Amending coral soil using exopolysaccharide from salt-tolerant Bacillus velezensis TSD5 bacteria from an atoll in Vietnam

Thi Hue Le Duy Nhan Vu Thi Hoai Phuong Nguyen Mai Huong Le Cong Tinh Nguyen Thi Tuyen Do Van Thang Le Mai Phuong Pham Dinh Duy Vu   

Open Access   

Published:  Mar 18, 2025

DOI: 10.7324/JABB.2025.229116
Abstract

Salinity and drought are significant abiotic stresses affecting plant growth and productivity. To convert arid and saline coral sandy soil in the Vietnamese coral archipelago into arable land, this study isolated and evaluated the salinity tolerance and exopolysaccharide (EPS) production of Bacillus velezensis TSD5 strain from the coral archipelago in Vietnam. EPSTSD5 was estimated to have a molecular weight of 1.09 × 105Da based on its intrinsic viscosity, with monosaccharide components consisting of glucose, rhamnose, and mannose (of which mannose is the majority). The results of FT-IR, EDX, and zeta potential analysis showed that EPSTSD5 contains many hydrophilic and negatively charged functional groups, in addition to having a very negative zeta potential, giving it good water-holding capacity (1793%) and the ability to absorb salts and cations. Under NaCl stress, EPS production was significantly stimulated with increased polysaccharide and protein content, thereby enhancing cellular stress tolerance. Adding EPS or the B. velezensis TSD5 strain to coral sand soil improved aggregate formation and water retention while reducing free salt concentration in the soil. The highlight of this study is the analysis from the structural characteristics of EPS to experiments that clearly demonstrate the role of the B. velezensis TSD5 strain in water retention and salinity reduction in coral sandy soil through its water-holding capacity, aggregation formation, and salt absorption ability of EPS. These findings provide an important premise for the development of the B. velezensis TSD5 strain to improve arid and saline soils into arable land, as well as expand environmental treatment directions.


Keyword:     Exopolysaccharide Bacillus velezensis coral sand water retention capacity reduce soil salinity


Citation:

Hue Le T, Nhan Vu D, Phuong Nguyen TH, Huong Le M, Nguyen CT, Tuyen Do T, Thang Le V, Phuong Pham M, Duy Vu D. Amending coral soil using exopolysaccharide from salt-tolerant Bacillus velezensis TSD5 bacteria from an atoll in Vietnam. J Appl Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.229116

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Vu THN, Quach NT, Nguyen NA, Nguyen HT, Ngo CC, Nguyen TD, et al. Genome mining associated with analysis of structure, antioxidant activity reveals the potential production of levan-rich exopolysaccharides by food-derived Bacillus velezensis VTX20. Appl Sci 2021;11(15):7055. https://doi.org/10.3390/app11157055

2. Wang M, Hu T, Lin X, Liang H, Li W, Zhao S, et al. Probiotic characteristics of Lactobacillus gasseri TF08-1: a cholesterol-lowering bacterium, isolated from human gut. Enzyme Microb Technol 2023;169:110276. https://doi.org/10.1016/j.enzmictec.2023.110276

3. Chirakkara SP, Abraham A. Exopolysaccharide from the mice ovarian bacterium Bacillus velezensis OM03 triggers caspase-3-dependent apoptosis in ovarian cancer cells. J Appl Pharm Sci 2023;13(6):154- 64. https://doi.org/10.7324/JAPS.2023.110355

4. Raposo MF, de Morais AM, de Morais RM. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 2014;101(1-2):56-63. https://doi.org/10.1016/j.lfs.2014.02.013

5. Song M, Wang J, Bao K, Sun C, Cheng X, Li T, et al. Isolation, structural characterization and immunomodulatory activity on RAW264.7 cells of a novel exopolysaccharide of Dictyophora rubrovalvata. Int J Biol Macromol 2024;270(Pt 2):132222. https://doi.org/10.1016/j.ijbiomac.2024.132222

6. Paul S, Parvez SS, Goswami A, Banik A. Exopolysaccharides from agriculturally important microorganisms: conferring soil nutrient status and plant health. Int J Biol Macromol 2024;262(Pt 2):129954. https://doi.org/10.1016/j.ijbiomac.2024.129954

7. Li Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. Sci Total Environ 2024;907:167774. https://doi.org/10.1016/j.scitotenv.2023.167774

8. Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides producing bacteria: a review. Microorganisms 2023;11(6):1541. https://doi.org/10.3390/microorganisms11061541

9. Bhagat N, Raghav M, Dubey S, Bedi N. Bacterial exopolysaccharides: insight into their role in plant abiotic stress tolerance. J Microbiol Biotechnol 2021;31(8):1045-59. https://doi.org/10.4014/jmb.2105.05009

10. Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CRK, Jha B. Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydrate Polymers 2011;84(3):1019-26. https://doi.org/10.1016/j.carbpol.2010.12.061

11. Awasthi S, Srivastava P, Mishra PK. Application of EPS in agriculture: an important natural resource for crop improvement. Outlook Agric 2017;27:219-24. https://doi.org/10.19080/ARTOAJ.2017.08.555731

12. Mukherjee P, Mitra A, Roy M. Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front Microbiol 2019;10:1207. https://doi.org/10.3389/fmicb.2019.01207

13. Zhang H, Wang K, Liu X, Yao L, Chen Z, Han H. Exopolysaccharide producing bacteria regulate soil aggregates and bacterial communities to inhibit the uptake of cadmium and lead by lettuce. Microorganisms 2024;12(11):2112. https://doi.org/10.3390/microorganisms12112112

14. Chen Q, Qiu Y, Yuan Y, Wang K, Wang H. Biocontrol activity and action mechanism of Bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato. Front Microbiol 2022;13:994716. https://doi.org/10.3389/fmicb.2022.994716

15. Medhioub I, Cheffi M, Tounsi S, Triki MA. Study of Bacillus velezensis OEE1 potentialities in the biocontrol against Erwinia amylovora, causal agent of fire blight disease of rosaceous plants. Biol Control 2022;167:104842. https://doi.org/10.1016/j.biocontrol.2022.104842

16. Keshmirshekan A, de Souza Mesquita LM, Ventura SP. Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends Biotechnol 2024;42(8):986-1001. https://doi.org/10.1016/j.tibtech.2024.02.003

17. Zhang J, Zhao L, Tang W, Li J, Tang T, Sun X, et al. Characterization of a novel circular bacteriocin from Bacillus velezensis 1-3, and its mode of action against Listeria monocytogenes. Heliyon 2024;10(9):e29701. https://doi.org/10.1016/j.heliyon.2024.e29701

18. Zanon MSA, Cavaglieri LR, Palazzini JM, Chulze SN, Chiotta ML. Bacillus velezensis RC218 and emerging biocontrol agents against Fusarium graminearum and Fusarium poae in barley: in vitro, greenhouse and field conditions. Int J Food Microbiol 2024;413:110580. https://doi.org/10.1016/j.ijfoodmicro.2024.110580

19. Pham MP, Le XD, Nguyen DL, Vu DD. Characteristics habitat and molecular identity of Calophyllum inophyllum L.(Calophyllaceae) in Spratly Islands, Vietnam. Res J Biotech 2022;17(6):149-57. https://doi.org/10.25303/1706rjbt1490157

20. Shi H, Lu L, Ye J, Shi L. Effects of two Bacillus velezensis microbial inoculants on the growth and rhizosphere soil environment of Prunus davidiana. Int J Mol Sci 2022;23(21):13639. https://doi.org/10.3390/ijms232113639

21. Mahdi I, Allaoui A, Fahsi N, Biskri L. Bacillus velezensis QA2 potentially induced salt stress tolerance and enhanced phosphate uptake in quinoa plants. Microorganisms 2022;10(9):1836. https://doi.org/10.3390/microorganisms10091836

22. Derdak R, Sakoui S, Pop OL, Vodnar DC, Addoum B, Elmakssoudi A, et al. Screening, optimization and characterization of exopolysaccharides produced by novel strains isolated from Moroccan raw donkey milk. Food Chem: X 2022;14:100305. https://doi.org/10.1016/j.fochx.2022.100305

23. Ramya P, Sangeetha D, Anooj E, Gangadhar L. Isolation, identification and screening of exopolysaccharides from marine bacteria. Ann Trop Med Public Health 2020;23(2020):23-940. https://doi.org/10.36295/ASRO.2020.23940

24. Sharma A, Dev K, Sourirajan A, Choudhary M. Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. J Genet Eng Biotechnol 2021;19(1):99. https://doi.org/10.1186/s43141-021-00186-3

25. Li PS, Kong WL, Wu XQ. Salt tolerance mechanism of the rhizosphere bacterium JZ-GX1 and its effects on tomato seed germination and seedling growth. Front Microbiol 2021;12:657238. https://doi.org/10.3389/fmicb.2021.657238

26. Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS One 2013;8(2):e56018. https://doi.org/10.1371/journal.pone.0056018

27. DuBois M, Gilles KA, Hamilton JK, Rebers Pt, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28(3):350-6. https://doi.org/10.1021/ac60111a017

28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72(1-2):248-54. https://doi.org/10.1006/abio.1976.9999

29. Andrew M, Jayaraman G. Molecular characterization and biocompatibility of Exopolysaccharide produced by moderately halophilic bacterium Virgibacillus dokdonensis from the Saltern of Kumta Coast. Polymers 2022;14(19):3986. https://doi.org/10.3390/polym14193986

30. Yacob N. Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement. J Nucl Related Technol 2013;10(01):40-4.

31. Shao L, Wu Z, Tian F, Zhang H, Liu Z, Chen W, et al. Molecular characteristics of an exopolysaccharide from Lactobacillus rhamnosus KF5 in solution. Int J Biol Macromol 2015;72:1429-34. https://doi.org/10.1016/j.ijbiomac.2014.10.015

32. Cheah C, Cheow YL, Ting ASY. Co-cultivation, metal stress and molasses: strategies to improving exopolymeric yield and metal removal efficacy. Sustain Environ Res 2022;32(1):9. https://doi.org/10.1186/s42834-022-00121-2

33. Insulkar P, Kerkar S, Lele SS. Purification and structural-functional characterization of an exopolysaccharide from Bacillus licheniformis PASS26 with in-vitro antitumor and wound healing activities. Int J Biol Macromol 2018;120:1441-50. https://doi.org/10.1016/j.ijbiomac.2018.09.147

34. Jiang G, Gan L, Li X, He J, Zhang S, Chen J, et al. Characterization of structural and physicochemical properties of an exopolysaccharide produced by Enterococcus sp. F2 from fermented soya beans. Front Microbiol 2021;12:744007. https://doi.org/10.3389/fmicb.2021.744007

35. Vardharajula S, Shaik ZA. Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation under drought stress. J Microbiol Biotechnol Food Sci 2014;4(1):51-7. https://doi.org/10.15414/jmbfs.2014.4.1.51-57

36. Brischke C, Wegener FL. Impact of water holding capacity and moisture content of soil substrates on the moisture content of wood in terrestrial microcosms. Forests 2019;10(6):485. https://doi.org/10.3390/f10060485

37. Zhao X, Chen G, Wang F, Zhao H, Wei Y, Liu L, et al. Extraction, characterization, antioxidant activity and rheological behavior of a polysaccharide produced by the extremely salt tolerant Bacillus subtilis LR-1. LWT 2022;162:113413. https://doi.org/10.1016/j.lwt.2022.113413

38. Wang B, Zhang D, Chu S, Zhi Y, Liu X, Zhou P. Genomic analysis of Bacillus megaterium NCT-2 reveals its genetic basis for the bioremediation of secondary salinization soil. Int J Genom 2020;2020(1):4109186. https://doi.org/10.1155/2020/4109186

39. Ibarra-Villarreal AL, Gándara-Ledezma A, Godoy-Flores AD, Herrera-Sepúlveda A, Díaz-Rodríguez AM, Parra-Cota FI. Salt-tolerant Bacillus species as a promising strategy to mitigate the salinity stress in wheat (Triticum turgidum subsp. durum). J Arid Environ 2021;186:104399. https://doi.org/10.1016/j.jaridenv.2020.104399

40. Moghannem SAM, Farag MMS, Shehab AM, Azab MS. Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Braz J Microbiol 2018;49(3):452-62. https://doi.org/10.1016/j.bjm.2017.05.012

41. Cheng C, Shang-Guan W, He L, Sheng X. Effect of exopolysaccharide-producing bacteria on water-stable macro-aggregate formation in soil. Geomicrobiol J 2020;37(8):738-45. https://doi.org/10.1080/01490451.2020.1764677

42. Fan Y, Wang J, Gao C, Zhang Y, Du W. A novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Sci Rep 2020;10(1):8519. https://doi.org/10.1038/s41598-020-65432-z

43. Shultana R, Kee Zuan AT, Yusop MR, Saud HM. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS One 2020;15(9):e0238537. https://doi.org/10.1371/journal.pone.0238537

44. Zhong X, Jin Y, Ren H, Hong T, Zheng J, Fan W, et al. Research progress of Bacillus velezensis in plant disease resistance and growth promotion. Front Ind Microbiol 2024;2:1442980. https://doi.org/10.3389/finmi.2024.1442980

45. Sun X, Xu Z, Xie J, Hesselberg-Thomsen V, Tan T, Zheng D, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J 2022;16(3):774-87. https://doi.org/10.1038/s41396-021-01125-3

46. Xie J, Sun X, Xia Y, Tao L, Tan T, Zhang N, et al. Bridging the gap: biofilm-mediated establishment of Bacillus velezensis on Trichoderma guizhouense mycelia. Biofilm 2024;8:100239. https://doi.org/10.1016/j.bioflm.2024.100239

47. Qurashi AW, Sabri AN. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 2012;43:1183-91. https://doi.org/10.1590/S1517-83822012000300046

48. Nkoh JN, Yan J, Hong ZN, Xu RK, Kamran MA, Jun J, et al. An electrokinetic perspective into the mechanism of divalent and trivalent cation sorption by extracellular polymeric substances of Pseudomonas fluorescens. Colloids Surf B Biointerfaces 2019;183:110450. https://doi.org/10.1016/j.colsurfb.2019.110450

49. Boukhelata N, Taguett F, Kaci Y. Characterization of an extracellular polysaccharide produced by a Saharan bacterium Paenibacillus tarimensis REG 0201M. Ann Microbiol 2019;69:93-106. https://doi.org/10.1007/s13213-018-1406-3

50. Maciejewska A, Lugowski C, Lukasiewicz J. First report on the Streptococcus gallolyticus (S. bovis biotype I) DSM 13808 exopolysaccharide structure. Int J Mol Sci 2022;23(19):11797. https://doi.org/10.3390/ijms231911797

51. Binmad S, Numnuam A, Kaewtatip K, Kantachote D, Tantirungkij M. Characterization of novel extracellular polymeric substances produced by Bacillus velezensis P1 for potential biotechnological applications. Polym Adv Technol 2022;33(8):2470-9. https://doi.org/10.1002/pat.5702

52. Cao C, Liu Y, Li Y, Zhang Y, Zhao Y, Wu R, et al. Structural characterization and antioxidant potential of a novel exopolysaccharide produced by Bacillus velezensis SN-1 from spontaneously fermented Da-Jiang. Glycoconj J 2020;37:307-17. https://doi.org/10.1007/s10719-020-09923-1

53. Alharbi MA, Alrehaili AA, Albureikan MOI, Gharib AF, Daghistani H, Bakhuraysah MM, et al. In vitro studies on the pharmacological potential, anti-tumor, antimicrobial, and acetylcholinesterase inhibitory activity of marine-derived Bacillus velezensis AG6 exopolysaccharide. RSC Adv 2023;13(38):26406-17. https://doi.org/10.1039/D3RA04009G

54. Mahgoub AM, Mahmoud MG, Selim MS, Awady MEEL. Exopolysaccharide from marine Bacillus velezensis MHM3 induces apoptosis of human breast cancer MCF-7 cells through a mitochondrial pathway. Asian Pac J Cancer Prev 2018;19(7):1957.

55. Gomaa M, Yousef N. Optimization of production and intrinsic viscosity of an exopolysaccharide from a high yielding Virgibacillus salarius BM02: study of its potential antioxidant, emulsifying properties and application in the mixotrophic cultivation of Spirulina platensis. Int J Biol Macromol 2020;149:552-61. https://doi.org/10.1016/j.ijbiomac.2020.01.289

56. Gandhi HP, Ray RM, Patel RM. Exopolymer production by Bacillus species. Carbohydr Polym 1997;34(4):323-7. https://doi.org/10.1016/S0144-8617(97)00132-X

57. Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective. Food Chem: X 2021;12:100168. https://doi.org/10.1016/j.fochx.2021.100168

58. Tareb R, Bernardeau M, Amiel C, Vernoux JP. Usefulness of FTIR spectroscopy to distinguish rough and smooth variants of Lactobacillus farciminis CNCM-I-3699. FEMS Microbiol Lett 2017;364(2):fnw298. https://doi.org/10.1093/femsle/fnw298

59. Li SW, Sheng GP, Cheng YY, Yu HQ. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Sci Rep 2016;6(1):39098. https://doi.org/10.1038/srep39098

60. Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015;6:496. https://doi.org/10.3389/fmicb.2015.00496

61. Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST. Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir-Part II. Food Hydrocoll 2013;30(1):343- 50. https://doi.org/10.1016/j.foodhyd.2012.06.009

62. Schwehr KA, Xu C, Chiu MH, Zhang S, Sun L, Lin P, et al. Protein: polysaccharide ratio in exopolymeric substances controlling the surface tension of seawater in the presence or absence of surrogate Macondo oil with and without Corexit. Mar Chem 2018;206:84-92. https://doi.org/10.1016/j.marchem.2018.09.003

63. Yang H, Wu D, Li H, Hu C. The extracellular polysaccharide determine the physico-chemical surface properties of Microcystis. Front Microbiol 2023;14:1285229. https://doi.org/10.3389/fmicb.2023.1285229

64. Huang X, Wang S, Fu L, Fang F. Characterization of extracellular polymeric substances by microscopic imaging techniques in wastewater biotreatment: a review. Environ Eng Sci 2022;39(6):493- 585. https://doi.org/10.1089/ees.2021.0199

65. Costa OYA, Raaijmakers JM, Kuramae EE. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 2018;9:1636. https://doi.org/10.3389/fmicb.2018.01636

66. Zadeh HP, Fermoso FG, Collins G, Serrano A, Mills S, Abram F. Impacts of metal stress on extracellular microbial products, and potential for selective metal recovery. Ecotoxicol Environ Saf 2023;252:114604. https://doi.org/10.1016/j.ecoenv.2023.114604

Article Metrics
283 Views 139 Downloads 422 Total

Year

Month

Related Search

By author names