Bacillus stercoris and Enterobacter quasihormaechei as phosphate-solubilizing bacteria: Isolation, characterization, and abiotic stress response

Shivani Tripathi Charu Gupta Mahendra Kumar Gupta   

Open Access   

Published:  Oct 06, 2025

DOI: 10.7324/JABB.2025.231591
Abstract

Phosphobacteria are key suppliers of phosphate, a crucial nutritional component for plant growth. After being isolated from the rhizosphere of vegetable plants, a total of 20 phosphate-solubilizing bacteria (PSB) were tested for their ability to dissolve phosphate in soil and promote plant growth by producing phytohormones. Only two of the twenty isolates tested positive by converting to dark pink, and these bacteria were capable of producing phytohormones (auxin). Hence, these bacteria were selected for further investigation after testing positive for auxin production. Auxin is regarded as a vital regulator, particularly for plant growth. It regulates seed germination and elongation of the plant’s roots and shoots. After screening for phosphate-solubilization activity, it was revealed that the phosphate-solubilizing index of these isolates was recorded as 3.16 and 3.33. Under in vitro conditions, both plant growth-promoting bacteria were further studied for growth up to 72 h in terms of salinity, pH, and temperature. In this study, both P7 and P9 isolates showed maximum growth at pH 7.0 and 9.0, temperatures of 30°C and 47°C, and salinity of 4% and 10%, respectively. In addition, biochemical tests and 16S rRNA gene sequence analysis were done, identifying isolates P7 and P9 as Bacillus stercoris and Enterobacter quasihormaechei, respectively. This study emphasizes that B. stercoris and E. quasihormaechei can be advantageous in sustainable agriculture by optimizing plant growth and increasing crop output.


Keyword:     Phosphate-solubilizing bacteria Auxin Plant growth-promoting rhizobacteria Bacillus stercoris Enterobacter quasihormaechei


Citation:

Tripathi S, Gupta C, Gupta MK. Bacillus stercoris and Enterobacter quasihormaechei as phosphate-solubilizing bacteria: Isolation, characterization, and abiotic stress response. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2025.231591

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Cheng Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Sci Total Environ. 2023:25;901:166468. https://doi.org/10.1016/j.scitotenv.2023.166468

2. Samantaray A, Chattaraj S, Mitra D, Ganguly A, Kumar R, Gaur A, et al. Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. Cur Res Microb Sci. 2024;7:100251. https://doi.org/10.1016/j.crmicr.2024.100251

3. Illmer P, Barbato A, Schinner F. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem. 1995;27(3):265-70. https://doi.org/10.1016/0038-0717(94)00205-F

4. Ghosh AB, Hasan R. Phosphorus fertility status of soils of India. Bull Indian Soc Soil Sci. 1979;12:1-8.

5. Kanwar JS, Goswami NN, Kamath MB. Phosphorus management of Indian soils-problems and prospects. Fertil News. 1982;27(2):43-52.

6. Singh S, Kapoor KK. Solubilization of insoluble phosphate cultured from different sources. Environ Ecol. 1994;12:51-5.

7. Illmer P, Schinner F. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biol Biochem. 1995;27(3):257-63. https://doi.org/10.1016/0038-0717(94)00190-C

8. Kucey R. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci. 1983;63(4):671-8. https://doi.org/10.4141/cjss83-068

9. Mattey M. The production of organic acids. Crit Rev Biotechnol. 1992;12(1-2):87-132. https://doi.org/10.3109/07388559209069189

10. De Freitas JR, Banerjee MR, Germida JJ. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils. 1997;24:358-64. https://doi.org/10.1007/s003740050258

11. Richardson AE. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol. 2001;28(9):897-906. https://doi.org/10.1071/PP01093

12. Dotaniya ML, Meena VD. Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proc Natl Acad Sci India Section B Biol Sci. 2015;85:1-2. https://doi.org/10.1007/s40011-013-0297-0

13. Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM, et al. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol. 1987;33(5):390-5. https://doi.org/10.1139/m87-068

14. Rodr??guez H, Fraga R. Phosphate-solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999;17(4-5):319-39. https://doi.org/10.1016/S0734-9750(99)00014-2

15. Alewell C, Ringeval B, Ballabio C, Robinson DA, Panagos P, Borrelli P. Global phosphorus shortage will be aggravated by soil erosion. Nat Commun. 2020;11(1):4546. https://doi.org/10.1038/s41467-020-18326-7

16. Zhu Y, Xing Y, Li Y, Jia J, Ying Y, Shi W. The role of phosphate-solubilizing microbial interactions in phosphorus activation and utilization in plant soil systems: A review. Plants. 2024;13(19):2686.https://doi.org/10.3390/plants13192686

17. Reed L, Glick BR. The recent use of plant-growth-promoting bacteria to promote the growth of agricultural food crops. Agriculture. 2023;13(5):1089. https://doi.org/10.3390/agriculture13051089

18. Park JH, Bolan N, Megharaj M, Naidu R. Isolation of phosphate-solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater. 2011;185(2-3):829-36. https://doi.org/10.1016/j.jhazmat.2010.09.095

19. Barillot CD, Sarde CO, Bert V, Tarnaud E, Cochet N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann Microbiol. 2013;63:471-6. https://doi.org/10.1007/s13213-012-0491-y

20. Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST. Bergey’s Manual of Determinate Bacteriology. Baltimore: Williams & Wilkins. 1994. p. 786-8.

21. Pikovskaya RI. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiology. 1948;17:362-70.

22. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26(1):192. https://doi.org/10.1104/pp.26.1.192

23. Clarridge JE 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17(4):840-62.https://doi.org/10.1128/CMR.17.4.840-862.2004

24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10. https://doi.org/10.1016/S0022-2836(05)80360-2

25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-80. https://doi.org/10.1093/nar/22.22.4673

26. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-7. https://doi.org/10.1093/molbev/msab120

27. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39(4):783-91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

28. Kesaulya H, Baharuddin B, Zakaria B, Syaiful SA. The ability phosphate-solubilization of bacteria rhizosphere of potato Var. Hartapel from Buru Island. Int J Curr Microb Appl Sci. 2015;4(1):404-9.

29. Pande A, Pandey P, Mehra S, Singh M, Kaushik S. Phenotypic and genotypic characterization of Phosphate-solubilizing bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol. 2017;15(2):379-91. https://doi.org/10.1016/j.jgeb.2017.06.005

30. Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S. Interaction between Phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Sci Rep. 2020;18; 10(1):4916. https://doi.org/10.1038/s41598-020-61846-x

31. Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LY, Galimsyanova NF, Sidorova LV, et al. Effect of auxin-producing and Phosphate-solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol Plant. 2017;39:1-8. https://doi.org/10.1007/s11738-017-2556-9

32. Phringpaen W, Aiedhet W, Thitithanakul S, Kanjanasopa D. Ability of phosphate-solubilizing bacteria to enhance the growth of rice in phosphorus-deficient soils. Trends Sci. 2023;20(12):7032. https://doi.org/10.48048/tis.2023.7032

33. Lebrazi S, Niehaus K, Bednarz H, Fadil M, Chraibi M, Fikri- Benbrahim K. Screening and optimization of indole-3-acetic acid production and phosphate-solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. J Genet Eng Biotechnol. 2020;18:1-2. https://doi.org/10.1186/s43141-020-00090-2

34. Rayle DL, Cleland RE. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 1992;99(4):1271-4. https://doi.org/10.1104/pp.99.4.1271

35. Sosnowski J, Truba M, Vasileva V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture. 2023;13(3):724. https://doi.org/10.3390/agriculture13030724

36. Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci. 2013;110(38):15485-90. https://doi.org/10.1073/pnas.1304651110

37. Cao J, Li G, Qu D, Li X, Wang Y. Into the seed: Auxin controls seed development and grain yield. Int J Mol Sci. 2020;21(5):1662. https://doi.org/10.3390/ijms21051662

38. Thakur A, Parikh SC. Auxin hormone production and plant growth promotion by Phosphate-solubilizing bacteria of groundnut rhizosphere. Int J Innov Res Sci Eng Technol. 2015;4(9): 8539-48.

39. Leinhos V, Vacek O. Biosynthesis of auxins by phosphate-solubilizing rhizobacteria from wheat (Triticum aestivum and rye (Secale cereale). Microbiol Res. 1994;149(1):31-5. https://doi.org/10.1016/S0944-5013(11)80132-1

40. Nosrati R, Owlia P, Saderi H, Rasooli I, Malboobi MA. Phosphate-solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iran J Microbiol. 2014;6(4):285.

41. Lebrazi S, Fadil M, Chraibi M, Fikri-Benbrahim K. Screening and optimization of indole-3-acetic acid production by Rhizobium sp. strain using response surface methodology. J Genet Eng Biotechnol. 2020;18(1):21. https://doi.org/10.1186/s43141-020-00035-9

42. Puri A, Padda KP, Chanway CP. In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Appl Soil Ecol. 2020;149:103538. https://doi.org/10.1016/j.apsoil.2020.103538

43. Richter K, Haslbeck M, Buchner J. The heat shock response: Life on the verge of death. Mol Cell. 2010;40(2):253-66. https://doi.org/10.1016/j.molcel.2010.10.006

44. Niu Y, Xiang Y. An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci. 2018;9:915. https://doi.org/10.3389/fpls.2018.00915

45. Gao Y, Zou H, Wang B, Yuan F. Progress and applications of plant growth-promoting bacteria in salt tolerance of crops. Int J Mol Sci. 2022;23(13):7036. https://doi.org/10.3390/ijms23137036

46. Gupta R, Kumari A, Sharma S, Alzahrani OM, Noureldeen A, Darwish H. Identification, characterization and optimization of Phosphate-solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi J Biol Sci. 2022;29(1):35-42. https://doi.org/10.1016/j.sjbs.2021.09.075

47. Shruti K, Arun K, Yuvneet R. Potential plant growth-promoting activity of rhizobacteria Pseudomonas sp in Oryza sativa. J Nat Prod Plant Resour. 2013;3(4):38-50.

48. Arindam Chakraborty AC, Mala RH, Roshni Rajgopal RR, Mohini Jain MJ, Rashmi Yadav RY, Siddalingeshwara KG, et al. Isolation and characterization of potential plant growth promoting rhizobacteria from non-rhizospheric soil. Int J Curr Microbiol Appl Sci. 2014;3(4):432-8.

49. Reiner K. Carbohydrate fermentation protocol. Energy. 2012;11:12.

50. Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat commun. 2019;10(1):5029. https://doi.org/10.1038/s41467-019-13036-1

51. Pengproh R, Thanyasiriwat T, Sangdee K, Saengprajak J, Kawicha P, Sangdee A. Evaluation and genome mining of Bacillus stercoris isolate B. PNR1 as potential agent for fusarium wilt control and growth promotion of tomato. Plant Pathol J. 2023;39(5):430. https://doi.org/10.5423/PPJ.OA.01.2023.0018

52. Khianngam S, Meetum P, Chiangmai PN, Tanasupawat S. Identification and optimisation of indole-3-acetic acid production of endophytic bacteria and their effects on plant growth. Trop Life Sci Res. 2023;34(1):219. https://doi.org/10.21315/tlsr2023.34.1.12

53. Chen J, Zhao G, Wei Y, Dong Y, Hou L, Jiao R. Isolation and screening of multifunctional Phosphate-solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Sci Rep. 2021;11(1):9081. https://doi.org/10.1038/s41598-021-88635-4

54. Xess N, Sao S. Effect of carbon and nitrogen source on phosphate-solubilization and impact of phosphate-solubilizing bacteria, rock phosphate and organic waste treatments on maize plants. Appl Ecol Environ Sci. 2020;8(6):499-504.

Article Metrics
12 Views 3 Downloads 15 Total

Year

Month

Related Search

By author names