Sustainability analysis of the greenhouse tomato (Solanum lycopersicum L.) production system

Francisco Suazo-López Claudia Hernández-Aguilar José Armando Ramírez-Arias Rosalba Zepeda-Bautista Martha Elena Domínguez-Hernández   

Open Access   

Published:  Dec 16, 2024

DOI: 10.7324/JABB.2025.211953
Abstract

The sustainability of the tomato production system in greenhouses in the municipal area of Texcoco, Mexico, was evaluated using a cluster analysis for the classification of farmers and the framework for the evaluation of management systems for natural resources, incorporating sustainability indicators to evaluate sustainability. The results showed three groups of farmers considering the technology used in production: low technology level (LTL), medium technology level (MTL), and high. They differed in fruit yield (230.19 tons ha-1 year-1 on average), cost-benefit rate (1.31 on average), organization, water management, and greenhouse surface and equipment. Productivity was the attribute that affected sustainability the most since yield is a complex variable due to the conjunction of natural, human, and financial resources that affect the environmental, social, and technological dimensions. Fruit yield was slightly higher than the reference value (180.32 tons ha-1 year-1) at 53.53%, 18.44% and 1.8% in the high, medium, and low technological level clusters, respectively, whereas net income and the cost-benefit rate had lower values than the reference (1034326 MEX$ and 1.62, respectively) for the LTL and MTL clusters. The information obtained helps generate a baseline and strategies to improve the sustainability of the system.


Keyword:     Cost-benefit rate farmer organization fruit yield technology level water management


Citation:

Suazo-López F, Hernández-Aguilar C, Ramírez-Arias JA, Zepeda-Bautista R, Domínguez-Hernández ME. Sustainability analysis of the greenhouse tomato (Solanum lycopersicum L.) production system. J Appl Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2025.211953

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. United Nations [Internet]. Sustainable Development Goals. 17 Goals to Transform Our World. Available via https://www.un.org/sustainabledevelopment/ (Accessed 21 August 2023).

2. Dominguez-Hernandez ME, Dominguez-Hernandez E, Martinez-Barrera G, Dominguez-Hernandez A, Zepeda-Bautista R. Transdisciplinary interventions to improve the sustainability of maize agroecosystems: a case study from Mexico. Transdiscipl J Eng Sci 2022;13:85–9; doi: https://doi.org/10.22545/2022/00196

3. Zaman MS, Sizemore RC. Freshwater resources could become the most critical factor in the future of the earth. J Miss Acad Sci 2017;62(4):348–52. Available from https://msacad.org/wp-content/uploads/2017/12/MAS-October-Vol-62-4-2017.pdf

4. Food and Agriculture Organization of the United Nations (FAO). The state of food and agriculture 2020. Overcoming water challenges in agriculture. FAO, Rome, Italy, 2020. doi: https://www.doi.org/10.4060/cb1447en

5. Biswas AK, Tortajada C. Ensuring water security under climate change. In: Biswas AK, Tortajada C, editors. Water resources development and management. Springer Nature, Singapore, 2022. doi: https://doi.org/10.1007/978-981-16-5493-0_1

6. Comisión Nacional del Agua (CONAGUA) [Internet]. Estadísticas del Agua en México. Available via https://sina.conagua.gob.mx/publicaciones/EAM_2018.pdf (Accessed 17 September 2022).

7. Comisión Nacional del Agua (CONAGUA) [Internet]. Usos del Agua. 2019. Available via https://www.gob.mx/conagua/acciones-y-programas/usos-del-agua. (Accessed 20 December 2020).

8. Reddy RN. Irrigation engineering. Gene-Tech Books, New Delhi, India, 2010.

9. Waller P, Yitayew M. Irrigation and drainage engineering. Springer International Publishing, New York, NY, 2016. doi: https://doi.org/10.1007/978-3-319-05699-9

10. Zepeda-Bautista R, Virgen-Vargas J, Suazo-López F, Arellano-Vázquez JL, Ávila-Perches MA. Nitrogen in fertigation to produce seed of parental lines and single crosses of maize: dose and distribution. Rev Fitotec Mex 2021;44(2):191–200; doi: https://doi.org/10.35196/rfm.2021.2.191

11. Rakshit A, Singh HB, Singh AK, Singh US, Fraceto L. New frontiers in stress management for durable agriculture. Springer Nature, Singapore, 2020. doi: https://doi.org/10.1007/978-981-15-1322-0

12. Sánchez DCF, Moreno PEDC. Diseño agronómico y manejo de invernaderos. Universidad Autónoma Chapingo, Chapingo, Mexico, 2017.

13. Hong M, Zhang Z, Fu Q, Liu Y. Water requirement of solar greenhouse tomatoes with drip irrigation under Mulch in the southwest of the Taklimakan Desert. Water 2022;14(19):3050; doi: https://doi.org/10.3390/w14193050

14. Shtaya MJ, Qubbaj, T. Effect of different soilless agriculture methods on irrigation water saving and growth of lettuce (Lactuca sativa). Res Crop 2022;23(1):156–62; doi: https://doi.org/10.31830/2348-7542.2022.022

15. Salazar-Moreno R, Rojano-Aguilar A, López-Cruz IL. Water use efficiency in controlled agriculture. Tecnol Cienc Agua 2014;V(2):177–83. Available via https://www.redalyc.org/articulo.oa?id=353531987011

16. Sánchez JA, Rodríguez F, Guzmán JL, Arahal MR. Virtual sensors for designing irrigation controllers in greenhouses. Sensors 2012;12:15244–66; doi: https://doi.org/10.3390/s121115244

17. Gestiriego México [Internet]. Gestiriego México. GESTIMAX. Available via https://www.gestiriego.com/en/mexico/ (Accessed 15 December 2022).

18. SIAP (Servicio de Información Agroalimentaria y Pesquera) [Internet]. Fertirriego: Una Solución para Cultivos Extensivos y un Área de Oportunidad para la Tecnología Mexicana. Available via https://www.gob.mx/siap/articulos/el-fertirriego (Accessed 15 December 2022).

19. Kanter J, Clark N, Lundy ME, Koundinya V, Leinfelder-Miles M, Long R, et al. Top management challenges and concerns for agronomic crop production in California: identifying critical issues for extension through needs assessment. Agron J 2021;113(6):5254–70; doi: https://doi.org/10.1002/agj2.20897

20. Camacho M, Arauz K, Barboza N, Martínez HA, Arias J. Characterization of the producers of organic vegetables distributed in the greater metropolitan area (GAM), costa rica. Agron Costarric 2015;39(2):131–42.

21. Baltazar E, Brenes LH, Pérez M, Macías VLM, Cortés CMA, Domínguez LRF, et al. Characterization of farmers from three municipalities of aguascalientes. Rev Mex Cienc Agríc 2011;2(1):31–40. Available via https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000700003

22. Jaramillo AJG, Peña OBV, Hernández SJH, Ramón DRR, Espinosa CA. Characterization of seasonal corn producers in Tierra Blanca, Veracruz. Rev Mex Cienc Agríc 2018;9(5):911–23; doi: https://doi.org/10.29312/remexca.v9i5.1501

23. Phong LT, Minh VQ. Use of exploratory factor analysis for sustainability determination of fruit tree production: a case study in Hau Giang Province, Vietnam. J App Biol Biotech 2023;11(1):205–9; doi: https://doi.org/10.7324/JABB.2023.110129

24. Miranda D, Fischer G, Barrientos JC, Carranza C, Rodríguez M, Lanchero O. Characterization of productive systems of tomato (Solanum lycopersicum L.) in producing zones of colombia. Acta Hortic 2009;82(821):35–46; doi: https://doi.org/10.17660/ActaHortic.2009.821.2

25. Dominguez-Hernandez ME, Zepeda-Bautista R, Valderrama-Bravo MC, Dominguez-Hernandez E, Hernandez-Aguilar C. Sustainability assessment of traditional maize (Zea mays L.) agroecosystem in sierra norte of Puebla, Mexico. Agroecol Sustain Food Syst 2018;42(4):383–406; doi: https://doi.org/10.1080/21683565.2017.1382426

26. Ortega-Martínez LD, Martínez-Valenzuela C, Huerta-De La Peña A, Ocampo-Mendoza J, Sandoval-Castro E, Jaramillo-Villanueva JL. Use and management of pesticides in greenhouses in the Northern Region of the State of Puebla, Mexico. Acta Universitaria 2014;24(3):3–12; doi: https://doi.org/https://doi.org/10.15174.au.2014.570

27. Domínguez HME, Zepeda BR. Análisis multidimensional, sistémico y transdisciplinario para la investigación agrícola (AMSTIA). Comunicación Científica, Ciudad de México, México, 2024; doi: https://doi.org/10.52501/cc.183

28. Chaudhary A, Krishna V. A Quantitative framework for characterizing the current and obtaining a future sustainable agricultural production mix meeting environmental, nutritional, and economic goals. Environ Res Lett 2024;19:074008; doi: https://doi.org/10.1088/1748-9326/ad54db

29. Parra RO, Ojeda RA, González AOR, Staboulis C, Natos D, Mattas K, et al. Characterisation of organic olive farmers in the framework of M11 of the common agricultural policy. Agronomy 2023;13:2630; doi: https://doi.org/10.3390/agronomy13102630

30. Rueda HF, Perafán A, Hernández A. Strategic analysis and sustainability prospects of coffee farming in Trujillo, Valle del Cauca, Colombia. Rev Venez Gerenc 2024;29(Especial 11):411–25; doi: https://doi.org/10.52080/rvgluz.29.e11.24

31. Ayuntamiento de Texcoco [Internet]. Medio Físico de Texcoco. Available via https://www.texcocoedomex.gob.mx/Medios-Fisicos.html (Accessed 15 December 2022).

32. Gobierno del Estado de México [Internet]. Estadística Básica Municipal: Texcoco. Available via http://igecem.edomex.gob.mx/sites/igecem.edomex.gob.mx/files/files/ArchivosPDF/Productos-Estadisticos/Indole-Social/EBM-SECTOR-EDUCACION/EBM_Educacioon_2021.pdf (Accessed 15 November 2022).

33. SMN (Servicio Meteorológico Nacional) [Internet]. Normales Climatológicas, Estación Chapingo. Available via https://smn.conagua.gob.mx/tools/RESOURCES/Normales5110/NORMAL15170.TXT (Accessed 15 November 2022).

34. INEGI (Instituto Nacional de Estadística y Geografía) [Internet]. Panorama Sociodemográfico de México: Censo de Población y Vivienda. INEGI, Ciudad de México, México, 2020. Available via https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825197711.pdf (Accessed 15 October 2022).

35. Aguilar MAAP, Rivero HR, Inoue CA. La Gestión del Agua en la Región Texcoco, Estado de México. Espacios Públicos 2011;14(30):54–71. Available via https://www.redalyc.org/pdf/676/67618934005.pdf

36. The World Bank Group [Internet]. Population, Total. 2022. Available via https://data.worldbank.org/indicator/SP.POP.TOTL (Accessed 15 December 2023).

37. FAO, IFAD, UNICEF, WFP, WHO. In brief to the state of food security and nutrition in the world 2022. Repurposing food and agricultural policies to make healthy diets more affordable. FAO, Rome, Italy, 2022; doi: https://doi.org/10.4060/cc0640en

38. SIAP (Servicio de Información Agroalimentaria y Pesquera) [Internet]. Anuario Estadístico de Producción Agrícola. Available via https://nube.siap.gob.mx/cierreagricola/ (Accessed 15 December 2022).

39. Ibarra SYM [Internet]. Padrón de Invernaderos del Estado de México. Universidad Autónoma del Estado de México, Toluca, Mexico. Available via http://hdl.handle.net/20.500.11799/62557 (Accessed 15 December 2022).

40. Malhotra NK. Marketing research. An applied orientation. Pearson Educación, Mexico City, México, 2008.

41. Otzen T, Manterola C. Sampling techniques on a population study. Int J Morphol 2017;35(1):227–32. Available via https://scielo.conicyt.cl/pdf/ijmorphol/v35n1/art37.pdf

42. Sokal RR. Clustering and classification: background and current directions. In: Van Ryzin J, editor. Classification and clustering. Academic Press Inc, New York, NY, 1997.

43. Köbrich C, Rehman T, Khan M. Typification of farming systems for constructing representative farm models: two illustrations of the application of multi-variate analyses in Chile and Pakistan. Agric Syst 2003;76(1):141–57; doi: https://doi.org/10.1016/S0308-521X(02)00013-6

44. Han J, Kamber M, Pei J. Cluster analysis: basic concepts and methods. Data mining. Third edition. The morgan kaufmann series in data management systems. E Morgan Kaufmann, Burlington, MA, 2012l; doi: https://doi.org/10.1016/B978-0-12-381479-1.00010-1

45. SAS Institute (Statistical Analysis Software). SAS/STAT 9.3 User’s guide. SAS Institute Inc, Cary, NC, 2014.

46. Astier M, Masera O, Galván Y. Evaluación de sustentabilidad. Un enfoque dinámico y multidimensional. Mundi Prensa, Mexico City, Mexico, 2008.

47. López-Ridaura S, Masera O, Astier M. Evaluating the sustainability of complex socio-environmental systems. The MESMIS framework. Ecol Indic 2002;2(1):135–48; doi: https://doi.org/10.1016/S1470-160X(02)00043-2

48. Mundo-Coxca M, Jaramillo-Villanueva J, Morales-Jimenez J. Rentabilidad financiera y económica de las unidades de producción de jitomate (Lycopersicum esculentum Mill.) bajo Invernadero en Puebla, México. Agro Product 2019;12(9):47–52; doi: https://doi.org/10.32854/agrop.v12i9.1419

49. Koukounaras A. Advanced greenhouse horticulture: new technologies and cultivation practices. Horticulturae 2021;7(1):1–5; doi: https://doi.org/10.3390/horticulturae7010001

50. Flores J, Ojeda-Bustamante W, Lo?pez I, Rojano A, Salazar I. Water requirements for greenhouse tomato. Terra Latinoam 2007;25(2):127–34. Available via https://www.redalyc.org/pdf/573/57325204.pdf

51. Morales HJL, González RFJ, Hernández MJ. Análisis de rentabilidad del cultivo de jitomate bajo invernadero en san simón de guerrero, Estado de México. Paradigma Económico 2017;9(2):167–87. Available via https://paradigmaeconomico.uaemex.mx/article/view/9389/7880

52. Heuvelink EP. Tomatoes. Crop production science in horticulture. CABI Publishing Oxfordshire, UK, 2018.

53. Vargas-Canales JM, Palacios-Rangel MI, Aguilar-Ávila J, Camacho-Vera JH, Ocampo-Ledesma JG, Medina-Cuellar SE. Efficiency of small enterprises of protected agriculture in the adoption of innovations in Mexico. Estud Gerenc 2018;34(146):52–62; doi: https://doi.org/10.18046/j.estger.2018.146.2811

54. INEGI [Internet]. Encuesta Nacional sobre Disponibilidad y Uso de Tecnologías de la Información en los Hogares (ENDUTIH) 2023. Available via https://www.inegi.org.mx/programas/endutih/2023/#tabulados (Accessed 30 September 2024).

55. Cih-Dzul IR, Jaramillo-Villanueva L, Tornero-Campante MA, Schwentesius-Rindermann R. Characterization of tomato (Lycopersicum esculentum Mill.) cropping system in the State of Jalisco, Mexico. Trop Subtrop Agroecosystems 2011;14:501–12. Available via https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/771/557

56. Uqab B, Mudasir S, Nazir R. Review on bioremediation of pesticides. J Bioremediat Biodegrad 2016;7(3):343; doi: https://doi.org/10.4172/2155-6199.1000343

57. Rodríguez MRD, Palomo CL, Padilla MM, Corrales VA, Wendel JB. Talleres participativos sobre riesgos en el uso de plaguicidas: una construcción colectiva e interetaria. IRET-UNA, Heredia, Costa Rica, 2020. Available via https://repositorio.una.ac.cr/bitstream/handle/11056/18886/Informe%20talleres%20participativos%202019.pdf

58. Vargas BBE. The role of production Cobb-Douglas. Fides et Ratio 2014;8:67–74. Available via http://www.scielo.org.bo/pdf/rfer/v8n8/v8n8_a06.pdf

59. Suazo-López F, Zepeda-Bautista R, Sánchez-Del Castillo F, Martínez-Hernández JJ, Virgen-Vargas J, Tijerina-Chávez L. Growth and yield of tomato (Solanum lycopersicum L.) as affected by hydroponics, greenhouse and irrigation regimes. Annu Res Rev Biol 2014;4(24):4246–58; doi: https://doi.org/10.9734/ARRB/2014/11936

60. SNIIM (Sistema Nacional de Información e Integración de Mercados) [Internet]. Mercados Nacionales. Available via http://www.economia-sniim.gob.mx/nuevo/Home.aspx?opcion=Consultas/MercadosNacionales/PreciosDeMercado/Agricolas/ConsultaFrutasYHortalizas.aspx?SubOpcion=4|0 (Accessed 15 September 2022).

61. Urrestarazu GM. Manual práctico de cultivo sin suelo e hidroponia. Mundi Prensa, Madrid, Spain, 2015.

62. Rezvani MP, Feizi H, Mondani F. Evaluation of tomato production systems in terms of energy use efficiency and economical analysis in Iran. Not Sci Biol 2011;3(4):58–65; doi: https://doi.org/10.15835/nsb.3.4.6279

63. Riggs JL. Sistemas de producción: planeación, análisis y control. Limusa, Ciudad de México, Mexico, 2016.

64. Luna-Nemecio J. Sustainability and COVID-19: challenges for research in the pospandemic Era. Ecocienc Int J 2020;2(3):5–13; doi: https://doi.org/10.35766/je20231

65. DOF (Diario Oficial de la Federación) [Internet]. Plan Nacional de Desarrollo 2019-2024. Available via https://www.dof.gob.mx/nota_detalle.php?codigo=5565599&fecha=12/07/2019#gsc.tab=0 (Accessed 20 November 2022).

66. Gebru AA, Araya A, Habtu S, Wolde-Georgis T, Teka D, Martorano LG. Evaluating water productivity of tomato, pepper and swiss chard under clay pot and furrow irrigation technologies in semi-arid areas of Northern Ethiopia. Int J Water 2018;12(1):54–65; doi: https://doi.org/10.1504/IJW.2018.090188

67. Cota-Ruiz K, Nuñez-Gastelúm JA, Delgado-Rios M, Martinez-Martinez A. Bioremediation: current concepts and applications. Biotecnia 2019;XXI(1):37–44. Available via https://biotecnia.unison.mx/index.php/biotecnia/article/view/811/298

68. Maureira F, Rajagopalan K, Stöckle CO. Evaluating tomato production in open-field and high-tech greenhouse systems. J Clean Prod 2022;337:130459; doi: https://doi.org/10.1016/j.jclepro.2022.130459

69. Ortega MLD, Martínez VC, Waliszewski SM, Ocampo MJ, Huichapan MJ, El Kassis E, et al. Technological level of greenhouses and risk to the health of workers. Nova Sci 2017;9(18):21–42. Available via https://www.redalyc.org/pdf/2033/203350918002.pdf

Article Metrics
31 Views 13 Downloads 44 Total

Year

Month

Related Search

By author names