Furobenzopyrans from Ammi visnaga suppress Pseudomonas aeruginosa virulence
This study investigates the potential of Khellin (KH), a furobenzopyran derived from Ammi visnaga, to inhibit the virulence factors of Pseudomonas aeruginosa. KH was tested at concentrations ranging from 0 μg/ml to 900 μg/ml, with no visible growth inhibition observed at concentrations below 90 μg/ml (sub-minimum inhibitory concentration, MIC). The effects of KH (9 μg/ml), a positive control (ciprofloxacin, 0.1 μg/ml), and a control (0 μg/ml) on virulence factors, including pyocyanin and elastase production, N-3-oxo-dodecanoyl-L-homoserine lactone (3-oxo-C12 HSL) secretion, and lasR gene expression, were assessed. KH treatment resulted in a significant reduction of 47% in pyocyanin levels compared to the control group (p < 0.05) and a significant decrease of 54.8% in elastase activity compared to the control group (p < 0.05). KH also significantly reduced (69%) the secretion of 3-oxo-C12 HSL, correlating with the 45% suppression of lasR gene expression (p < 0.05). These findings suggest that sub-MIC levels of KH reduce P. aeruginosa virulence by suppressing quorum-sensing genes, highlighting its potential for anti-virulence therapy against persistent infections and antibiotic resistance.
Rajendran RM, Parthiban BD. Furobenzopyrans from Ammi visnaga suppress Pseudomonas aeruginosa virulence. J Appl Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.240190
1. Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013;67:159–73; doi: https://doi.org/10.1111/2049-632X.12033
2. Avinash MG, Aishwarya S, Zameer F, Gopal S. Pseudomonas aeruginosa biofilm and their molecular escape strategies. J App Biol Biotech 2023;11:28–37; doi: https://doi.org/10.7324/JABB.2023.36700
3. Mukhopadhyay S, Narayan R, Gadag S, Shenoy PA, Garg S, Ashwini T, Nayak UY. Development of levofloxacin glycosylated mesoporous silica nanoparticles for urinary tract infections. J App Pharm Sci 2024;14:174–9; doi: https://doi.org/10.7324/JAPS.2024.181547
4. Hancock REW, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updates 2000;3:247–55; doi: https://doi.org/10.1054/drup.2000.0152
5. Hibbert TM, Whiteley M, Renshaw SA, Neill DR, Fothergill JL. Emerging strategies to target virulence in Pseudomonas aeruginosa respiratory infections. Crit Rev Microbiol 2024;50:1037–52; doi: https://doi.org/10.1080/1040841X.2023.2285995
6. Krell T, Matilla MA. Pseudomonas aeruginosa. Trends Microbiol 2024;32:216–8; doi: https://doi.org/10.1016/j.tim.2023.11.005
7. Sultan M, Arya R, Kim KK. Roles of two-component systems in Pseudomonas aeruginosa virulence. Int J Mol Sci 2021;22:12152; doi: https://doi.org/10.3390/ijms222212152
8. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018;18:318–27; doi: https://doi.org/10.1016/S1473-3099(17)30753-3
9. Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007;3:541–8; doi: https://doi.org/10.1038/nchembio.2007.24
10. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012;2:a012427; doi: https://doi.org/10.1101/cshperspect.a012427
11. Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant natural products targeting bacterial virulence factors. Chem Rev. 2016;116:9162–236; doi: https://doi.org/10.1021/acs.chemrev.6b00184
12. Khalil N, Bishr M, Desouky S, Salama O. Ammi visnaga L., a potential medicinal plant: a review. Molecules 2020;25:301; doi: https://doi.org/10.3390/molecules25020301
13. El-Hawary SS, Moawad AS, Bahr HS, Abdelmohsen UR, Mohammed R. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv 2020;10: 22058–79; doi: https://doi.org/10.1039/D0RA04290K
14. El-sayed H, Fahmy Y. Correlation between biofilm formation and multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Microb Infect Dis 2021;2:541; doi: https://doi.org/10.21608/mid.2021.81284.1164
15. Rajendran RM, Parthiban BD. Identification, characterization, and antibacterial studies of furobenzopyrans from Ammi visnaga. J App Pharm Sci 2023;13:084–94; doi: https://doi.org/10.7324/JAPS.2023.138123
16. Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, et al. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024;151:107649; doi: https://doi.org/10.1016/j.bioorg.2024.107649
17. Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, et al. Plant-derived virulence arresting drugs as novel antimicrobial agents: discovery, perspective, and challenges in clinical use. Phytother Res 2024;38:727–54; doi: https://doi.org/10.1002/ptr.8072
18. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008;3:163–75; doi: https://doi.org/10.1038/nprot.2007.521
19. Saqr AA, Aldawsari MF, Khafagy ES, Shaldam MA, Hegazy WAH, Abbas HA. A novel use of allopurinol as a quorum-sensing inhibitor in Pseudomonas aeruginosa. Antibiotics 2021;10:1385; doi: https://doi.org/10.3390/antibiotics10111385
20. Yang R, Guan Y, Zhou J, Sun B, Wang Z, Chen H, et al. Phytochemicals from Camellia nitidissima Chi flowers reduce the pyocyanin production and motility of Pseudomonas aeruginosa PAO1. Front Microbiol 2018;8:2640; doi: https://doi.org/10.3389/fmicb.2017.02640
21. Zhou J, Bi S, Chen H, Chen T, Yang R, Li M, et al. Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Front Microbiol 2017 May 3;8:769; doi: https://doi.org/10.3389/fmicb.2017.00769
22. Zhou JW, Luo HZ, Jiang H, Jian TK, Chen ZQ, Jia AQ. Hordenine: a novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. J Agric Food Chem 2018;66:1620–8; doi: https://doi.org/10.1021/acs.jafc.7b05035
23. Sarabhai S, Harjai K, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. increase the susceptibility of Pseudomonas aeruginosa to stress by inhibiting polyphosphate kinase. J Appl Microbiol 2015;118: 817–25; doi: https://doi.org/10.1111/jam.12733
24. Mohamed WF, Askora AA, Mahdy MMH, EL-Hussieny EA, Abu- Shady HM. Isolation and characterization of bacteriophages active against Pseudomonas aeruginosa strains isolated from diabetic foot infections. Arch Razi Inst 2022;77:2187–200; doi: https://doi.org/10.22092/ARI.2022.359032.2357
25. Rafiee F, Haghi F, Bikas R, Heidari A, Gholami M, Kozakiewicz A, et al. Synthesis, characterization and assessment of anti-quorum sensing activity of copper(II)-ciprofloxacin complex against Pseudomonas aeruginosa PAO1. AMB Express 2020;10:82; doi: https://doi.org/10.1186/s13568-020-01017-3
26. Naga NG, Zaki AA, El-Badan DE, Rateb HS, Ghanem KM, Shaaban MI. Inhibition of Pseudomonas aeruginosa quorum sensing by methyl gallate from Mangifera indica. Sci Rep 2023;13(1):17942; doi: https://doi.org/10.1038/s41598-023-44063-0
27. Khan F, Lee JW, Javaid A, Park SK, Kim YM. Inhibition of biofilm and virulence properties of Pseudomonas aeruginosa by sub-inhibitory concentrations of aminoglycosides. Microb Pathogenesis 2020;146:104249; doi: https://doi.org/10.1016/j.micpath.2020.104249
28. Chadha J, Harjai K, Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol 2022;15:1695–718; doi: https://doi.org/10.1111/1751-7915.13981
29. Trancassini M, Brenciaglia MI, Ghezzi MC, Cipriani P, Filadoro F. Modification of Pseudomonas aeruginosa virulence factors by sub-inhibitory concentrations of antibiotics. J Chemother 1992;4:78–81; doi: https://doi.org/10.1080/1120009X.1992.11739144
30. Fonseca AP, Extremina C, Fonseca AF, Sousa JC. Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 2004;53:903–10; doi: https://doi.org/10.1099/jmm.0.45637-0
31. Morkunas B, Galloway WRJD, Wright M, Ibbeson BM, Hodgkinson JT, O’Connell KMG, et al. Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 2012;10:8452–64; doi: https://doi.org/10.1039/C2OB26501J
32. Fekete-Kertész I, Berkl Z, Buda K, Fenyvesi É, Szente L, Molnár M. Quorum quenching effect of cyclodextrins on the pyocyanin and pyoverdine production of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2024;108:271; doi: https://doi.org/10.1007/s00253-024- 13104-7
33. Wretlind B, Pavlovskis OR. Pseudomonas aeruginosa elastase and its role in pseudomonas infections. Rev Infect Dis 1983;5:S998– 1004; doi: https://doi.org/10.1093/clinids/5.supplement_5.s998
34. Everett MJ, Davies DT. Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discovery Today 2021;26:2108–23; doi: https://doi.org/10.1016/j.drudis.2021.02.026
35. Zhou JW, Li PL, Ji PC, Yin KY, Tan XJ, Chen H, et al. Carbon quantum dots derived from resveratrol enhances anti-virulence activity against Pseudomonas aeruginosa. Surf Interfaces 2024;44:103662; doi: https://doi.org/10.1016/j.surfin.2023.103662
36. Ren Y, Zhu R, You X, Li D, Guo M, Fei B, et al. Quercetin: a promising virulence inhibitor of Pseudomonas aeruginosa LasB in vitro. Appl Microbiol Biotechnol 2024;108:57; doi: https://doi.org/10.1007/s00253-023-12890-w
Year
Month
Anti-quorum sensing, antibacterial, antioxidant activities, and phytoconstituents analysis of medicinal plants used in Benin: Acacia macrostachya (Rchb. ex DC.)
Mounirou Tchatchedre, Abdou Madjid O. Amoussa, Ménonvè Atindehou, Aminata P. Nacoulma, Ambaliou Sanni, Martin kiendrebeogo, Latifou LagnikaA novel strategy for disarming quorum sensing in Pseudomonas aeruginosa-Chlorella emersonii KJ725233
Sneha Sawant Desai, Reema Devi Singh, Sukhendu B Ghosh, Varsha KelkarEvaluation of antibiotic resistance and quorum sensing assay of Enterococcus faecalis isolates from the urine samples
Ankita Jaigopal Sagar, Ajay Kumar Oli, Apoorva Jain, R. Kelmani ChandrakanthQuorum sensing inhibition activities of Philippine ethnobotanicals against multidrug-resistant pathogens
Khristina G. Judan CruzIdentification of novel potential anti-quorum sensing molecules against LasR of Pseudomonas aeruginosa using in silico approach
Vivek Kumar, Anmol Srivastava, Deepmala Sharma, Vishnu AgarwalQuorum quenching of virulence traits expression in human and plant pathogens by Isoxazolone and its molecular docking studies
Komal S. Salkar, Lakshangy S. Charya, Milind M. Naik, Hari K. Kadam, Vishnu Chari