of water molecules [7]. Depolymerases are classified into 
four main groups: Polygalacturonase, polygalacturonate lyase, 
polymethylgalacturonase, and polymethyl galacturonate lyase. 
The hydrolysis mechanisms of polygalacturonase and poly methyl 
galaacturonase break the components such as pectate and pectin. 
They are broken down by elimination enzymes polygalacturonate 
lyase and polymethylgalacturonate lyase [8].

Classification of Pectic Enzymes Based on Site of Action
There are two types based on the site of action, they are endopectinases 
and exopectinases. Endopectinases cleaves pectin’s internal bonds 
randomly. These enzymes are primarily secreted by fungi and are used 
extensively in fruit juice and food industry. Endo acting pectate lyase 
from a strain of Bacillus pumilus was used in cotton bioscouring [9].

Exopectinasaes cleave the long chain polysaccharides which are at 
the exterior. Exopoloygalacturonase enzyme was produced from 
Bacillus species by solid-state fermentation (SSF). It was used for 
wastewater treatment and degumming [10] Fusarium species produce 
exoplygalacturonase which had high enzyme activities at optimum 
conditions [11]

2.3. Classification Based on Site of Production of Pectinases
There are two types of pectinases rooted on the site of production 
which are extracellular and intracellular pectinases. Extracellular 
pectinases are simple to extract from the culture media. In the 
manufacture of extracellular pectinases, the downstream process 
stages are quite straightforward. An extracellular pectate lyase was 
discovered in a mutant strain of Bacillus tequilensis isolated from 
river samples, and it was discovered that it may be used in a variety 
of bioscouring procedures [12]. Extracellular pectinases generated by 
new strains such as Chryseobacterium indologenes are used in the fruit 
processing industry [13] Intracellular pectinases are produced within 
the cell, created, retained, and function inside the cell. Many stages 
are involved in the downstream process to destroy the cell and isolate 
the enzyme. The polygalacturonic acids found in deteriorating plant 
materials might be degraded by an intracellular polygalacturonic acid 
transeliminase isolated from Klebsiella and Yersinia species [14]

2.4. Biochemical Basis of the Structure Function Relationship
Following the discovery of the three-dimensional structural aspect of 
pectinases, the molecular basis of enzymatic action was discovered. 
Every single amino-acids play a function in the active regions of the 
enzymes; however, the structure-function connection researches of the 
available pectinases could be taken as the prototypes for the related 
family members. The pectinase(PelC) gene from Erwinia chrysanthemi 
was cloned in Escherichia coli and [15] explained its crystal structure. 
Similar configurations were revealed in other pectinase family 
members, of the species Bacillus subtilis pel [16], PelA and PelE 
of E. chrysanthemi [17,18], pectin lyasases such as PLA and PLB 
from Aspergillus niger reported in [19], the polygalacturonases of 
species Erwinia from [20], endo-polygalacturonase one and two from 
A. niger [21,22], respectively, endopolygalacturonase enzyme from 
the Fusarium species mentioned in the [23]. A large right-handed 
cylinder is a formed by each structure which is made of a single 
β-strand domain. The structural rules established were compatible 
with the parallel beta helix domain fold with novelty because of the 
peculiar positioning of the existing three parallel beta strands in every 
turn of the helix, the prism-shaped cylinder found in the center, and 
the complete helical turns’ (seven-nine) presence. The three parallel 
beta sheets, namely, the PB1, PB2, and lastly PB3 are made when the 
strands of the successive turns line-up. PB2 and the antiparallel beta 
sandwich formed by PB1 and PB2 are almost perpendicular. Even 
if the disintegration of pectin differs between esterases, lyases, and 
hydrolases, the sites of substrate binding which are determined by the 
sequences, structural similarities, and the site-directed mutagenesis 
studies are all the same. The structural changes in the loops are thought 
to be related to enzymatic and maceration features that are subtle. There 
is currently no organization in place to represent the PMG family.

2.4.1. Polygalacturonases or PG
According to [24], the polygalacturonase gene in the species of 
Aspergillus has a length of 1107–2495 nucleotides. Polygalacturonase 
I was isolated from A. niger and contains 367 aminoacids and 
1101 nucleotides. The glycoside hydrolase family 28 includes all 
polygalacturonases (endo or exo) (GH28). The four highly conserved 
areas were discovered after analyzing the sequences of aminoacid of 
every polygalacturonases from diverse origin. The amino acids of the 
mentioned four motifs are NTD, RIK G/SHG, and G/QDD, Two of these 
four regions (G/QDD and G/SHG) are catalytic, whereas the others 
(G/QDD and G/SHG) are substrate-binding. In most circumstances, 
the gap (amino acids number) between the preserved motifs is kept 
constant. It is probable that the exact spacing between the highly 
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conserved motifs is critical for substrate stability [25]. The anomeric 
structure of the product is inverted by the inversion of glycosidases by 
endo PG. A proton is supplied to the glycosidic oxygen by a general 
catalyst which is an acid, and a base with catalytic property directs 
the attack on nucleophile of a molecule of a molecule of water on the 
carbon which is anomeric of the galacturonate moiety bound at the-1 
subsite, which results in hydrolysis. The crystal or lattice structures of 
Stereum purpureum native, endo PG I, and ternary output complexes 
containing two molecules of galacturonate showed the substrate 
binding process, active site construction, and reaction process [26]. In 
site-directed mutagenesis tests, His195, Lys228, Arg226, and Tyr262 
which are charged amino acids of A. niger endo PG II produced a 
tenfold or higher increased Km values. The importance of carboxyl 
group specificity in subsite 1 for effective substrate binding has 
thus been verified. In comparison, replacing Asp173 only resulted 
in a twofold gain in Km but a significant loss in Kcat [27]. Asp173 
aminoacid is hypothesized to act as a basic acid catalyst, giving 
glycosidic oxygen a proton. The substrate’s strong binding to the sub 
site +1 is due to electrostatic interactions between carboxyl groups 
and the base residues, as well as the precise recognition of the epimer 
galactose. Endo PGs can only degrade free polygalacturonate and not 
substrates esterified by methyl, which explains why they can only 
cleave free polygalacturonate [26].

2.4.2. Poly galacturonate lyase or PGL
In the PGL family of proteins, they are thought to have a common 
enzymatic mechanism and the enzyme uses a beta-elimination 
action to cleave pectates at random, resulting in the non-reducing 
end with a trimer product with galacturonosyl residue consisting of 
4,5-unsaturated bond [28].

Three stages are involved in β-elimination reaction of pectinolytic 
cleavage), which are carboxyl group neutralization at the scissile 
glycosidic link, C5 proton removal plus the transfer of proton to the 
glycosidic oxygen. R218K PGL mutant which is catalytically inert, 
Pel C obtained from the strain Erwini chrysanthemi, and the cell wall 
fragment of a plant (penta Galp) make up the Michaelis complex. 
This is one of the PGL superfamily members’ structures that discloses 
critical insights about the enzyme process [29]. Within a single strand 
of pectate, the oligosaccharide to the protein is connected by the Ca2+ 
ions the surrounding uronic acid moieties are also connected the same 
way. The Ca2+ locations found differ significantly from the inter-strand 
Ca2+ ions hypothesized to connect PGA helices [7].

A protein-liganded calcium ion coordinates the −1 and +1 subsite 
saccharide carboxyl groups, the arginine catalytic base placed near to 
the alpha carbon hydrogen, and a number of other invariant enzyme 
substrate interactions, along with mutagenesis statistics, all link to a 
prevalent polysaccharide anti beta elimination path for Pectate lyase 
and Poly galacturonate lyase. The lack of homologs within pectate 
lyase families shows that these catalytically identical enzymes 
originated independently, which might be due to their different natural 
roles [30].

2.4.3. Pectin lyase or PL
In the same way as PGLs are cleaved by enzymes, PLs are cleaved 
by the same β-elimination process. PL, on the other hand, is selective 
for very high methylated versions of the substrate and it is not a must 
for calcium ions to be present for their functions. According to crystal 
structures, both the apo forms of A. niger pectin lyase A and A. niger 
pectin lyase B adopt the parallel helix fold and are physically nearly 
identical [31].

The substrate attachment clefts and catalytic activity appears to differ 
significantly in some structures of PGL and PL although they have 
many structural similarities in them, which may represent changes in 
substrate specificities.

Variability in substrate specificity is caused by two factors. To begin 
with, the active part cleft loops of PL are substantially longer and 
contain more of an intricate structure, containing two beta-strands that 
form an antiparallel beta sheet. Second, the presumed active site of PL 
enzyme features an aromatic cleft composed of tryptophans (four) and 
tyrosines(three), which contributes to active site’s architecture. Despite 
the fact that these enzymes have a similar structure and function, their 
strategies for identifying and binding substrates differ significantly [32].

2.4.4. Pectate Lyase or PeL
The lattice structures of pectate lyase C, pectate lyase E, and pectate 
lyase from the strain B. subtilis were found to have a parallel helix 
which is right-handed with a big loop area. This indicated that amino 
acids Asp184 and Arg 279 were conserved in the family of pectate and 
pectin lyase. The parallel helix on the other side consisted Val-Trp-Ile-
Asp-His (Val, Ile substitutable) which were conserved regions [32]. 
Besides from the helical structure, Cellvibrio japonicus and Yersinia 
enterocolitica both have unusual configurations such as (α/α) toroid 
and (α/α) barrel structures [33]. Pectate lyase C has 353 amino 
acids and two disulfide linkages, according to an early investigation 
and calcium ions are needed for their action [34]. There are eight 
coils in the parallel beta helix which is right-handed extracted from 
E. chrysanthemi, each of which has three strands which are linked by 
three turns, according to the precise structure. Due to the staking of the 
coils, three parallel sheets are created, and the structure is supported by 
a large network of inter-strand hydrogen bonding.

There are three main amino acids which make up the parallel helix’s 
core which are hydrophobic, aromatic, or polar amino acids. The 
above-mentioned amino acids are found to be in the interior and 
build lengthy ladders by forming amino acids from neighboring 
coils in a row. The amino acids on the outside part are arranged in 
a random pattern, forming loops of varied lengths that extend from 
the core. According to Vitali et al. [35], sequencing investigation of 
the 14 extracellular pectate lyases plus the 7 pectin lyases revealed 
10 unique amino acids clustered around the active region, five of 
these are associated to catalysis. The catalytically important amino 
acids are Asp131, Asp-144, His145, Thr206, and Arg218, whereas the 
remaining five amino acids which are Gly6, Gly12, G13, Trp-142, and 
Pro-220 are unreactive. Furthermore, there are two distinct clustering 
of amino acids: Asp131, Arg218, and Pro220 are found in the active 
site’s Ca2+ binding region, while the remaining seven amino acids are 
present on the contrary direction of the parallel helix.

2.4.5. Pectin methyl esterase or PME
Mayans et al. [36] mention that pectin methyl esterase is a carbohydrate 
esterase from the family 8. PME had been reported to have some of 
the conserved and also semi-conserved amino acids just like other 
pectinases in the multiple sequence alignment. PME is made up of 
helices that are right-handed and amino acids over 80% are located 
in the Ramachandran plot’s most favorable region. The 1–4 links of 
D galacturonosyl units which are the ester bonds are hydrolyzed by 
pectin methyl esterase, which results in galacturonosyl polymer and 
methanol which are negatively charged. 30–50KD was the weight of 
greater number of microbials pectinases [19]. The active site and the 
cleft that the substrate joins in PME’s are similar to that of PGL and 
PL, as a result, many aromatic amino acids surround the core region 
of the substrate binding cleft, in which Asp136 and Asp 157 are found 
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in the center of the active site. The function of Asp136 and Asp157 in 
PE action was shown by [37]. During the first cleavage phase during 
methanol releases, Asp157 attacks the carboxy methyl carbonyl carbon 
with a nucleophilic assault, while Asp136 may operate as a proton donor 
(acid). Later, Asp136 absorbs the hydrogen atom which is coming from 
the molecule of water. This breaks the bond between the enzyme and 
substrate which allows the enzyme to reactivate its active site.

3. LARGE-SCALE PRODUCTION OF MICROBIAL 
PECTINASE IN BIOREACTORS

Fermentation process needs to have a proper relationship with the 
microbe physiology and many of the fermentation factors; pH, 
temperature, aeration, moisture content, and the solid substrate used 
among others. Scaling up the SSF process and estimating biomass has 
become a big difficulty, prompting academics to work tirelessly to 
find answers. A variety of bioreactors have been developed that can 
help with scale-up fermentation process and, to some extent, online 
tracking of numerous factors. The modern bioreactors control the main 
difficulty faced in a traditional fermentation system which is heat and 
mass transfer [38,39]. Table 1 shows how various bioreactors are used 
along with specific microbes in pectinase production.

Figure 1 shows the commonly adopted different fermentation strategies 
for microbial pectinase production in general process.

4. PECTINASE PRODUCTION FROM WILD TYPE AND 
GENETICALLY MODIFIED ORGANISMS

4.1. Overview of Microbial Sources
Pectinase enzyme claims 10% from all manufacturing enzymes 
throughout the globe and out of all food enzymes, 25% of them are 

microbial pectinases. Pectinase enzymes can be obtained from higher 
plants and microorganisms both. However, microorganisms are mostly 
preferred in large scale production. Several microbes, for example, 
fungi, yeasts, bacteria, actinomycetes, and protozoan are involved in 
production of pectinases. Decaying plant tissue is the most common 
substrate for these microorganisms [33]. Production of microbial 
pectinase is more effectual due to usage of low-cost recyclable raw 
materials such as agroindustrial wastes, ease of production, and 
consist of certain physiochemical properties. Microbial pectinases 
are a main part of plant and microbe symbiosis, studies of diseases 
in plants caused by pathogenic microbes and dead organic material 
decomposition. There are several types of pectinolytic enzymes which 
have different molecular mass and kinetic properties (discussed in 
the previous section of this manuscript). Microbes which produce 
several pectinase enzymes are more efficient toward plant infection 
and degradation [54]. These pectinolytic enzymes are expressed either 
by one or several genes present in microbial genome. Production 
of the polygalacturonases is one of these examples. In Fusarium 
moniliforme (a pathogenic fungi), it is expressed by one gene but in 
A. niger, the same is encoded by a family of several genes [55]. In 
sixteen different growth conditions, A. niger reported the expression 
of 26 penctinolytic genes and this has been used for making a profile 
for each pectinolytic gene in the fungi [56]. Bacteria, fungi, or other 
genetically modified organisms capable of producing pectinases are 
called pectinolytic organism. Among then, pectinolytic bacteria are 
easily available, have short lifespan, environmentally friendly, and 
cheap source of production of pectinases [1,2]. Pectinolytic bacteria can 
withstand high pH and temperatures also [3,57]. Bacterial pectinases 
are slightly alkaline or neutral in pH. As a result, they are the better 
source for industrial applications. Bacillus sp., Pseudomonas sp., 
and actinomycetes are main sources of alkaline pectinases [3,58,59]. 
Bacterial enzymes are extracellular products so they can be easily 

Table 1: An outline of various bioreactors used in pectinase production.

Type of bioreactor Micro-organism used Substrate Principle Yield References

Pilot scale packed bed bioreactor Aspergillus niger Wheat bran, sugar 
cane bagass

SSF 1840 U/kg of dry solid per h [40]

Pilot scale packed bed bioreactor Aspergillus niger Wheat bran, sugarcane 
bagass

SSF 22U/g [41]

Packed bed bioreactor with recycled 
flow for continuous production

Kluyveromyces 
marxidnus

Spent grain SSF Volumetric productivity P 
(v)=0.98 U/ml/h

[42]

Pilot scale Packed bed bioreactor Aspergillus Oryzae Citrus pulp waste, 
sugarcane bagass

SSF 33 to 41 U/g [43]

Column tray bioreactor Aspergillus niger Lemon peel pomace SSF Approx. 2181 U/l [44]

Tray bioreactor Aspergillus sojae Bran of wheat SSF 298 U/g substrate [45]

Surface culture bioreactor Aspergillus niger Pectin SSF Exo-PGase and Endo-PGase 1.5 
and 0.014 U/ml respectively.

[46]

Double surface bioreactor Aspergillus niger Wheat bran SSF 45 U/g [47]

Rotatory drum bioreactor Aspergillus niger Rice bran SSF 4 U/g [48]

Rotatory drum bioreactor Aspergillus niger Sugarcane bagass, 
orange pomace

SSF ND [49]

Stirred Tank bioreactor Aspergillus flavipes Orange peelo Submerged 
fermentation

Exo 670.7 and endo 28.2 U/l/h 
batch fermentation 

[50]

Packed bed and tray-type Aspergillus awamori Grape pomace and 
orange peel

SSF 4 IU/g [51]

Flask reactor Bacillus sp. DT7 Wheat bran, rice bran 
and apple pomace

SSF 8050 U/g [52]

Flask type Aspergillus tubingensis Papaw peelings SSF 246.83 U/g [53]
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obtained [60]. Bacillus and Cocci species account for approximately 
half of commercial enzyme production [61,62]. Bacterial strains are 
easy to modify so enzyme technologies are applied on these to produce 
high yield of pectinase enzymes through genetic modifications [63]. 
Thirty strains of Bacillus polymyxa were used for production of 
pectin and pectic acid as of the first in vitro fermentation studies that 
reported back in 1955 [64]. Some other examples of bacterial sources 
are Pseudomonas solanacearum (Schell et al. 1994), Lactobacillus 
lactis subsp. Cremoris [65], E. chrysanthemi B341 [66], Lachnospira 
pectinoschiza [67], and E. chrysanthemi 3604 [68]. Pectinase from 
fungi is commonly used in fruit juices preparations because their 
pH value is also similar to many fruit juices which ranging from 
pH 3–5.5 [69,33]. In this sector, almost 90% enzyme is extracted using 
molds such as Trichoderma harzianum, A. niger, and Rhizopus into 
the culture medium [70]. However, rather than fungi, bacteria are used 
in industrial application, because fungi tend to secret several enzymes 
with pectinolytic enzymes which lead to turbidity and resulting high 
cost in production process. Some of examples major of pectinolytic 
fungi are A. niger [71,72], Phytophthora infestans [73], Penicillium 
frequentans [74], and Penicillium occitanis [75]. Other than that 
pectinase enzyme is also found in yeast such as Rhodotorula sp. [76], 
Saccharomyces cerevisiae [77], and nematodes, protozoan, insects, 
and higher plants.

4.2. Arena of Genetic Engineering for Commercial Microbial 
Pectinase Production
First, commercial microbial pectinase was produced in 1930 by 
Kertesz for apple juice clarification. Commercialized production of 
microbial pectinase is being continuously improved through using 
low-cost raw materials as substrate, multisteps screening processes of 
microbes, implementation of novel technologies strain improvement, 
modified fermentation techniques, etc. [33,78]. For the production of 
commercially available pectinases involved these microorganisms such 
as Pectinex SP-L, Novo Nordisk Pectinex TM, Pectinex SP-L [79], and 
Pectinex 1XL at several industries like CCM International Ltd and 
Carolina Biological Supply Company [80]. The production can be either 
submerged or SSF [81]. SSF technique can be applied with Aspergillus 
awamori [63,82], B. subtilis [83], and Penicillium viridicatum [84] 
whereas submerged fermentation is mostly applied in production of 
xylano-pectinolytic enzymes from B. pumilus [85]. SSF technology 
is easier and simpler, requires lower space and low cost, and it also 
improves the conditions of higher filamentous fungi which grow on 
solid wet substrates and their spores become more stable, resistant to 
drying, and even after freeze drying, they have higher germination 
period of time compared to submerged fermentation [86].

Some high yielding natural isolates are Xanthomonas, Pseudomonas, 
Erwinia, Streptomyces sp. QG-11-3, Thermotoga maritima, A. niger, 
Aspergillus flavus, Fusarium oxysporum, Rhizopus stolonifer, Mucor 
racemous, Mucor hiemalis, Penicillium jenseni, Penicillium citrinum, 
and Trichoderma viride [87,88]

As the main target of strain improvement is to produce high yield of 
pectinase enzyme, to achieve this outcome can use methods such as 
recombination/gene transfer, genome shuffling, mutations, protoplast 
fusion, and other genetic engineering techniques [4] Recombinant 
technologies are often used to produce strains that have high expression 
of certain protein and it leads to high purity of enzyme which might 
be industrial point of interest. Various expression hosts such as E. coli, 
S. cerevisiae, and Pichia pastoris are used to produce highly efficient 
enzymes using their promoter control in recombinant technology. 

These enzymes tend to have more yield, tolerance to high temperature, 
and pH which can be useful in various applications. Those examples 
of recombinant sources produce higher yield of pectinases than wild 
type strains. In addition, other than physical-induced mutations such as 
UV-induced spontaneous mutations have been reported in Penicillium 
griseoroseum mutant strains which leads to 7.8-fold greater yield 
than the normal type [89]. Some recent findings showed that that 
Pel (BacPelA) gene from Bacillus clausii expressed in E. coli can 
increase the pectinase production up to 8378.2 U/ml [90] whereas endo 
polygalacturanase acid stable gene from Penicillium oxalicum and 
Aspergillus aculeatus, respectively, expressed in P. pastoris can increase 
the pectinase production up to 1828.7 U/ml [91] and 2408.7 U/ml 
[92], respectively. Similar trend was observed during expression gene 
encoding polygalcturonase from plasmid pAN52pgg2 in P. griseoroseum 
resulting 266-fold greater production of pectin lyase and 27-fold greater 
times of polygalacturonase than the normal strain [93].

To study about the mechanism and active site of pectate lyase, several 
sites directed mutagenesis experiments have been used in strains 
of E. chrysanthemi and A. niger [94]. In addition, studies related to 
mutagenesis reported substrate bindings to Ca2+ ions as a complex and 
absolute requirement for pectate lyase [95]. Further studies showed that 
single mutations in Xanthomonas campestris have been also initiated 
to yield thermostable pectate lyase enzymes and directed studies used 
on producing 12 mutants of pectate lyase, which are more tolerant 
to the higher temperature than parental strains [96]. Site directed 
mutagenesis based on polygalactauronidase used to indicate sites 
of histidine and aspartic acid amino acids which are part of enzyme 
activity using recombinant stains of S. cerevisiae in P. pastoris.

Another couple of simple yet powerful new techniques are genome 
shuffling and protoplast fusion. For high pectinase production, 
accelerating the process of directed evolution by promoting the 
recombination among diverse mutants with improved genotypes for 
breeding is known as Genome shuffling [97]. In this experiment, Patnaik 
and his colleagues took natural strain B. subtilis ZGL 14 and treated 
them with UV and 60Co-γ irradiation and resulted mutated strains of 
B. subtilis UV12, UV10 and UV-S45 (resulted from UV treatment), 
and B. subtilis C-S50 and S9 (obtained from 60Co-γ irradiation) which 
has higher alkaline pectinase activity than the natural strain B. subtilis 
ZGL 14. Then, used these transformed colonies and natural strain of 
B. subtilis ZGL14 as parental strains for genome shuffling, at the end 
of the first round of genome shuffling, 106 colonies were selected and 
resulted in 30% of enhancement in production of alkaline pectinase 
production. After that 150 colonies were obtained at the end of the 
second round of genome shuffling and screened. Finally, it resulted in 
nine mutated strains. Among them, B. subtilis FS105 had the highest 
enzymatic yield of alkaline pectinase and it was 1.6 times higher than 
the natural stain B. subtilis ZGL14.

Aspergillus carbonarius is a fungus which is well known for production 
of high yield of pectinase but on the solid substrate of wheat bran, 
due to the weak colonization, it shows low pectinase production. 
To overcome this [4] carried out a strain improvement process to 
obtain high yield of pectinase production by interspecific fusion of 
protoplasts of A. carbonarius and A. niger resulted mutant strain which 
has capability of producing high yield of pectinase enzyme because 
due to the genetic recombination occurred during the protoplast fusion, 
the genetic character which reasons higher production of pectinase has 
acquired from the A. niger.

In the category of chemical mutagenic agents, a study by [98], 
Aspergillus tamarii strain RMLC-10, which was isolated from spoiled 
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chicku subjected into sodium azide, nitrous acid, EMS treatment, 
and UV treatment. Among these highest enhanced activity of 
polygalacturonase production was detected by Aspergillus tamarii 
mutant strain SA-11 after subjecting conidial suspension to the 1% (w/v) 
sodium azide solution for different periods of time. In this case, sodium 
azide had directly affected the genetic composition by functioning 
on precursors in metabolic pathways of particular fungal strain and 
resulted enhanced production of polygalacturonase enzyme [99,100] 
found a successful way to enhance the activity of pectinase enzyme 
after subjecting Penicillium notatum strain MH-61 to nitrous acid 
and EtBr (ethidium bromide) by following the previous experiment 

of [101]. According to his methodologies at first, centrifuged spore 
suspension of P. notatum strain MH-61 washed with phosphate buffer 
and then treated with sodium acetate. Second, different concentrations 
of sodium nitrate solutions were added, and after 10 min, phosphate 
buffer was added to stop the reaction. As nitrous acid has the ability 
to remove amino groups from Adenine, Cytosine, and Guanine, it 
leads to oxidative deamination of nitrogenous bases [102]. To increase 
pectinolytic activity of an enzyme, P. notatum MH-61 was treated 
with (0.5 mg/ml) ethidium bromide resulting in nine mutant strains. 
The highest enzyme activity was detected from P. notatum MH-EB9 
mutant strain and it was enhanced by 1.84 folds as compared to the 

Table 2: Novel technologies for enhanced pectinase production.

Targeted host/sample for study Genetic engineering 
approach

Observation/Findings References

Rumen of diary-cow Meta genomic analysis Identification of pectinolytic microbes like Ruminococcus, 
Bacteroides sp., Prevotella sp. etc.

[105]

Sheep Meta genomic analysis Presence of pectinase producing genes of Fibrobacter, 
Bacteroides, Butyrivibrio, and Prevotella

[106]

Soil Meta genomic analysis Opening reading frame expressed in E. coli which is similar 
to Bacillus licheniformis which process under wide range of 
temperature and pH

[107]

Recombinant expression of pelB gene in 
E. coli from soil meta-genome

Meta genomic analysis Better bioscouring agent for textile industry [108]

Thermophilic compost meta-genome Meta genomic analysis Presence of pectin lyase, polygalacturonas, arabinofuranosidase 
and galactosidase which are pectin degrading enzymes

[109]

Mutant strains of P.expansum and 
P.griseoroseum

Metabolic engineering Use of calcium ions and Polyethylene glycol resulted in 
recombinant RGE27 with 3-fold and 1.2 fold increase in 
polygalacturonase and pectin lyase

[110]

First 6 signal peptides in Bacillus 
subtilis

Metabolic engineering poly galacturonidase production with comparative and screening 
analysis resulted in Efficient poly galacturonidase secretory 
expression with yield of 313.7 U/ml

[111,112]

Bacillus subtilis Metabolic engineering Use of Shine-Dalgarno sequence and strong P43 promoter 
resulted in increase of poly galacturonidase to 446.3 U/ml

[112,113]

Bacillus subtilis Metabolic engineering Use of fed batch fermenter techniques resulted in 17.6 U/ml/h 
productivity and 632.6 U/ml yield

[113,114]

Figure 1: Different fermentation strategies for microbial pectinase production.
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Table 3: Purification strategies for microbial pectinase.

Microbial source of 
pectinase

Purification strategy Specification Result References

Trichoderma viridi Ammonium sulfate 
precipitation

Gradual precipitation from 30% up to 90% 
in 5% increments followed by dialysis using 
0.01 M Tris-HCl buffer 

97.2 U/mg specific 
activity

Irshad et al., 2014 [115]

Streptomyces 
chartreusis

Ammonium sulfate 
precipitation

Gradual precipitation followed by dialysis 
using 0.08% Sodium azide

42.09 U/mg specific 
activity

Patel et al., 2021 [116]

Bacillus subtilis Ammonium sulfate 
precipitation

Gradual precipitation up to 65% followed by 
dialysis using phosphate buffer

217.44 U/mg specific 
activity

Takcı et al., 2016 [117]

Bacillus tequilensis Ammonium sulfate 
precipitation

Gradual precipitation up to 70% followed by 
dialysis using 2% NaHCO3, 0.05% EDTA

1.5% (w/v) pectin 
concentration

Koshy et al., 2019 [118]

Penicillium 
cyclopium

Aqueous two-phase 
system

(NH4)2SO4 has been used as the salt while 
polyethylene glycol 4000, polyethylene 
glycol 1000, polyethylene glycol 1500, 
polyethylene glycol 6000 polyethylene glycol 
10 000 and fractionated dextran (Mr~500 
000) used as the polymers

Purification factor of 1.28 
for the endo-pectinase 
activity

Prodanović et al., 2008 [119]

Polyporus 
squamosus

Aqueous two-phase 
system

Polyethylene glycol 4000 (PEG) as the 
polymer against a crude dextran

Partition coefficient of 
2.45 for endo pectinase

Antov, 2004 [120]

Aspergillus oryzae Aqueous two-phase 
system

Micellar Triton X-114/sodium phosphate 20% concentrated crude 
extract (wt/wt).

Jaramillo et al., 2013 [121]

Aspergillus niger Aqueous two-phase 
system

First alcohol and salt ATPS with different 
ratios such as 16/16, 18/20, 20/20 and 24/22 
(by mass)

51.4% Trentini et al., 2020 [122]

Aspergillus niger Aqueous two-phase 
system

PEG - Potassium phosphate buffer with 16, 
18, 20 and 28% (by mass)

4.8% Trentini et al., 2020 [122]

Rhizopus oryzae Sephadex size exclusion 
chromatography method

Sephadex G-25 column NS Hamdy, 2005 [123]

Hylocereus 
polyrhizus

Sephadex size exclusion 
chromatography method

Sepharacryl S-100 column NS Amid et al., 2014 [124]

Aspergillus niger Sephadex size exclusion 
chromatography method

Sephadex G -100 column NS Mehmood et al., 2019 [125]

Schizophyllum 
commune

Gel method SDS PAGE method 355 U/mg specific activity Ahmed et al., 2016 [126]

Hylocereus 
polyrhizus

Sephadex size exclusion 
chromatography method

Sephadex G-75 NS Khatri et al., 2015 [127]

Aspergillus niger Affinity Precipitation Microwave treated alginate incubated with 
Pectinex Ultra SPL and mixed with acetate 
buffer followed by sephadex G-25 separation 

83% recovery Mondal et al., 2004 [128]

Aspergillus niger Affinity Precipitation Magnetic latex beads for absorption of enzyme 
then desorbed using carbodiimide coupling

81% recovery Tyagi et al., 1995 [129]

wild strain’s activity due to the planar structure of EtBr gets inserted 
between nitrogenous bases of DNA as it known as an intercalating 
agent [102]. In another similar experiment conducted by [103], A. niger 
was subjected to ethidium bromide (6 mg/ml) treatment for 60 min 
and resulted in 1.44 times enhanced yield of pectinase as compared 
to parent strain. The experiment of [102] shows contradictory results 
when comparing to the experiment of [103] The reason might be 
the P. notatum used in the experiment of [102] was more prone to 
mutagenesis by ethidium bromide even at low concentrations.

In the category of physical mutagenic agents, experiment which was 
carried out to study the effect of UV Light in strain improvement of P. 
notatum MH-61 by [100], the particular fungal strain was subjected to 
UV treatment for different intervals of time. At 60 min of UV exposure, 
the growth of fungal strain was completely inhibited. Repeatedly 
carried out the experiment for several rounds and resulted in five mutant 
strains. The mutant strain Penicillium notatum MHUV9 was detected 

for the highest activity of pectinase enzyme and it was i.e., 5.1 ± 0.10 
U/ml/min. Munir and his colleagues were followed the procedure 
mentioned in Shakibaie et al., 2018 and resulted seven mutant variants 
of Aspergillus tamarii RMLC strain, after 1 mL of conidial suspension 
was subjected to UV light for different time of exposures [98]. Haq et al. 
[104] carried out an experiment to reveal the possible mechanisms and 
pathways that are reasonable to the enhanced activity of production of 
pectinase enzyme by A. niger mutant strain EIMU2 and it was the result 
of mutation occurred in wild type A. niger EIM-6 after exposing to the 
UV treatment. In this experiment, to achieve comparative proteomics of 
wild and mutant strains after extracting crude enzymes from two strains, 
they have respectively followed the steps of filtration, precipitation, 
dialyzation, and concentration. Then, performed Bradford method for 
quantitative assay and resulted highest concentration of enzyme from 
A. niger mutant strain EIMU2 which achieved from UV mutagenesis of 
wild type A. niger EIM-6 and it was 8.92 lg/lL. The different dilutions 
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of cell suspensions of soil fungi A. niger were prepared and exposed 
to UV germicidal lamp (256 nm). Survived microbial colonies were 
isolated and screened to determine the improvement of the pectinase 
enzyme yield [103]. In the past decade, novel technologies considered 
with microbial pectinase production have been modified with cutting 
edge molecular biology tools to produce more efficient pectinolytic 
enzymes with specific characteristics and to produce more affordable 
sources of pectinases than the commercial fungal species. As a result, 
hyper active and thermos-tolerant pectinases which are made due to 
changes in primary structure are being produced by protein engineering 
and in vitro evolution techniques. Table 2 showed some of these novel 
technologies along with their observations where metagenomics and 
metabolic engineering approach has been introduces for enhance 
pectinase production. Table 3 suggests assorted references and their 
preliminary purification strategies for pectinases for specific microbes 
after fermentation. Figure 2 shows the commonly adopted different 
novel strategies for enhanced production strategies for microbial 
pectinase in general process.

5. CONCLUSION AND FUTURE PERSPECTIVE

The enzymes from biological origins are substituting conventional 
chemicals in food and pharma industries as they reduce the energy 
demand for substrate transformation and do not produce any 
greenhouse gas in the nexus of global warming to carbon neutrality. 
Microbial enzymes especially pectinase are being applied in various 
industries (textiles, leather, paper and pulp, research and development, 
pharmaceutical, agriculture, detergent, waste, biorefineries, 
photography, and food industries), thus making them very essential in 
several industrial production processes. Microbes are being preferred 
by the researchers as their survival capability in harsh conditions, high 
growth rate, low space requirement, independent to seasonal variations, 
and many more. To meet the ever-increasing demand, conventional 
optimization procedures are still in process and seem favorable for 
pectinase cocktail production. However, as discussed throughout 
the manuscript – the forthcoming enzyme biotechnology relying 
on genetic engineering centered optimization strategies. Although 
microbes are exceptionally suitable for valuable metabolite products, 
they typically make them for their personal benefits – thus, avoiding 

overproduction of the metabolites. In strain improvement, genetics 
have had a protracted narration of contributing diverse microbial 
products in the form of mutagenesis and screening/selection for high 
yield microbial strains and recombinant DNA technology. In addition, 
novel strategies like metagenomic study showing promising results in 
which expression vectors from existing diversified wild strain microbes 
can be protracted to screen metagenomes particularly in archaebacteria 
for high value pectinase production. Microbial pectinases can also 
be produced through unconventional metabolic engineering (e.g., 
proteomic study) practices to integrate novel properties thus leading 
to augmented impending marketable application. In this way, the 
expedition for novel tactics for enhanced microbial pectinases 
production shall indubitably be the utmost imperative field for the 
future study in terms of industrially important enzymes.
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