Review Article | Volume 11, Issue 1, January, 2023

Elevating algal biomass generation toward sustainable utilization for high value added biomolecules generations

Kamalendu De Shrestha Debnath Dipankar Ghosh   

Open Access   

Published:  Nov 22, 2022

DOI: 10.7324/JABB.2023.110103
Abstract

Existing supply of high value added products including protein supplement and bio-commodity resources would not meet the demand of biomolecules including food supplements and community biomolecules. Hence, an alternate and unconventional source of high value added products including protein supplement and bio-commodity resources need to be explored. Algal biomasses are potential biocatalysts which produce food supplements and other value-added products. Due to anthropogenic activities and global warming brings environmental stress associated factors on plants and algae biomass generation. Algae have tremendous efficiency to sequestrate CO2 to minimize global warming and enhance high value added biomolecules generations. Phycoprospecting effort would help to identify the naive algal strains for sustainable biorefinery, the source of food supplements, feeds, biofuels, nutraceuticals, and the other value added products. Hence, current study focuses on strategies to elevate the algal biomass generation using native and genetic engineered algae for ameliorating high value added biomolecule generation for community.


Keyword:     Biomass Carbon dioxide sequestration Poverty cycle Phycoprospecting Genetic engineering


Citation:

De K, Debnath S, Ghosh D. Elevating algal biomass generation toward sustainable utilization for high value added biomolecules generation. J App Biol Biotech. 2023; 11(1):16-27. https://doi.org/10.7324/JABB.2023.110103

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Mostafa SS. Microalgal biotechnology: Prospects and applications. Plant Sci 2012;12:276-314.

2. Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL, Lassaletta L, et al. Options for keeping the food system within environmental limits. Nature 2018;562:519-25.https://doi.org/10.1038/s41586-018-0594-0

3. Harvey M, Pilgrim S. The new competition for land: Food, energy, and climate change. Food Policy 2011;36:S40-51.https://doi.org/10.1016/j.foodpol.2010.11.009

4. Enzing C, Ploeg M, Barbosa M, Sijtsma L. Microalgae-based Products for the Food and Feed Sector: An Outlook for Europe. JRC Scientific and Policy Reports; 2014. p. 19-37.

5. Milledge JJ. Commercial application of microalgae other than as biofuels: A brief review. Rev Environ Sci Biotechnol 2011;10:31-41.https://doi.org/10.1007/s11157-010-9214-7

6. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101:87-96.https://doi.org/10.1263/jbb.101.87

7. Wilkie DS, Bennett EL, Peres CA, Cunningham AA. The empty forest revisited. Ann N Y Acad Sci 2011;1223:120-8.https://doi.org/10.1111/j.1749-6632.2010.05908.x

8. Scott D, Becken S. Adapting to climate change and climate policy: Progress, problems and potentials. J Sustain Tour 2010;18:283-95.https://doi.org/10.1080/09669581003668540

9. Renita A, Kumar PS. Valorization of waste algal boom for value-added products. In: Bioprocess Engineering for Bioremediation. Berlin, Cham: Springer; 2020. p. 129-37.https://doi.org/10.1007/698_2020_579

10. Yadav G, Sen R. Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: Recent technological advances in climate research. J CO2 Util 2017;17:188-206.https://doi.org/10.1016/j.jcou.2016.12.006

11. Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25:294-306.https://doi.org/10.1016/j.biotechadv.2007.02.001

12. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 2008;34:77-88.https://doi.org/10.1080/10408410802086783

13. Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl Microbiol Biotechnol 2007;74:1163-74.https://doi.org/10.1007/s00253-007-0844-9

14. Ghosh D, Hallenbeck PC. Cyanobacteria and photosynthetic bacteria: Metabolic engineering of hydrogen production. U S Air Force Acad 2015;8:112-24.https://doi.org/10.4155/fseb2013.14.343

15. Ghosh D, Hallenbeck PC. Metabolic engineering of hydrogen production by green algae. Adv Enzym Convers Biomass Biofuels 2015;1:96-110.https://doi.org/10.4155/fseb2013.14.296

16. Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US department of Energy's aquatic species program: Biodiesel from algae. Natl Renew Energy Lab 1998;328:1-294.https://doi.org/10.2172/15003040

17. Khoeyi ZA, Seyfabadi J, Ramezanpour Z. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 2012;20:41-9.https://doi.org/10.1007/s10499-011-9440-1

18. De Clerck O, Guiry MD, Leliaert F, Samyn Y, Verbruggen H. Algal taxonomy: A road to nowhere? J Phycol 2013;49:215-25.https://doi.org/10.1111/jpy.12020

19. Ciferri O. Spirulina, the edible microorganism. Microbiol Rev 1983;47:551-78.https://doi.org/10.1128/mr.47.4.551-578.1983

20. Holm?Hansen O, Gerloff GC, Skoog F. Cobalt as an essential element for blue?green algae. Physiol Plant 1954;7:665-75.https://doi.org/10.1111/j.1399-3054.1954.tb07727.x

21. Polle JE, Kanakagiri SD, Melis A. Tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 2003;217:49-59.https://doi.org/10.1007/s00425-002-0968-1

22. Adedayo MR, Ajiboye EA, Akintunde JK, Odaibo A. Single cell proteins: As nutritional enhancer. Adv Appl Sci Res 2011;2:396-409.

23. De K, Ghosh D. Microbial single cell protein generation: A comparative existing state of art. In: De D, Roy DS, Bera GC, editors. Biotechnology and Nature. Midnapore Sadar: Kabitika; 2018. p. 94-8.

24. Suman G, Nupur M, Anuradha S, Pradeep B. Single cell protein production: A review. Int J Curr Microbiol Appl Sci 2015;4:251-62.

25. Heidarpour A, Fourouz AD, Eghbalsaied S. Effects of Spirulina platensis on performance, digestibility and serum biochemical parameters of Holstein calves. Afr J Agric Res 2011;6:5061-5.

26. Juneja A, Ceballos RM, Murthy GS. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies 2013;6:4607-38.https://doi.org/10.3390/en6094607

27. Khan MI, Shin JH, Kim JD. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 2018;17:1-21.https://doi.org/10.1186/s12934-018-0879-x

28. Godman JE, Molnár A, Baulcombe DC, Balk J. RNA silencing of hydrogenase (-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. Biochem J 2010;431:345-52.https://doi.org/10.1042/BJ20100932

29. Pinto TS, Malcata FX, Arrabaça JD, Silva JM, Spreitzer RJ, Esquível MG. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 2013;97:5635-43.https://doi.org/10.1007/s00253-013-4920-z

30. Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF. An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 2014;5:331-49.https://doi.org/10.1080/17597269.2014.913925

31. De Morais MG, Vaz BD, De Morais EG, Costa JA. Biologically active metabolites synthesized by microalgae. BioMed Res Int 2015;2015:835761.https://doi.org/10.1155/2015/835761

32. Michalak I, Chojnacka K. Algae as production systems of bioactive compounds. Eng Life Sci 2015;15:160-76.https://doi.org/10.1002/elsc.201400191

33. Santhosh S, Dhandapani R, Hemalatha N. Bioactive compounds from microalgae and its different applications - a review. Adv Appl Sci Res 2016;7:153-8.

34. Basily HS, Nassar MM, El Diwani GI, El-Enin SA. Exploration of using the algal bioactive compounds for cosmeceuticals and pharmaceutical applications. Egypt Pharm J 2018;17:109-20.https://doi.org/10.4103/epj.epj_6_18

35. Balasubramaniam V, Gunasegavan RD, Mustar S, Lee JC, Mohd Noh MF. Isolation of industrial important bioactive compounds from microalgae. Molecules 2021;26:943.https://doi.org/10.3390/molecules26040943

36. Del Pozo JC, Lopez?Matas MA, Ramirez?Parra E, Gutierrez C. Hormonal control of the plant cell cycle. Physiol Plant 2005;123:173-83.https://doi.org/10.1111/j.1399-3054.2004.00420.x

37. Salama ES, Hwang JH, El-Dalatony MM, Kurade MB, Kabra AN, Abou-Shanab RA, et al. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. Bioresour Technol 2018;258:365-75.https://doi.org/10.1016/j.biortech.2018.02.006

38. Davies PJ. Regulatory factors in hormone action: Level, location and signal transduction. In: Plant Hormones. Netherlands, Dordrecht: Springer; 2010. p. 16-35.https://doi.org/10.1007/978-1-4020-2686-7_2

39. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 2004;166:731-8. 40. Bajguz A, Piotrowska-Niczyporuk A. Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 2014;80:176-83.https://doi.org/10.1016/j.plaphy.2014.04.009

41. Kokkiligadda S, Pandey B, Ronda SR. Effect of plant growth regulators on production of alpha-linolenic acid from microalgae Chlorella pyrenoidosa. S?dhan? 2017;42:1821-4.https://doi.org/10.1007/s12046-017-0723-8

42. Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, Zambrzycka-Szelewa E, Sienkiewicz A. Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Sci Rep 2020;10:1-4.https://doi.org/10.1038/s41598-020-67085-4

43. Bajguz A. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem 2000;38:209-15.https://doi.org/10.1016/S0981-9428(00)00733-6

44. Correa-Aguado HC, Cerrillo-Rojas GV, Rocha-Uribe A, Soria-Guerra RE, Morales-Domínguez JF. Benzyl Amino purine and gibberellic acid coupled to nitrogen-limited stress induce fatty acids, biomass accumulation, and gene expression in Scenedesmus obliquus. Phyton 2021;90:515.https://doi.org/10.32604/phyton.2021.013619

45. Chu WL. Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. Europ J Phycol 2017;52:419-37.https://doi.org/10.1080/09670262.2017.1379100

46. Sajjadi B, Chen WY, Raman AA, Ibrahim S. Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sustain Energy Rev 2018;97:200-32.https://doi.org/10.1016/j.rser.2018.07.050

47. Paliwal C, Mitra M, Bhayani K, Bharadwaj SV, Ghosh T, Dubey S, et al. Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 2017;244:1216-26.https://doi.org/10.1016/j.biortech.2017.05.058

48. Dall'Osto L, Cazzaniga S, Guardini Z, Barera S, Benedetti M, Mannino G, et al. Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures. Biotechnol Biofuels 2019;12:1-7.https://doi.org/10.1186/s13068-019-1566-9

49. Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, et al. Environment-enhancing algal biofuel production using wastewaters. Renew Sustain Energy Rev 2014;36:256-69.https://doi.org/10.1016/j.rser.2014.04.073

50. Bhatnagar A, Chinnasamy S, Singh M, Das KC. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 2011;88:3425-31.https://doi.org/10.1016/j.apenergy.2010.12.064

51. Kumar SS, Saramma AV. Effect of plant growth regulators on growth and pigment composition of microalga, Nannochloropsis salina DJ Hibberd. Appl Biol Res 2018;20:228-33.https://doi.org/10.5958/0974-4517.2018.00031.9

52. Fu W, Wichuk K, Brynjólfsson S. Developing diatoms for value-added products: Challenges and opportunities. N Biotechnol 2015;32:547-51.https://doi.org/10.1016/j.nbt.2015.03.016

53. Moreno-Garcia L, Adjallé K, Barnabé S, Raghavan GS. Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renew Sustain Energy Rev 2017;76:493-506.https://doi.org/10.1016/j.rser.2017.03.024

54. Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol Adv 2013;31:1532-42.https://doi.org/10.1016/j.biotechadv.2013.07.011

55. Chen B, Wan C, Mehmood MA, Chang JS, Bai F, Zhao X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-a review. Bioresour Technol 2017;244:1198-206.https://doi.org/10.1016/j.biortech.2017.05.170

56. Jaiswal KK, Banerjee I, Singh D, Sajwan P, Chhetri V. Ecological stress stimulus to improve microalgae biofuel generation: A review. Octa J Biosci 2020;8:48-54.

57. Lage S, Gojkovic Z, Funk C, Gentili FG. Algal biomass from wastewater and flue gases as a source of bioenergy. Energies 2018;11:664.https://doi.org/10.3390/en11030664

58. Cho K, Heo J, Cho DH, Tran QG, Yun JH, Lee SM, et al. Enhancing algal biomass and lipid production by phycospheric bacterial volatiles and possible growth enhancing factor. Algal Res 2019;37:186-94.https://doi.org/10.1016/j.algal.2018.11.011

59. Yu X, Chen L, Zhang W. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 2015;6:56.https://doi.org/10.3389/fmicb.2015.00056

60. Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, et al. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour Technol 2015;175:578-85.https://doi.org/10.1016/j.biortech.2014.10.159

61. Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, Vílchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 2016;14:100.https://doi.org/10.3390/md14050100

62. Sharma J, Kumar SS, Bishnoi NR, Pugazhendhi A. Enhancement of lipid production from algal biomass through various growth parameters. J Mol Liq 2018;269:712-20.https://doi.org/10.1016/j.molliq.2018.08.103

63. Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, et al. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ 2020;704:135303.https://doi.org/10.1016/j.scitotenv.2019.135303

64. Gorain PC, Bagchi SK, Mallick N. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environ Technol 2013;34:1887-94.https://doi.org/10.1080/09593330.2013.812668

65. Salama ES, Kim HC, Abou-Shanab RA, Ji MK, Oh YK, Kim SH, et al. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosys Eng 2013;36:827-33.https://doi.org/10.1007/s00449-013-0919-1

66. Singh P, Guldhe A, Kumari S, Rawat I, Bux F. Combined metals and EDTA control: An integrated and scalable lipid enhancement strategy to alleviate biomass constraints in microalgae under nitrogen limited conditions. Energy Convers Manag 2016;114:100-9.https://doi.org/10.1016/j.enconman.2016.02.012

67. Singh P, Guldhe A, Kumari S, Rawat I, Bux F. Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J 2015;94:22-9.https://doi.org/10.1016/j.bej.2014.10.019

68. Fuhrmann M. Expanding the molecular toolkit for Chlamydomonas reinhardtii-from history to new frontiers. Protist 2002;153:357.https://doi.org/10.1078/14344610260450082

69. Franklin SE, Mayfield SP. Prospects for molecular farming in the green alga Chlamydomonas reinhardtii. Curr Opin Plant Biol 2004;7:159-65.https://doi.org/10.1016/j.pbi.2004.01.012

70. Coll JM. Methodologies for transferring DNA into eukaryotic microalgae: A review. Span J Agric Res 2006;4:316-30.https://doi.org/10.5424/sjar/2006044-209

71. Tam LW, Lefebvre P. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 1993;135:375-84.https://doi.org/10.1093/genetics/135.2.375

72. Sugimoto I, Hiramatsu S, Murakami D, Fujie M, Usami S, Yamada T. Algal-lytic activities encoded by Chlorella virus CVK2. Virology 2000;277:119-26.https://doi.org/10.1006/viro.2000.0590

73. Jin E, Polle JE, Melis A. Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina. Biochim Biophys Acta 2001;1506:244-59.https://doi.org/10.1016/S0005-2728(01)00223-7

74. Teng C, Qin S, Liu J, Yu D, Liang C, Tseng C. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 2002;14:497-500.https://doi.org/10.1023/A:1022314815045

75. Doetsch NA, Favreau MR, Kuscuoglu N, Thompson MD, Hallick RB. Chloroplast transformation in Euglena gracilis: Splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Genet 2001;39:49-60.https://doi.org/10.1007/s002940000174

76. Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M. Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 2002;129:7-12.https://doi.org/10.1104/pp.011023

77. Cerutti H, Johnson AM, Gillham NW, Boynton JE. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: Integration into the nuclear genome and gene expression. Genetics 1997;145:97-110.https://doi.org/10.1093/genetics/145.1.97

78. Stevens DR, Purton S, Rochaix JD. The bacterial phleomycin resistance geneble as a dominant selectable marker inChlamydomonas. Mol Gen Genet 1996;251:23-30.https://doi.org/10.1007/BF02174340

79. Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, et al. Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. Plant Mol Biol 1998;38:839-59.https://doi.org/10.1023/A:1006085026294

80. Pinnola A, Cazzaniga S, Alboresi A, Nevo R, Levin-Zaidman S, Reich Z, et al. Light-harvesting complex stress-related proteins catalyze excess energy dissipation in both photosystems of Physcomitrella patens. Plant Cell 2015;27:3213-27.https://doi.org/10.1105/tpc.15.00443

81. Gomaa MA, Al?Haj L, Abed RM. Metabolic engineering of cyanobacteria and microalgae for enhanced production of biofuels and high?value products. J Appl Microbiol 2016;121:919-31.https://doi.org/10.1111/jam.13232

82. Pathak J, Ahmed H, Singh PR, Singh SP, Häder DP, Sinha RP. Mechanisms of photoprotection in cyanobacteria. In: Cyanobacteria: From Basic Science to Applications. New York: Elsevier; 2019. p. 145-71.https://doi.org/10.1016/B978-0-12-814667-5.00007-6

83. Seo S, Jeon H, Hwang S, Jin E, Chang KS. Development of a new constitutive expression system for the transformation of the diatom Phaeodactylum tricornutum. Algal Res 2015;11:50-4.https://doi.org/10.1016/j.algal.2015.05.012

84. Jahn M, Vialas V, Karlsen J, Maddalo G, Edfors F, Forsström B, et al. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins. Cell Rep 2018;25:478-86.https://doi.org/10.1016/j.celrep.2018.09.040

85. Kirst H, Formighieri C, Melis A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim Biophys Acta 2014;1837:1653-64.https://doi.org/10.1016/j.bbabio.2014.07.009

86. Djediat C, Feilke K, Brochard A, Caramelle L, Tiam SK, Sétif P, et al. Light stress in green and red Planktothrix strains: The orange carotenoid protein and its related photoprotective mechanism. Biochim Biophy Acta 2020;1861:148037.https://doi.org/10.1016/j.bbabio.2019.06.009

87. Pang N, Xie Y, Oung HM, Sonawane BV, Fu X, Kirchhoff H, et al. Regulation and stimulation of photosynthesis of mixotrophically cultured Haematococcus pluvialis by ribose. Algal Res 2019;39:101443.https://doi.org/10.1016/j.algal.2019.101443

88. Vecchi V, Barera S, Bassi R, Dall'Osto L. Potential and challenges of improving photosynthesis in algae. Plants 2020;9:67.https://doi.org/10.3390/plants9010067

89. Sharma P, Sharma N. Industrial and biotechnological applications of algae: A review. J Adv Plant Biol 2017;1:1-25.https://doi.org/10.14302/issn.2638-4469.japb-17-1534

90. Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009;27:1177-80.https://doi.org/10.1038/nbt.1586

91. Liang F, Lindblad P. Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis. Metab Eng Commun 2017;4:29-36.https://doi.org/10.1016/j.meteno.2017.02.002

92. Wei L, Wang Q, Xin Y, Lu Y, Xu J. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase. Algal Res 2017;27:366-75.https://doi.org/10.1016/j.algal.2017.07.023

93. Fang L, Lin HX, Low CS, Wu MH, Chow Y, Lee YK. Expression of the Chlamydomonas reinhardtii Sedoheptulose?1, 7?bisphosphatase in Dunaliella bardawil leads to enhanced photosynthesis and increased glycerol production. Plant Biotechnol J 2012;10:1129-35.https://doi.org/10.1111/pbi.12000

94. Yang B, Liu J, Ma X, Guo B, Liu B, Wu T, et al. Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae. Biotechnol Biofuels 2017;10:1-3.https://doi.org/10.1186/s13068-017-0916-8

95. Shin WS, Lee B, Kang NK, Kim YU, Jeong WJ, Kwon JH, et al. Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris. Scie Rep 2017;7:17929.https://doi.org/10.1038/s41598-017-18221-0

96. De Bhowmick G, Koduru L, Sen R. Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application-a review. Renew Sustain Energy Rev 2015;50:1239-53.https://doi.org/10.1016/j.rser.2015.04.131

97. Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3-transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Nat Acad Sci 2009;106:5990-5.https://doi.org/10.1073/pnas.0812885106

98. Mussgnug JH, Thomas?Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, et al. Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnol J 2007;5:802-14.https://doi.org/10.1111/j.1467-7652.2007.00285.x

99. Fatemeh L, Mohsen D. Effects of environmental factors on the growth, optical density and biomass of the green algae Chlorella vulgaris in outdoor conditions. J Appl Sci Environ Manag 2016;20:133-9.https://doi.org/10.4314/jasem.v20i1.16

100. Xia L, Song S, He Q, Yang H, Hu C. Selection of microalgae for biodiesel production in a scalable outdoor photobioreactor in north China. Bioresour Technol 2014;174:274-80.https://doi.org/10.1016/j.biortech.2014.10.008

101. Praveenkumar R, Kim B, Choi E, Lee K, Park JY, Lee JS, et al. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresour Technol 2014;171:500-5.https://doi.org/10.1016/j.biortech.2014.08.112

102. Abdelaziz AE, Ghosh D, Hallenbeck PC. Characterization of growth and lipid production by Chlorella sp. PCH90, a microalga native to Quebec. Bioresour Technol 2014;156:20-8.https://doi.org/10.1016/j.biortech.2014.01.004

103. Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Res 2012;1:134-42.https://doi.org/10.1016/j.algal.2012.07.002

104. Kirst H, Garcia-Cerdan JG, Zurbriggen A, Ruehle T, Melis A. Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3- CpSRP43 gene. Plant Physiol 2012;160:2251-60.https://doi.org/10.1104/pp.112.206672

105. Wang Y, Spalding MH. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii. Proc Natl Acad Sci 2006;103:10110-5.https://doi.org/10.1073/pnas.0603402103

106. Zhang S, He Y, Sen B, Chen X, Xie Y, Keasling JD, et al. Alleviation of reactive oxygen species enhances PUFA accumulation in Schizochytrium sp. through regulating genes involved in lipid metabolism. Metab Eng Commun 2018;6:39-48.https://doi.org/10.1016/j.meteno.2018.03.002

107. Fan J, Ning K, Zeng X, Luo Y, Wang D, Hu J, et al. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant Physiol 2015;169:2444-61.https://doi.org/10.1104/pp.15.01174

108. Hu X, Zhou J, Liu G, Gui B. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. J Environ Sci 2016;46:83-91.https://doi.org/10.1016/j.jes.2015.08.030

109. Jeong J, Baek K, Kirst H, Melis A, Jin E. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. Biochim Biophys Acta 2017;1858:45-55.https://doi.org/10.1016/j.bbabio.2016.10.007

110. Bhattacharjee ME. Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 2016;9:43-7.https://doi.org/10.22159/ajpcr.2016.v9i6.14507

Article Metrics

5 Absract views 33 PDF Downloads 38 Total views

Related Search

By author names

Citiaion Alert By Google Scholar


Similar Articles