Gastrointestinal microbiome: The two-way communication within us

Inderdeep Kaur Parminder Kaur Narang Bhumika Goyal   

Open Access   

Published:  Dec 11, 2025

DOI: 10.7324/JABB.2026.270878
Abstract

The gut is considered the largest organ with a significant function in regulating immune homeostasis throughout the life of an individual. The presence of “good” microbes in the gut tract makes the individual healthier, for example, in Parkinson’s disease a decrease in beneficial microbes such as Blautia and Roseburia is observed contrary to a high population of Akkermansia and Verrucomicrobiaceae which is associated with mucin degradation. The first and foremost microbial colonization in the human gut occurs at the fetal stage in utero. Further, a vast amount of the resident microbial population is also transferred in utero from the oral cavity of the mother. The medical practices of birth, that is, the cesarean delivery or the vaginal delivery regulate the microbiome composition of the newborn. Unregulated dietary changes in human lifestyle along with antibiotics and environmental exposures can alter the gut microbiome. Typically, with less recognized implications for health and the likelihood of disease occurrence, the unhealthy gut impairs the normal functioning of the microbiota. Further, it has been extensively investigated that the intestinal tract harbors the largest and most diverse microbial population, and forms the Enteric Nervous System. Elucidation of the factors that influence this mutualistic relationship is therefore vital for understanding the Gut–Brain communication.


Keyword:     Cesarean Dysbiosis Gastrointestinal tract Intestinal barrier Microbiome Vagina


Citation:

Kaur I, Narang PK, Goyal B. Gastrointestinal microbiome: The two-way communication within us. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2026.270878

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. https://doi.org/10.1136/bmj.k2179

2. Flint HJ.The impact of nutrition on the human microbiome. Nutr Rev. 2012;70(Suppl 1):S10-3. https://doi.org/10.1111/j.1753-4887.2012.00499.x

3. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol Med. 2014;20(9):509-518. https://doi.org.10.1016/j.molmed.2014.05.002

4. Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611-22. https://doi.org.10.1016/j.chom.2012.10.012

5. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11(10):2574-84. https://doi.org.10.1111/j.1462-2920.2009.01982.x

6. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci. 2011;108(Suppl 1):4554-61. https://doi.org.10.1073/pnas.1000087107

7. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. https://doi.org.10.1038/nature08821

8. O’Callaghan A, Van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7:925. https://doi.org.10.3389/fmicb.2016.00925

9. Kim G, Yoon Y, Park JH, Park JW, Noh MG, Kim H, et al. Bifidobacterial carbohydrate/nucleoside metabolism enhances oxidative phosphorylation in white adipose tissue to protect against diet-induced obesity. Microbiome. 2022;10:188. https://doi.org/10.1186/s40168-022-01374-0

10. Power SE, O’Toole PW, Stanton C, Ross RP, Fitzgerald GF. Intestinal microbiota, diet and health. Br J Nutr. 2014;111(3):387-402. https://doi.org.10.1017/S0007114513002560

11. Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, et al. Current sampling methods for gut microbiota: A call for more precise devices. Front Cell Infect Microbiol. 2020;10:151. https://doi.org.10.3389/fcimb.2020.00151

12. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115-8. https://doi.org.10.1126/science.1058709

13. Cooke G, Behan J, Costello M. Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora. Microbial Ecol Health Dis. 2006;18(3-4):133-8. https://doi.org/10.1080/08910600601048894

14. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MH, Van Der Meer IM, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam study. J Nutr. 2004;134(11):3100-5. https://doi.org.10.1093/jn/134.11.3100

15. Andrès E, Loukili NH, Noel E, Kaltenbach G, Abdelgheni MB, Perrin AE, et al. Vitamin B12 (cobalamin) deficiency in elderly patients. CMAJ.2004;171(3):251-9. https://doi.org.10.1503/cmaj.1031155

16. Gominak C. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity. Med Hypotheses. 2016;94:103-7. https://doi.org/10.1016/j.mehy.2016.07.007

17. Mayer EA, Savidge T, Shulman RJ.Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014;146(6):1500-12. https://doi.org/10.1053/j.gastro.2014.02.037

18. Staels B, Fonseca VA. Bile acids and metabolic regulation: Mechanisms and clinical responses to bile acid sequestration. Diabetes Care. 2009;32(Suppl 2):S237. https://doi.org.10.2337/dc09-S355

19. Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, et al. Clostridium scindens: A human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res. 2013;54(9):2437-49. https://doi.org/10.1194/jlr.M038869

20. Ciccia F, Guggino G, Rizzo A, Alessandro R, Luchetti MM, Milling S, et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis. 2017;76(6):1123-32. https://doi.org/10.1136/annrheumdis-2016-210000.

21. Cox LM, Weiner HL. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics. 2018;15(1):135-45. https://doi.org.10.1007/s13311-017-0598-8

22. Makris AP, Karianaki M, Tsamis KI, Paschou SA. The role of the gut-brain axis in depression: Endocrine, neural, and immune pathways. Hormones (Athens). 2021;20(1):1-12. https://doi.org.10.1007/s42000-020-00236-4

23. Twardowska A, Makaro A, Binienda A, Fichna J, Salaga M. Preventing bacterial translocation in patients with leaky gut syndrome: Nutrition and pharmacological treatment options. Int J Mol Sci. 2022;23(6):3204. https://doi.org.10.3390/ijms23063204

24. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut. 2020;69(12):2232-43. https://doi.org.10.1136/gutjnl-2020-322260

25. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. https://doi.org.10.1186/s12876-014-0189-7

26. Chen Y, Cui W, Li X, Yang H. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease. Front Immunol. 2021;12:761981. https://doi.org.10.3389/fimmu.2021.761981

27. Zhao X, Zeng H, Lei L, Tong X, Yang L, Yang Y, et al. Tight junctions and their regulation by non-coding RNAs. Int J Biol Sci. 2021;17(3):712. https://doi.org.10.7150/ijbs.45885

28. Molotla-Torres DE, Guzmán-Mejía F, Godínez-Victoria M, Drago- Serrano ME. Role of stress on driving the intestinal paracellular permeability. Curr Issues Mol Biol. 2023;45(11):9284-305. https://doi.org/10.3390/cimb45110581

29. France MM, Turner JR. The mucosal barrier at a glance. J Cell Sci. 2017;130(2):307-14. https://doi.org/10.1242/jcs.193482

30. Durantez Á, Gómez S. Agujeros. Intestino Síndrome de Hipermeabilidad Intestinal; 2018. p. 35. Available from: https://drdurantez.es/blog/2018/09/04/agujeros-en-el-intestino-sindrome-dehipermeabilidad-intestinal [Last accessed on 2025 Mar 10].

31. Iweala OI, Nagler CR. The microbiome and food allergy. Annu Rev Immunol. 2019;37(1):377-403. https://doi.org/10.1146/annurev-immunol-042718-041621

32. Nusrat A, Turner JR, Madara JL. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: Nutrients, cytokines, and immune cells. Am J Physiol. 2000;279(1):G851-7. https://doi.org/10.1152/ajpgi.2000.279.5.G851

33. Quiroz-Olguín G, Gutiérrez-Salmeán G, Posadas-Calleja JG, Padilla- Rubio MF, Serralde-Zúñiga AE. The effect of enteral stimulation on the immune response of the intestinal mucosa and its application in nutritional support. Eur J Clin Nutr. 2021;75(11):1533-9. https://doi.org.10.1038/s41430-021-00877-7

34. Li T, Wang C, Liu Y, Li B, Zhang W, Wang L, et al. Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J Crohn’s Colitis. 2020;14(2):240-53. https://doi.org.10.1093/ecco-jcc/jjz132

35. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76:473-93. https://doi.org.10.1007/s00018-018-2943-4

36. Koboziev I, Reinoso Webb C, Furr KL, Grisham MB. Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radical Biol Med. 2014;68:122-33. https://doi.org.10.1016/j.freeradbiomed.2013.11.008

37. Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012;3(4):279-88. https://doi.org.10.4161/gmic.19625

38. Cui X, Cong Y. Role of Gut microbiota in the development of some autoimmune diseases. J Inflamm Res. 2025;18:4409-19. https://doi.org/10.2147/JIR.S515618

39. Belizário JE, Faintuch J.Microbiome and gut dysbiosis. Exp Suppl. 2018;109:459-76. https://doi.org.10.1007/978-3-319-74932-7_13

40. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203-9.

41. De Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al. Human placenta has no microbiome but can contain potential pathogens. Nature. 2019;572(7769):329-34. https://doi.org.10.1038/s41586-019-1451-5

42. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, Blaser MJ.Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. https://doi.org.10.1126/scitranslmed.aad7121

43. La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci. 2014;111(34):12522- 7. https://doi.org.10.1073/pnas.1409497111

44. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci. 2014;108(Suppl 1):4578-85. https://doi.org/10.1073/pnas.1000081107

45. Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J.A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. https://doi.org/10.1186/s40168-017-0268-4

46. Bushman FD. De-discovery of the placenta microbiome. Am J Obstet Gynecol. 2019;220(3):213-4. https://doi.org.10.1016/j.ajog.2018.11.1093

47. Xie Z, Chen Z, Chai Y, Yao W, Ma G. Unveiling the placental bacterial microbiota: Implications for maternal and infant health. Front Physiol. 2025;1(16):1544216. https://doi.org.10.3389/fphys.2025.1544216

48. Park JY, Yun H. Comprehensive characterization of maternal, fetal, and neonatal microbiomes supports prenatal colonization of the gastrointestinal tract. Sci Rep. 2023;13(1):4652. https://doi.org/10.1038/s41598-023-31049-1

49. Broens PM, Van Rooij IA, Bagci S, Brosens E, Tibboel D, De Klein A, et al. More than fetal urine: Enteral uptake of amniotic fluid as a major predictor for fetal growth during late gestation. Eur J Pediatr. 2016;175:825-31. https://doi.org.10.1007/s00431-016-2713-y

50. Trahair J.Digestive system. In: Harding R, Bocking AD, editors. Fetal Growth and Development. Cambridge UK: Cambridge University Press; 2001. p. 137-153.

51. Gitlin D, Kumate J, Morales C, Noriega L, Arévalo N. The turnover of amniotic fluid protein in the human conceptus. Am J Obstet Gynecol. 1972;113:632-45. https://doi.org.10.1016/0002-9378(72)90632-1

52. Stinson LF, Boyce MC, Payne MS, Keelan JA. The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. Frontiers in Microbiology. 2019;10:1124. doi: https://doi.org.10.3389/fmicb.2019.01124

53. Brown J, De Vos WM, DiStefano PS, Doré J, Huttenhower C, Knight R, et al. Translating the human microbiome. Nat Biotechnol. 2013;31(4):304-8. https://doi.org.10.1038/nbt.2543

54. Dunn AB, Jordan S, Baker BJ, Carlson NS. The maternal infant microbiome: Considerations for labor and birth. MCN Am J Matern Child Nurs. 2017;42(6):318-25. https://doi.org.10.1097/NMC.0000000000000373

55. Walker RW, Clemente JC, Peter I, Loos RJ.The prenatal gut microbiome: Are we colonized with bacteria in utero? Pediatr Obes. 2017;12(Suppl 1):3-17. https://doi.org.10.1111/ijpo.12217

56. Kerr CA, Grice DM, Tran CD, Bauer DC, Li D, Hendry P, et al. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit Rev Microbiol. 2015;41(3):326-40. https://doi.org.10.3109/1040841X.2013.837863

57. Ma G, Chen Z, Xie Z, Liu J, Xiao X. Mechanisms underlying changes in intestinal permeability during pregnancy and their implications for maternal and infant health. J Reprod Immunol. 2025;168:104423. https://doi.org.10.1016/j.jri.2025.104423

58. Amabebe E, Anumba DO. The vaginal microenvironment: The physiologic role of lactobacilli. Front Med (Lausanne). 2018;5:181. https://doi.org.10.3389/fmed.2018.00181

59. Amir M, Brown JA, Rager SL, Sanidad KZ, Ananthanarayanan A, Zeng MY. Maternal microbiome and infections in pregnancy. Microorganisms. 2020;8(12):1996. https://doi.org.10.3390/microorganisms8121996

60. Tang M, Weaver NE, Frank DN, Ir D, Robertson CE, Kemp JF, et al. Longitudinal Reduction in diversity of maternal gut microbiota during pregnancy is observed in multiple low-resource settings: Results from the women first trial. Front Microbiol. 2022;13:823757. https://doi.org.10.3389/fmicb.2022.823757

61. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470-480. https://doi.org.10.1016/j.cell.2012.07.008

62. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588(22):4223-33. https://doi.org.10.1016/j.febslet.2014.09.039

63. Edwards SM, Cunningham SA, Dunlop AL, Corwin EJ.The maternal gut microbiome during pregnancy. MCN Am J Matern Child Nurs. 2017;42(6):310-7. https://doi.org.10.1097/NMC.0000000000000372

64. Liang X, Wang R, Luo H, Liao Y, Chen X, Xiao X, et al. The interplay between the gut microbiota and metabolism during the third trimester of pregnancy. Front Microbiol. 2022;13:1059227. https://doi.org.10.3389/fmicb.2022.1059227

65. Neuman H, Koren O. The pregnancy microbiome. Nestle Nutr Inst Workshop Ser. 2017;88:1-9. https://doi.org/10.1159/000455207

66. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228-31. https://doi.org.10.1126/science.1179721

67. Tilg H, Moschen AR. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772-83. https://doi.org/10.1038/nri1937

68. Huang B, Fettweis JM, Brooks JP, Jefferson KK, Buck GA. The changing landscape of the vaginal microbiome. Clin Lab Med. 2014;34(4):747-61. https://doi.org.10.1016/j.cll.2014.08.006

69. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the Newborn gut. Early Hum Dev. 2010;86(Supp 1):13-15. https://doi.org.10.1016/j.earlhumdev.2010.01.004

70. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511-21. https://doi.org.10.1542/peds.2005-2824

71. Pivrncova E, Kotaskova I, Thon V. Neonatal diet and gut microbiome development after C-section during the first three months after birth: A systematic review. Front Nutr. 2022;9:941549. https://doi.org.10.3389/fnut.2022.941549

72. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574(7776):117-21. https://doi.org.10.1038/s41586-019-1560-1

73. Guaraldi F, Salvatori G. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol. 2012;2:94. https://doi.org.10.3389/fcimb.2012.0094

74. Walker WA, Iyengar RS. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr Res. 2015;77:220-8. https://doi.org.10.1038/pr.2014.160

75. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177. https://doi.org.10.1371/journal.pbio.0050177

76. McCann A, Ryan FJ, Stockdale SR, Dalmasso M, BlakeT, Ryan CA, et al. Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ.2016;6:e4694. https://doi.org.10.7717/peerj.4694

77. Shennon I, Wilson BC, Behling AH, Portlock T, Haque R, Forrester T, et al. The infant gut microbiome and cognitive development in malnutrition. Clin Nutr. 2024;43(5):1181-9. https://doi.org.10.1016/j.clnu.2024.03.029

78. Zhou L, Qiu W, Wang J, Zhao A, Zhou C, Sun T, et al. Effects of vaginal microbiota transfer on the neurodevelopment and microbiome of cesarean-born infants: A blinded randomized controlled trial. Cell Host Microbe. 2023;31(7):1232-47. https://doi.org/10.1016/j.chom.2023.05.022

79. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Kober OI, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. https://doi.org.10.3402/mehd.v26.26050

80. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, De Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci. 2011;108(Suppl 1):4586-591. https://doi.org/10.1073/pnas.1000097107

81. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016;16:90. https://doi.org.10.1073/pnas.1000097107

82. Salazar N, Arboleya S, Valdés, L, Stanton C, Ross P, Ruiz L, et al. The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Front Genet. 2014;5:406. https://doi.org/10.3389/fgene.2014.00406

83. Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, et al. Signatures of early frailty in the gut microbiota. Genome Med. 2016;8:8. https://doi.org.10.1186/s13073-016-0262-7

84. Zhang D, Huang Y, Ye D. Intestinal dysbiosis: An emerging cause of pregnancy complications? Med Hypotheses. 2015;84(3):223-26. https://doi.org/10.1016/j.mehy.2014.12.029

85. Zmora N, Suez J, Elinav E. You are what you eat: Diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35-56. https://doi.org/10.1038/s41575-018-0061-2

86. Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. 2016;534(7606):263-6. https://doi.org.10.1038/nature17940

87. Mkilima T. Engineering artificial microbial consortia for personalized gut microbiome modulation and disease treatment. Ann N Y Acad Sci. 2025;1548(1):29-55. https://doi.org.10.1111/nyas.15352

Article Metrics
1 Views 0 Downloads 1 Total

Year

Month

Related Search

By author names