Prebiotic properties of polysaccharide extracts from Cordyceps militaris mycelium: Potentials for functional food and drink applications
Despite the known health benefits of polysaccharides (PSs) from Cordyceps militaris mycelium, there is limited understanding of how different extraction methods affect the yield, antioxidant activity, and prebiotic potential of these PSs . This study aims to address this gap by comparing the effects of water (W-PS), acid (A-PS), and alkaline (S-PS) extraction methods on the functional properties of C. militaris PSs. Water extraction yielded the highest PS content (81.35 ± 4.22 mg/g), while acid and alkaline extractions resulted in significantly lower yields. Antioxidant assays showed that all three PS extracts (W-PS, S-PS, A-PS) exhibited (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) ABTS radical scavenging activity, with IC50 values of 2446.51 ± 24.34 μg/mL, 2474.24 ± 2.78 μg/mL, and 3273.33 ± 18.54 μg/mL, respectively. All PS extracts exhibited selective prebiotic effects on tested probiotics, with Lactiplantibacillus pentosus NH1 showing the highest growth promotion (prebiotic index score was 0.857) when cultured with W-PS. Fermentation of W-PS by probiotics yielded higher levels of propionic and butyric acids compared to S-PS and A-PS, while acetic acid production was relatively consistent across extracts. These results suggest that water-extracted PS from C. militaris mycelium exhibits antioxidant activity comparable to that of common mushroom-derived PSs, while also demonstrating superior prebiotic potential, highlighting its potential application in functional foods and as a novel prebiotic source.
Prebiotic properties of polysaccharide extracts from Cordyceps militaris mycelium: Potentials for functional food and drink applications. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2025.252494
1. Zhang J, Wen C, Duan Y, Zhang H, Ma H. Advance in Cordyceps militaris (linn) link polysaccharides: Isolation, structure, and bioactivities: A review. Int J Biol Macromol. 2019;132:906-14. https://doi.org/10.1016/j.ijbiomac.2019.04.020
2. Krishna KV, Ulhas RS, Malaviya A. Bioactive compounds from cordyceps and their therapeutic potential. Crit Rev Biotechnol. 2024;44(5):753-73. https://doi.org/10.1080/07388551.2023.2231139
3. Miro?czuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-glucans from fungi: Biological and health-promoting potential in the COVID-19 pandemic era. Nutrients. 2021;13:3960. https://doi.org/10.3390/nu13113960
4. Kanlayavattanakul M, Lourith N. Cordyceps militaris polysaccharides: Preparation and topical product application. Fungal Biol Biotechnol. 2023;10(1):3. https://doi.org/10.1186/s40694-023-00150-5
5. Rupa EJ, Li JF, Arif MH, Yaxi H, Puja AM, Chan AJ, et al. Cordyceps militaris fungus extracts-mediated nanoemulsion for improvement antioxidant, antimicrobial, and anti-inflammatory activities. Molecules. 2020;25:5733. https://doi.org/10.3390/molecules25235733
6. Li SP, Zhao KJ, Ji ZN, Song ZH, Dong TT, Lo CK, et al. A polysaccharide isolated from cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 2003;73(19):2503-13. https://doi.org/10.1016/S0024-3205(03)00652-0
7. Shashidhar GM, Giridhar P, Manohar B. Functional polysaccharides from medicinal mushroom Cordyceps sinensis as a potent food supplement: Extraction, characterization and therapeutic potentials - a systematic review. RSC Adv. 2015;5(21):16050-66. https://doi.org/10.1039/C4RA13539C
8. Chen X, Wu G, Huang Z. Structural analysis and antioxidant activities of polysaccharides from cultured Cordyceps militaris. Int J Biol Macromol. 2013;58:18-22. https://doi.org/10.1016/j.ijbiomac.2013.03.041
9. Chen J, Zou Y, Zheng T, Huang S, Guo L, Lin J, et al. The in vitro fermentation of Cordyceps militaris polysaccharides changed the simulated gut condition and influenced gut bacterial motility and translocation. J Agric Food Chem. 2022;70(44):14193-204. https://doi.org/10.1021/acs.jafc.2c05785
10. Ying M, Yu Q, Zheng B, Wang H, Wang J, Chen S, et al. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr Polym. 2020;235:115957. https://doi.org/10.1016/j.carbpol.2020.115957
11. Lee BH, Chen CH, Hsu YY, Chuang PT, Shih MK, Hsu WH, et al. Polysaccharides obtained from Cordyceps militaris alleviate hyperglycemia by regulating gut microbiota in mice fed a high-fat/ sucrose diet. Foods. 2021;10:1870. https://doi.org/10.3390/foods10081870
12. Sun L, Yuan H, Ma H, Wang Y. Effects of Cordyceps cicadae polysaccharide on gut microbiota, the intestinal mucosal barrier, and inflammation in diabetic mice. Metabolites. 2025;15:8. https://doi.org/10.3390/metabo15010008
13. Peng Z, Tian S, Li H, Zhu L, Zhao Z, Zheng G, et al. Extraction, characterization, and antioxidant properties of cell wall polysaccharides from the pericarp of Citrus reticulata cv. Chachiensis. Food Hydrocoll. 2023;136:108237. https://doi.org/10.1016/j.foodhyd.2022.108237
14. Yu D, Wang W, Hou S, Chang M, Chen Y, Meng J, et al. The effect of sequential extraction on the physicochemical and rheological properties of Naematelia aurantialba polysaccharides. Int J Biol Macromol. 2024;265:130777. https://doi.org/10.1016/j.ijbiomac.2024.130777
15. Tian S, Peng Z, Zhang J, Yan D, Liang J, Zhao G, et al. Structural analysis and biological activity of cell wall polysaccharides and enzyme-extracted polysaccharides from pomelo (Citrus maxima (Burm.) Merr.). Int J Biol Macromol. 2024;279:135249. https://doi.org/10.1016/j.ijbiomac.2024.135249
16. Nenadis N, Wang LF, Tsimidou M, Zhang HY. Estimation of scavenging activity of phenolic compounds using the ABTS (*+) assay. J Agric Food Chem. 2004;52(15):4669-74. https://doi.org/10.1021/jf0400056
17. Kosani? M, Rankovi? B, Dašic M. Mushrooms as possible antioxidant and antimicrobial agents. Iran J Pharm Res. 2012;11(4):1095-102.
18. Phirom-On K, Apiraksakorn J. Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Biosci. 2021;41:101083. https://doi.org/10.1016/j.fbio.2021.101083
19. Huebner J, Wehling RL, Hutkins RW. Functional activity of commercial prebiotics. Int Dairy J. 2007;17(7):770-5. https://doi.org/10.1016/j.idairyj.2006.10.006
20. Chen P, Lei S, Tong M, Chang Q, Zeng B, Zhang y, et al. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. Food Sci Hum Wellness. 2022;11(1):97-108. https://doi.org/10.1016/j.fshw.2021.07.011
21. Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J, et al. Polysaccharides from traditional Chinese medicines: Extraction, purification, modification, and biological activity. Molecules. 2016;21:1705. https://doi.org/10.3390/molecules21121705
22. Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C, et al. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med. 2015;2015(1):575063. https://doi.org/10.1155/2015/575063
23. Zhong S, Pan H, Fan L, Guoying LV, Wu Y, Parmeswaran B, et al. Advances in research of polysaccharides in Cordyceps species. Food Technol Biotechnol. 2008;47:304-12.
24. He BL, Zheng QW, Guo LQ, Huang JY, Yun F, Huang SS, et al. Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris. Int J Biol Macromol. 2020;145:11-20. https://doi.org/10.1016/j.ijbiomac.2019.12.115
25. Xu L, Wang F, Zhang Z, Terry N. Optimization of polysaccharide production from Cordyceps militaris by solid-state fermentation on rice and its antioxidant activities. Foods. 2019;8:590. https://doi.org/10.3390/foods8110590
26. Miao M, Yu WQ, Li Y, Sun YL, Guo SD. Structural elucidation and activities of Cordyceps militaris-derived polysaccharides: A review. Front Nutr. 2022;9:898674. https://doi.org/10.3389/fnut.2022.898674
27. Dong Y, Hu S, Liu C, Meng Q, Song J, Lu J, et al. Purification of polysaccharides from Cordyceps militaris and their anti-hypoxic effect. Mol Med Rep. 2015;11(2):1312-17. https://doi.org/10.3892/mmr.2014.2786
28. Li JH, Zhu YY, Gu FT, Wu JY. Efficient isolation of immunostimulatory polysaccharides from Lentinula edodes by autoclaving-ultrasonication extraction and fractional precipitation. Int J Biol Macromol. 2023;237:124216. https://doi.org/10.1016/j.ijbiomac.2023.124216
29. Gong P, Wang S, Liu M, Chen F, Yang W, Chang X, et al. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr Res. 2020;494:108037. https://doi.org/10.1016/j.carres.2020.108037
30. Zheng Y, Zhang S, Wang Q, Lu X, Lin L, Tian Y, et al. Characterization and hypoglycemic activity of a β-pyran polysaccharides from bamboo shoot (Leleba oldhami Nakal) shells. Carbohydr Polym. 2016;144:438-46. https://doi.org/10.1016/j.carbpol.2016.02.073
31. Jing Y, Yan M, Zhang H, Liu D, Qiu X, Hu B, et al. Effects of extraction methods on the physicochemical properties and biological activities of polysaccharides from Polygonatum sibiricum. Foods. 2023;12:2088. https://doi.org/10.3390/foods12102088
32. Liu Z, Li H, Liu Q, Feng Y, Wu D, Zhang X, et al. Ultrasonic treatment enhances the antioxidant and immune-stimulatory properties of the polysaccharide from Sinopodophyllum hexandrum fruit. Foods. 2023;12(5):910. https://doi.org/10.3390/foods12050910
33. Hashemifesharaki R, Xanthakis E, Altintas Z, Guo Y, Gharibzahedi SM. Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohydr Polym. 2020;240:116301. https://doi.org/10.1016/j.carbpol.2020.116301
34. Hang LT, Thu TN, Bich PB. Effect of plant oils on mycelial biomass production, biosynthesis and antioxidants of exopolysaccharide by Cordyceps sinensis. J Sci Technol Food. 2017;13(1):3-10.
35. Sharma SK, Gautam N, Atri NS. Optimization, composition, and antioxidant activities of exo- and intracellular polysaccharides in submerged culture of Cordyceps gracilis (Grev.) Durieu and Mont. Evid Based Complement Alternat Med. 2015;2015(1):462864. https://doi.org/10.1155/2015/462864
36. Sharma SK, Gautam N, Atri NS. Optimized extraction, composition, antioxidant and antimicrobial activities of exo and intracellular polysaccharides from submerged culture of Cordyceps cicadae. BMC Complement Altern Med. 2015;15:446. https://doi.org/10.1186/s12906-015-0967-y
37. Wang X, Zhang J, Zhang KG, Guo Z, Xu G, Huang L, et al. Ultrasound-assisted enzyme extraction, physicochemical properties and antioxidant activity of polysaccharides from Cordyceps militaris solid medium. Molecules. 2024;29:4560. https://doi.org/10.3390/molecules29194560
38. Chen R, Jin C, Li H, Liu Z, Lu J, Li S, et al. Ultrahigh pressure extraction of polysaccharides from Cordyceps militaris and evaluation of antioxidant activity. Sep Purif Technol. 2014;134:90-9.https://doi.org/10.1016/j.seppur.2014.07.017
39. Bai L, Xu D, Zhou YM, Zhang YB, Zhang H, Chen YB, et al. Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications. Antioxidants (Basel). 2022;11:2491. https://doi.org/10.3390/antiox11122491
40. Kim HM, Song Y, Hyun GH, Long NP, Park JH, Hsieh YS, et al. Characterization and antioxidant activity determination of neutral and acidic polysaccharides from Panax ginseng C. A. Meyer. Molecules. 2020;25:791. https://doi.org/10.3390/molecules25040791
41. Yan JK, Wang WQ, Ma HL, Wu JY. Sulfation and enhanced antioxidant capacity of an exopolysaccharide produced by the medicinal fungus Cordyceps sinensis. Molecules. 2013;18:167-77. https://doi.org/10.3390/molecules18010167
42. Dhahri M, Sioud S, Alsuhaymi S, Almulhim F, Haneef A, Saoudi A, et al. Extraction, characterization, and antioxidant activity of polysaccharides from ajwa seed and flesh. Separations 2023;10:103. https://doi.org/10.3390/separations10020103
43. Wang JM, Sun XY, Ouyang JM. Structural characterization, antioxidant activity, and biomedical application of Astragalus polysaccharide degradation products. Int J Polym Sci. 2018;2018(1):5136185. https://doi.org/10.1155/2018/5136185
44. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020;17(11):687-701. https://doi.org/10.1038/s41575-020-0344-2
45. De Figueiredo FC, Ranke FF, De Oliva-Neto P. Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella Typhimurium. LWT. 2020;118:108761. https://doi.org/10.1016/j.lwt.2019.108761
46. Song H, Zhang Z, Li Y, Zhang Y, Yang L, Wang S, et al. Effects of different enzyme extraction methods on the properties and prebiotic activity of soybean hull polysaccharides. Heliyon. 2022;8(11):e11053. https://doi.org/10.1016/j.heliyon.2022.e11053
47. Yeung YK, Kang YR, So BR, Jung SK, Chang YH. Structural, antioxidant, prebiotic and anti-inflammatory properties of pectic oligosaccharides hydrolyzed from okra pectin by Fenton reaction. Food Hydrocoll. 2021;118:106779. https://doi.org/10.1016/j.foodhyd.2021.106779
48. Zou X, Cai J, Xiao J, Zhang M, Jia X, Dong L, et al. Purification, characterization and bioactivity of different molecular-weight fractions of polysaccharide extracted from Litchi pulp. Foods. 2023;12(1):194. https://doi.org/10.3390/foods12010194
49. Wang T, Ye Z, Liu S, Yang Y, Dong J, Wang K, et al. Effects of crude Sphallerocarpus gracilis polysaccharides as potential prebiotics on acidifying activity and growth of probiotics in fermented milk. LWT. 2021;149:111882. https://doi.org/10.1016/j.lwt.2021.111882
50. Synytsya A, Mí?ková K, Synytsya A, Jablonsky I, Spevacek A, Erban V, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr Polym. 2009;76(4):548-56. https://doi.org/10.1016/j.carbpol.2008.11.021
51. Palframan R, Gibson GR, Rastall RA. Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett Appl Microbiol. 2003;37(4):281-4. https://doi.org/10.1046/j.1472-765X.2003.01398.x
52. Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A. 2003;100:8957-62. https://doi.org/10.1073/pnas.1332765100
53. Rattanakiat S, Pulbutr P, Khunawattanakul W, Sungthong B, Saramunee K. Prebiotic activity of polysaccharides extracted from Jerusalem artichoke tuber and development of prebiotic granules. Pharmacogn J. 2020;12:1402-11. https://doi.org/10.5530/pj.2020.12.194
54. Sargautiene V, Nakurte I, Nikolajeva V. Broad prebiotic potential of non-starch polysaccharides from oats (Avena sativa L.): An in vitro study. Pol J Microbiol. 2018;67(3):307-13. https://doi.org/10.21307/pjm-2018-036
55. Islamova ZI, Ogai DK, Abramenko OI, Lim AL, Abduazimov BB, Malikova MK, et al. Comparative assessment of the prebiotic activity of some pectin polysaccharides. Pharm Chem J. 2017;51(4):288-91. https://doi.org/10.1007/s11094-017-1600-9
56. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104-19. https://doi.org/10.1111/j.1365-2036.2007.03562.x
57. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine. 2021;66:103293. https://doi.org/10.1016/j.ebiom.2021.103293
58. Yang M, Meng F, Gu W, Fu L, Zhang F, Li F, et al. Influence of polysaccharides from Polygonatum kingianum on short-chain fatty acid production and quorum sensing in Lactobacillus faecis. Front Microbiol. 2021;12:758870. https://doi.org/10.3389/fmicb.2021.758870
Year
Month