Global bibliometry on three decades of methyl jasmonate-induced plant defense research reveals growth of a specialty area in biology
Methyl jasmonate (MeJA), a naturally existing plant hormone, acts as a vital defense and signaling molecule. Although this hormone has been discovered recently, published reports spanning the last several decades have shown the pleiotropic effects of the hormone raising numerous questions about its regulation, biogenesis, and mode of action. In this work, we explore the complete scientific research on MeJa from its discovery in 1992, spanning research conducted over three decades, through a complex network analysis of 2,542 documents authored by about 9,000 individuals. Several indicators of research progress were evaluated, including co-authorship networks, keyword thematic maps, indices of national and international collaboration, annual scientific production, and most productive affiliations. These indices not only enabled us to evaluate the importance of a specialty discipline in literature but also the place of nations in determining research directionality and the significance of quality of work. Overall, this bibliometric analysis identifies current research trends in a specialty area in biology and we hope that our work would pave the way for greater international collaborations among researchers and a better understanding of research gaps and future scope of work in the actively expanding field of MeJA induced plant defense, stress, and developmental processes.
Chugh V, Kumari K, Yamal G, Checker VG, Yadav G, Kathpalia R. Global bibliometry on three decades of methyl jasmonate-induced plant defense research reveals growth of a specialty area in biology. J Appl Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.218785
1. Demole E, Lederer E, Mercier D. Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de lèssence de jasmin. Helvetica Chimica Acta 1962;45:675–85; doi: https://doi.org/10.1002/hlca.19620450233
2. Dathe W, Rönsch H, Preiss A, Schade W, Sembdner G, Schreiber K. Endogenous plant hormones of the broad bean, Vicia faba L. (–)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 1981;153:530–5; doi: https://doi.org/10.1007/BF00385537
3. Wasternack C. Action of jasmonates in plant stress responses and development-applied aspects. Biotechnol Adv 2014;32:31–9; doi: https://doi.org/10.1016/j.biotechadv.2013.09.009
4. Wang L, Jin P, Wang J, Jiang L, Shan T, Zheng Y. Methyl jasmonate primed defense responses against Penicillium expansum in sweet cherry fruit. Plant Mol Biol Rep 2015;33:1464–71; doi: https://doi.org/10.1007/s11105-014-0844-8
5. Andrade A, Vigliocco A, Alemano S, Miersch O, Botella MA, Abdala G. Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress. Seed Sci Res 2005;15:309–18; doi: https://doi.org/10.1079/SSR2005219
6. Anjum SA, Tanveer M, Hussain S, Tung SA, Samad RA, Wang L, et al. Exogenously applied methyl jasmonate improves the drought tolerance in wheat imposed at early and late developmental stages. Acta Physiol Plant 2016;38(1):25–36; doi: https://doi.org/10.1007/s11738-015-2047-9
7. Baena-Pedroza AM, Londoño-Giraldo LM, Corpas-Iguaran EJ, Taborda-Ocampo G. Bibliometric study of volatile compounds in commercial fruits of the Solanaceae family. Braz J Food Technol 2021;24:e2020132; doi: https://doi.org/10.1590/1981-6723.13220
8. Song S, Choi Y, Moon YH, Kim S, Choi YD, Lee JS. Systemic induction of a Phytolacca insularis antiviral protein gene by mechanical wounding jasmonic acid, and abscisic acid. Plant Mol Biol 2000;43:439–50; doi: https://doi.org/10.1023/A:1006444322626
9. Farmer EE, Ryan CA. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci 1990;87:7713–16; doi: https://doi.org/10.1073%2Fpnas.87.19.7713
10. War AR, Paulraj MG, War MY, Ignacimuthu S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 2011;6(11):1787–92; doi: https://doi.org/10.4161/psb.6.11.17685
11. Okada K, Abe H, Arimura G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol 2015;56(1):16–27; doi: https://doi.org/10.1093/pcp/pcu158
12. Gimenez E, Salinas M, Manzano-Agugliaro F. Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 2018;10(2):391; doi: https://doi.org/10.3390/su10020391
13. Gutierrez RM. Wastewater technologies and environmental treatment. Proceedings of the ICWTET 2020, Springer, Cham, Switzerland, 2020; doi: https://doi.org/10.1007/978-3-030-61989-3
14. Schubert A, Glänzel W, Braun T. Scientometric datafiles. A comprehensive set of indicators on 2649 journals and 96 countries in all major science fields and subfields 1981-1985. Scientometrics 1989;16(1–6):3–478; doi: https://doi.org/10.1007/BF02093234
15. Escorcia T, Poutou R. Bibliometric analysis of the original articles published in the journal Universitas Scientiarum (1987-2007). Uni Sci 2009;13(3):236–44. Available via http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012274832008000300002&lng=en
16. Gupta R, Prasad A, Babu S, Yadav G. Impact of coronavirus outbreaks on science and society: insights from temporal bibliometry of SARS and COVID-19. Entropy 2021;23(5):626; doi: https://doi.org/10.3390/e23050626
17. Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci 2005;102(46):16569–72; doi: https://doi.org/10.1073/pnas.0507655102
18. Schreiber WE, Giustini DM. Measuring scientific impact with the h-index: a primer for pathologists. Am J Clin Pathol 2018;151(3):286– 91; doi: https://doi.org/10.1093/ajcp/aqy137
19. Garfield E, Sher IH. Keywords PlusTM algorithmic derivative indexing. J Am Soc Inf Sci 1993;44(5):298–99; doi: https://doi.org/10.1002/(SICI)1097-4571(199306)44:5%3C298::AID-ASI5%3E3.0.CO;2-A
20. Wang L, Wu J. The essential role of jasmonic acid in plant–herbivore interactions-using the wild tobacco Nicotiana attenuata as a model. J Genet Genomics 2013;40(12):597–606; doi: https://doi.org/10.1016/j.jgg.2013.10.001
21. Baldwin IT, Schmelz EA, Ohnmeiss TE. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris spegazzini and comes. J Chem Ecol 1994;20(8):2139–57; doi: https://doi.org/10.1007/BF02066250
22. Marini L, Økland B, Jönsson AM, Bentz A, Carroll A, Forster B, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 2017;40(12):1426–35; doi: https://doi.org/10.1111/ecog.02769
23. Kim H, Chen F, Wang X, Choi J. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J Agric Food Chem 2006;54(19):7263–9; doi: https://doi.org/10.1021/jf060568c
24. Wolucka BA, Goossens AD. Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 2005;56:2527–38; doi: https://doi.org/10.1093/jxb/eri246
25. Zhu Z, Tian S. Resistant responses of tomato fruit treated with exogenous methyl. Sci Hortic 2012;142:38–43; doi: https://doi.org/10.1016/j.scienta.2012.05.002
26. Hristova VA, Popova LP. Treatment with methyl jasmonate alleviates the effects of paraquat on photosynthesis in barley plants. Photosynthetica 2002;40:567–74; doi: https://doi.org/10.1023/A:1024356120016
27. Dar TA, Uddin M, Khan MA, Hakim KR, Jaleel H. Jasmonates counter plant stress: a review. Environ Exp Bot 2015;115:49–57; doi: https://doi.org/10.1016/j.envexpbot.2015.02.010
28. Ali M, Abbasi BH, Ali GS. Elicitation of antioxidant secondary metabolites with jasmonates and gibberellic acid in cell suspension cultures of Artemisia absinthium. Plant Cell 2015;120:1099–106; doi: https://doi.org/10.1007/s11240-014-0666-2
29. Achuo EA, Audenaert K, Meziane H, Höfte M. The salicylic acid dependent defense pathway is effective against different pathogens in tomato and tobacco. Plant Pathol 2004;53:65–72; doi: https://doi.org/10.1111/j.1365-3059.2004.00947.x
30. Reyes-Díaz M, Lobos T, Cardemil L, Nunes-Nesi A, Retamales J, Jaakola L, et al. Methyl jasmonate: an alternative for improving the quality and health properties of fresh fruits. Molecules 2016;21(6):567; doi: https://doi.org/10.3390%2Fmolecules21060567
31. Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr 2017;11(4):959–75. Available via https://www.bibliometrix.org
Year
Month
Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. Leaves
Mbouobda Hermann Desire , Fotso Bernard , Muyang Rosaline Forsah , Chiatoh Thaddeus Assang, Omokolo Ndoumou DenisChitosan and β-amino butyric acid up-regulates transcripts of resistance gene analog RGPM213 in pearl millet to infection by downy mildew pathogen
P. Ranjini, Melvin Prasad, J. Samanth Kumar, Shailasree Sekhar, Devaraju Kesagodu, H. Shekar Shetty, K. Ramachandra Kini